1
|
Niazvand F, Ashtari A, Chamkouri N, Azari M. Hepatoprotective effects of Alpinia officinarum rhizome extract on cisplatin-induced hepatotoxicity in rats: A biochemical, histopathological and immunohistochemical study. J Trace Elem Med Biol 2023; 80:127306. [PMID: 37757646 DOI: 10.1016/j.jtemb.2023.127306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Alpinia officinarum is a member of the ginger family (Zingiberaceae), which is widely cultivated in Asia and traditionally used for its anti-inflammatory, antimicrobial, and antihyperlipidemic qualities. This study aimed to evaluate the effect of Alpinia officinarum rhizome extract (AORE) on cisplatin (CP)-induced hepatotoxicity in rats. METHODS Forty-four male rats were divided into six groups including the control group, AORE control group, CP control group, and three groups of CP (7 mg/kg dose, on the 10th day) with AORE (at concentrations of 100, 200 and 400 mg/kg, daily for 14 days). After 14 days, the rats' livers were removed and their liver function was assessed using biochemical marker enzymes including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) activities and albumin, total protein, and total bilirubin (T. bilirubin). Oxidative stress was assessed by evaluating malondialdehyde concentration and hepatic superoxide dismutase activity, histopathological and immunohistochemical tests were also conducted. RESULTS Results demonstrated that treatment with AORE reduced the toxicity in levels of the hepatic biomarkers in cp-induced groups. AORE treatment decreased oxidative stress and improved histopathological indexes. Furthermore, immunohistochemical (IHC) investigation showed the B-cell lymphoma 2 (Bcl-2) upsurging and p53 downregulating expression exhibiting the recovery following AORE administration. CONCLUSION The founding suggested that AORE administration has positive biochemical, histopathological, and immunohistochemical impacts on the ameliorating of hepatotoxicity in CP-induced rats.
Collapse
Affiliation(s)
- Firoozeh Niazvand
- Department of Anatomical Sciences, Abadan University of Medical Sciences, Abadan, Iran
| | - Atefeh Ashtari
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Narges Chamkouri
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Mahdi Azari
- Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
2
|
Zhao X, Xu Z, Meng B, Ren T, Wang X, Hou R, Li S, Ma W, Liu D, Zheng J, Shi M. Long noncoding RNA NONHSAT160169.1 promotes resistance via hsa-let-7c-3p/SOX2 axis in gastric cancer. Sci Rep 2023; 13:20858. [PMID: 38012281 PMCID: PMC10682003 DOI: 10.1038/s41598-023-47961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
In clinical trials involving patients with HER2 (ERBB2 receptor tyrosine kinase 2) positive gastric cancer, the efficacy of the HER2-targeted drug lapatinib has proven to be disappointingly poor. Under the persistent pressure exerted by targeted drug therapy, a subset of tumor cells exhibit acquired drug resistance through the activation of novel survival signaling cascades, alongside the proliferation of tumor cells that previously harbored mutations conferring resistance to the drug. This study was undertaken with the aim of elucidating in comprehensive detail the intricate mechanisms behind adaptive resistance and identifying novel therapeutic targets that hold promise in the development of effective lapatinib-based therapies for the specific subset of patients afflicted with gastric cancer. We have successfully established a gastric cancer cell line with acquired lapatinib resistance, designated as HGC-27-LR cells. Utilizing comprehensive coding and noncoding transcriptome sequencing analysis, we have identified key factors that regulate lapatinib resistance in HGC-27 cells. We have compellingly validated that among all the lncRNAs identified in HGC-27-LR cells, a novel lncRNA (long noncoding RNA) named NONHSAT160169.1 was found to be most notably upregulated following exposure to lapatinib treatment. The upregulation of NONHSAT160169.1 significantly augmented the migratory, invasive, and stemness capabilities of HGC-27-LR cells. Furthermore, we have delved into the mechanism by which NONHSAT160169.1 regulates lapatinib resistance. The findings have revealed that NONHSAT160169.1, which is induced by the p-STAT3 (signal transducer and activator of transcription 3) nuclear transport pathway, functions as a decoy that competitively interacts with hsa-let-7c-3p and thereby abrogates the inhibitory effect of hsa-let-7c-3p on SOX2 (SRY-box transcription factor 2) expression. Hence, our study has unveiled the NONHSAT160169.1/hsa-let-7c-3p/SOX2 signaling pathway as a novel and pivotal axis for comprehending and surmounting lapatinib resistance in the treatment of HER2-positive gastric cancer.
Collapse
Affiliation(s)
- Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Zijian Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Bi Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Lian J, Sun W, Dong F, Zhu X, Sun X, Jia S, Gao L, Wei M. Effectiveness of the treatment of depression associated with cancer and neuroimaging changes in depression-related brain regions in patients treated with the mediator-deuterium acupuncture method. Open Life Sci 2023; 18:20220709. [PMID: 37954100 PMCID: PMC10638839 DOI: 10.1515/biol-2022-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 11/14/2023] Open
Abstract
Cancer patients should be concerned about depression, which can negatively impact their mental health. To develop efficient therapies, it is essential to comprehend the connection between cancer and depression. This study used neuroimaging to investigate the use of mediator-deuterium acupuncture (MDA) for people with cancer-induced depression and its effects on brain regions associated with depression. Resting-state functional magnetic resonance imaging and neurocognitive testing were conducted on the participants, and statistical package for the social sciences was utilized to analyze the behavioral data. Clinical and theoretical data were analyzed to evaluate acupuncture's effectiveness against gynecological cancer. In the research, there were 40 participants, 20 in each group. Except for psychomotor speed, there was no discernible difference in pre-chemotherapy cognitive test results between patients and healthy controls (HCs). However, there were substantial differences in post-treatment cognition test results, showing that the patient group had progressed. According to longitudinal graph analysis, the patient group's local and global brain efficiency significantly declined, and lower local efficiency was associated with lower raw Trail Making Test-A results. Furthermore, poorer verbal memory scores were associated with lower overall performance in the sick group but not in the HC group. According to the research, MDA has potential as a supplemental therapy since it may improve brain function and address depression-related neurological abnormalities in cancer patients. More research is required to fully comprehend the variations between cancer and depression-related brain areas during patient therapy, maybe incorporating MDA.
Collapse
Affiliation(s)
- Jianlun Lian
- Department of Oncology One, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
| | - Weiyuan Sun
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Ministry of Human Resources, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Fang Dong
- Department of Oncology One, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
| | - Xueliang Zhu
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Department of Brain Disease II, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Xue Sun
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Functional Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Songtao Jia
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Acupuncture Rehabilitation Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Limin Gao
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Catheter room, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Meimei Wei
- Department of Oncology One, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
| |
Collapse
|
4
|
Mukherjee S, Nag S, Mukerjee N, Maitra S, Muthusamy R, Fuloria NK, Fuloria S, Adhikari MD, Anand K, Thorat N, Subramaniyan V, Gorai S. Unlocking Exosome-Based Theragnostic Signatures: Deciphering Secrets of Ovarian Cancer Metastasis. ACS OMEGA 2023; 8:36614-36627. [PMID: 37841156 PMCID: PMC10568589 DOI: 10.1021/acsomega.3c02837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer (OC) is a common gynecological cancer worldwide. Unfortunately, the lack of early detection methods translates into a substantial cohort of women grappling with the pressing health crisis. The discovery of extracellular vesicles (EVs) (their major subpopulation exosomes, microvesicles, and apoptotic bodies) has provided new insights into the understanding of cancer. Exosomes, a subpopulation of EVs, play a crucial role in cellular communication and reflect the cellular status under both healthy and pathological conditions. Tumor-derived exosomes (TEXs) dynamically influence ovarian cancer progression by regulating uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and the development of drug and therapeutic resistance. In the field of OC diagnostics, TEXs offer potential biomarkers in various body fluids. On the other hand, exosomes have also shown promising abilities to cure ovarian cancer. In this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we highlight future directions of exosome-based ovarian cancer research.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, West Bengal 700126, Kolkata, India
- Department
of Health Sciences, Novel Global Community
Educational Foundation, New South
Wales, Australia
| | - Swastika Maitra
- Department
of Microbiology, Adamas University, West Bengal 700126, Kolkata, India
| | - Raman Muthusamy
- Department
of Microbiology, Centre for Infectious Diseases, Saveetha Dental College, Chennai, Tamil Nadu 600077, India
| | - Neeraj Kumar Fuloria
- Faculty
of Pharmacy, & Centre of Excellence for Biomaterials Engineering, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty
of Pharmacy, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy Co. Limerick, Limerick V94T9PX, Ireland
| | - Vetriselvan Subramaniyan
- Jeffrey
Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Saveetha
Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 West Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Ding P, Zeng M, Yin R. Editorial: Computational methods to analyze RNA data for human diseases. Front Genet 2023; 14:1270334. [PMID: 37674479 PMCID: PMC10478215 DOI: 10.3389/fgene.2023.1270334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Luo C, Zhang J, Bo L, Wei L, Yang G, Gao S, Mao C. Construction of a ceRNA-based lncRNA–mRNA network to identify functional lncRNAs in premature ovarian insufficiency. Front Genet 2022; 13:956805. [PMID: 36313451 PMCID: PMC9608794 DOI: 10.3389/fgene.2022.956805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Premature ovarian insufficiency, characterized by ovarian infertility and low fertility, has become a significant problem in developed countries due to its propensity for late delivery. It has been described that the vital role of lncRNA in the development and progression of POI. The aim of this work was to create a POI-based lncRNA–mRNA network (POILMN) to recognize key lncRNAs. Overall, differently expressed mRNAs (DEGs) and differently expressed lncRNAs (DELs) were achieved by using the AnnoProbe and limma R packages. POI-based lncRNA–mRNA network (POILMN) construction was carried out using the tinyarray R package and hypergeometric distribution. To identify key lncRNAs, we used CentiScaPe plug-in Cytoscape as a screening tool. In total, 244 differentially expressed lncRNAs (DELs) and 288 differentially expressed mRNAs (DEGs) were obtained in this study. Also, 177 lncRNA/mRNA pairs (including 39 lncRNAs and 86 mRNAs) were selected using the hypergeometric test. Finally, we identified four lncRNA (HCP5, NUTM2A-AS1, GABPB1-IT1, and SMIM25) intersections by topological analysis between two centralities (degree and betweenness), and we explored their subnetwork GO and KEGG pathway enrichment analysis. Here, we have provided strong evidence for a relationship with apoptosis, DNA repair damage, and energy metabolism terms and pathways in the key lncRNAs in our POI-based lncRNA–mRNA network. In addition, we evaluated the localization information of genes related to POI and found that genes were more distributed on chromosomes 15, 16, 17, and 19. However, more experiments are needed to confirm the functional significance of such predicted lncRNA/mRNA. In conclusion, our study identified four long non-coding RNA molecules that may be relevant to the progress of premature ovarian insufficiency.
Collapse
Affiliation(s)
- Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiakai Zhang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Monash University, Caulfield East, Melbourne, VIC, Australia
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guangzhao Yang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shasha Gao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Caiping Mao,
| |
Collapse
|
7
|
Liu J, Jiang M, Guan J, Wang Y, Yu W, Hu Y, Zhang X, Yang J. LncRNA KCNQ1OT1 enhances the radioresistance of lung squamous cell carcinoma by targeting the miR-491-5p/TPX2-RNF2 axis. J Thorac Dis 2022; 14:4081-4095. [PMID: 36389338 PMCID: PMC9641317 DOI: 10.21037/jtd-22-1261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lung cancer, especially lung squamous cell carcinoma (LUSC), is one of the most common malignant tumors worldwide. Currently, radiosensitization research is a vital direction for the improvement of LUSC therapy. Long non-coding RNAs (lncRNAs) can be novel biomarkers due to their multiple functions in cancers. However, the function and mechanism of lncRNA KCNQ1OT1 in the radioresistance of LUSC remain to be elucidated. METHODS The clonogenic assay was employed to determine the radioresistance of SK-MES-1R and NCI-H226R cells. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were conducted for the detection of gene expression. Cell proliferation was determined by the methyl thiazolyl tetrazolium (MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) staining, and cell apoptosis was assessed by flow cytometry. The relationships between genes were also evaluated by applying the luciferase reporter and radioimmunoprecipitation (RIP) assays. RESULTS Radioresistant LUSC cells (SK-MES-1R and NCI-H226R) had strong resistance to X-ray irradiation, and lncRNA KCNQ1OT1 was highly expressed in SK-MES-1R and NCI-H226R cells. Moreover, knockdown of lncRNA KCNQ1OT1 prominently suppressed proliferation, attenuated radioresistance, and accelerated the apoptosis of SK-MES-1R and NCI-H226R cells. More importantly, we verified that miR-491-5p was a regulatory target of lncRNA KCNQ1OT1, and Xenopus kinesin-like protein 2 (TPX2) and RING finger protein 2 (RNF2) were the target genes of miR-491-5p. The rescue experiment results also demonstrated that miR-491-5p was involved in the inhibition of cell proliferation and the downregulation of TPX2 and RNF2 expression mediated by lncRNA KCNQ1OT1 knockdown in SK-MES-1R and NCI-H226R cells. CONCLUSIONS LncRNA KCNQ1OT1 was associated with the radioresistance of radioresistant LUSC cells, and the lncRNA KCNQ1OT1/miR-491-5p/TPX2-RNF2 axis might be used as a therapeutic target to enhance the radiosensitivity of radioresistant LUSC cells.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Cardiothoracic Surgery Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Mi Jiang
- Department of Cardiothoracic Surgery Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Jinlei Guan
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjuan Yu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanping Hu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Yang Y, Li Y, Yuan H, Liu X, Ren Y, Gao C, Jiao T, Cai Y, Zhao S. Integrative Analysis of the lncRNA-Associated ceRNA Regulatory Network Response to Hypoxia in Alveolar Type II Epithelial Cells of Tibetan Pigs. Front Vet Sci 2022; 9:834566. [PMID: 35211545 PMCID: PMC8861501 DOI: 10.3389/fvets.2022.834566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
The function of alveolar type II epithelial (ATII) cells is severely hampered by oxygen deficiency, and understanding the regulatory mechanisms controlling responses to hypoxia may assist in relieving injury induced by hypoxia. In this study, we cultured ATII cells from Tibetan pigs and Landrace pigs under hypoxic and normoxic environments to screen for differentially expressed (DE) lncRNAs, DEmiRNAs, and construct their associated ceRNA regulatory networks in response to hypoxia. Enrichment analysis revealed that target genes of DElncRNAs of Tibetan pigs and Landrace pig between the normoxic (TN, LN) and hypoxic (TL, LL) groups significantly enriched in the proteoglycans in cancer, renal cell carcinoma, and erbB signaling pathways, while the target genes of DEmiRNAs were significantly enriched in the axon guidance, focal adhesion, and mitogen-activated protein kinase (MAPK) signaling pathways. Hypoxia induction was shown to potentially promote apoptosis by activating the focal adhesion/PI3K-Akt/glycolysis pathway. The ssc-miR-20b/MSTRG.57127.1/ssc-miR-7-5p axis potentially played a vital role in alleviating hypoxic injury by regulating ATII cell autophagy under normoxic and hypoxic conditions. MSTRG.14861.4-miR-11971-z-CCDC12, the most affected axis, regulated numerous RNAs and may thus regulate ATII cell growth in Tibetan pigs under hypoxic conditions. The ACTA1/ssc-miR-30c-3p/MSTRG.23871.1 axis is key for limiting ATII cell injury and improving dysfunction and fibrosis mediated by oxidative stress in Landrace pigs. Our findings provide a deeper understanding of the lncRNA/miRNA/mRNA regulatory mechanisms of Tibetan pigs under hypoxic conditions.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ren
- Institute of Animal Husbandry and Veterinary Medicine, Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shengguo Zhao
| |
Collapse
|
9
|
Hu FX, Yang J, Yang CH, Tao YN, Yang XS, Cui ML, Li GL, Li C, Jiang YH. Identification of lncRNA-mRNA regulatory network associated with isolated systolic hypertension and atherosclerotic cerebral infarction. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1589. [PMID: 34790795 PMCID: PMC8576659 DOI: 10.21037/atm-21-5176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 01/19/2023]
Abstract
Background Increasingly, evidence has shown that long non-coding RNAs (lncRNAs) play an important role in isolated systolic hypertension (ISH). However, a systematic lncRNA-messenger RNA (mRNA) regulatory network is still absent in isolated systolic hypertension and atherosclerotic cerebral infarction patients (ISH & ACI). This research aimed to establish a lncRNA-mRNA co-expression network in patients with ISH & ACI, to probe into the potential functions of lncRNA in such patients. Methods Expression profiles of lncRNA and mRNAs were collected and compared, from 8 patients with ISH and 8 patients with ISH & ACI by RNA-seq data. Differentially expressed lncRNAs and mRNAs were screened out via high-throughput sequencing in the plasma of ISH/ACI patients and control ISH patients. Then, a lncRNA-mRNA interaction network was built using the Pearson correlation coefficient by Cytoscape software. The expression levels of the hub genes and lncRNAs were verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in another 10 ISH/ACI patients and 10 control patients. This study was approved by the responsible institutional review board (IRB) and informed consent was provided by participants. Results A total of 2,768 differentially expressed lncRNAs and 747 differentially expressed mRNAs were identified. We identified two hub genes (CD226 and PARVB) and 11 lncRNAs in the lncRNA-mRNA interaction network. The results of qRT-PCR and cell assay verified that lncRNAs ENST00000590604 and CD226 are highly expressed in patients of ISH & ACI. Further, CD226 was associated with vascular endothelial cells growth and stability through the platelet activation and focal adhesion pathway. Conclusions We established a novel mRNA-lncRNA interaction network. The lncRNAs ENST00000590604 and CD226 might be the potential biomarkers of ISH & ACI.
Collapse
Affiliation(s)
- Fang-Xiao Hu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuan-Hua Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan-Nan Tao
- Shandong University of Traditional Chinese Medicine Second Affiliated Hospital, Jinan, China
| | - Xue-Song Yang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming-Ling Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guan-Lan Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
lncRNA DSCAM-AS1 facilitates the progression of endometrial cancer via miR-136-5p. Oncol Lett 2021; 22:825. [PMID: 34691252 PMCID: PMC8527824 DOI: 10.3892/ol.2021.13086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have indicated that long non-coding RNA (lncRNA) down syndrome cell adhesion molecule antisense 1 (DSCAM-AS1) serves an oncogenic role in numerous cancer types. However, its role in endometrial cancer (EC) remains largely unknown. In the present study, DSCAM-AS1 expression levels in EC tissues and cells and their normal counterparts were analyzed using reverse transcription-quantitative. In vitro and in vivo experiments were conducted to validate the functions of DSCAM-AS1 in EC. It was revealed that DSCAM-AS1 was expressed at a high level in EC tissues and cells after analyzing patient data and data obtained from The Cancer Genome Atlas. Notably, it was also revealed that high DSCAM-AS1 expression was associated with a less favorable overall survival in patients with EC. Knockdown of DSCAM-AS1 was able to suppress EC cell proliferation by upregulating cell apoptosis in vitro. Furthermore, it was revealed that DSCAM-AS1 acted as a microRNA (miR)-136-5p sponge to exert its oncogenic roles in EC. Collectively and to the best of our knowledge, the current results provided first evidence that DSCAM-AS1 stimulated EC progression by regulating miR-136-5p, which may improve the understanding of the roles of ncRNAs in EC, and may help identify novel targets for anticancer treatment.
Collapse
|
11
|
Lin L, Zhao H, Zhai L, Xu B, Xiao L, Chen Z. Downregulation of microRNA-3646 Through Direct Targeting of F-Box Protein 4 on Interleukin-17-Induced Lung Cancer Cell Migration and Invasion. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
IL-17 participates in the initiation and growth of malignant cancers, including lung cancer. The aberrant expression of miRNA is also related to tumor growth and metastasis. Studies have confirmed that high expression of miRNA-3646 can boost breast cancer cell invasion and migration,
suggesting that miRNA-3646 is a tumor-promoting factor. However, the role of miRNA-3646 in the migration and invasion of IL-17-induced lung cancer cells is unclear. In this study, qRT-PCR was used to determine the level of miRNA-3646. We found that in lung cancer cells, miRNA-3646 levels exceeded
those of normal bronchial epithelial 16HBE cells (P < 0.05). The level of miRNA-3646 in NCI-H1299 cells was higher than that in A549, NCI-H446, and SK-MES-1 cells (P < 0.05). After IL-17 treatment, the number of proliferating and migrating lung carcinoma NCI-H1299 cells
increased, transport of vimentin increased, and transport of E-cadherin decreased (P < 0.05). After IL-17 treatment, the number of proliferating and migrating lung carcinoma NCI-H1299 cells transfected with miRNA-3646 inhibitor decreased, transport of vimentin decreased, and transport
of E-cadherin increased (P < 0.05). FBXO4 siRNA reversed the inhibition of miRNA-3646 on the proliferation and migration of IL-17-induced lung carcinoma NCI-H1299 cells and the transport of E-cadherin and vimentin. Thus, downregulation of miRNA-3646 inhibited IL-17-induced lung carcinoma
cell migration and proliferation by directly targeting FBXO4.
Collapse
Affiliation(s)
- Ling Lin
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| | - Hongjie Zhao
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| | - Liqiang Zhai
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| | - Baoxin Xu
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| | - Ling Xiao
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| | - Zhengang Chen
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| |
Collapse
|
12
|
Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021; 9:693. [PMID: 34207450 PMCID: PMC8235073 DOI: 10.3390/biomedicines9060693] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is one of the most common causes of death in women as survival is highly dependent on the stage of the disease. Ovarian cancer is typically diagnosed in the late stage due to the fact that in the early phases is mostly asymptomatic. Genomic instability is one of the hallmarks of ovarian cancer. While ovarian cancer is stratified into different clinical subtypes, there still exists extensive genetic and progressive diversity within each subtype. Early detection of the disorder is one of the most important steps that facilitate a favorable prognosis and a good response to medical therapy for the patients. In targeted therapies, individual patients are treated by agents targeting the changes in tumor cells that help them grow, divide and spread. Currently, in gynecological malignancies, potential therapeutic targets include tumor-intrinsic signaling pathways, angiogenesis, homologous-recombination deficiency, hormone receptors, and immunologic factors. Ovarian cancer is usually diagnosed in the final stages, partially due to the absence of an effective screening strategy, although, over the times, numerous biomarkers have been studied and used to assess the status, progression, and efficacy of the drug therapy in this type of disorder.
Collapse
Affiliation(s)
- Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Alina Prădatu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Romeo Micu
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
| | - Viorica Elena Rădoi
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Hu X, Wang M, Cao L, Cong L, Gao Y, Lu J, Feng J, Shen B, Liu D. miR-4319 Suppresses the Growth of Esophageal Squamous Cell Carcinoma Via Targeting NLRC5. Curr Mol Pharmacol 2021; 13:144-149. [PMID: 31746301 DOI: 10.2174/1874467212666191119094636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The functions of microRNAs (miRNAs) in cancer progression have been recognized in recent years. However, the role of miR-4319 in esophageal squamous cell carcinoma (ESCC) remains unclear. OBJECTIVE We aimed to investigate the biological roles of miR-4319 in ESCC progression and the associated mechanisms. METHODS Real-time PCR was performed to examine the levels of miR-4319 in ESCC cell lines. The effects of miR-4319 and NOD-like receptor (NLR) family, caspase activation and recruitment domain (CARD) domain containing 5 (NLRC5) on cell proliferation and cell cycle progression were evaluated using MTT assay, colony formation and flow cytometry assays. Bioinformatics techniques and luciferase reporter assay were applied to validate NLRC5 as a miR-4319 target. RESULTS The miR-4319 expression was lower in ESCC cells than in the normal cell line. The expression of miR-4319 repressed cell growth and induced cell cycle arrest. NLRC5 was validated as a direct downstream target of miR-4319. Overexpression of NLRC5 potentiated the effects of miR-4319 on cell growth and cell cycle distribution. CONCLUSION Our results demonstrated that miR-4319 might function as a tumor suppressor by targeting NLRC5 in ESCC.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Min Wang
- The Pain Clinic, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lei Cao
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Li Cong
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Yujie Gao
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Jianwei Lu
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jifeng Feng
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Delin Liu
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
14
|
Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA-mRNA pairs in cisplatin-resistant ovarian cancer. BMC Cancer 2021; 21:452. [PMID: 33892654 PMCID: PMC8063430 DOI: 10.1186/s12885-021-08166-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Ovarian cancer (OC) is a gynecological malignancy with the highest mortality rate. Cisplatin (DDP) based chemotherapy is a standard strategy for ovarian cancer. Despite good response rates for initial chemotherapy, almost 80% of the patients treated with DDP based chemotherapy will experience recurrence due to drug-resistant, which will ultimately result in fatality. The aim of the present study was to examine the pathogenesis and potential molecular markers of cisplatin-resistant OC by studying the differential expression of mRNAs and miRNAs between cisplatin resistant OC cell lines and normal cell lines. Methods Two mRNA datasets (GSE58470 and GSE45553) and two miRNA sequence datasets (GSE58469 and GSE148251) were downloaded from the Gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were screened by the NetworkAnalyst. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEGs. The protein-protein interaction network was constructed using STRING and Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities. FunRich and MiRNATip databases were used to identify the target genes of the DEMs. Results A total of 380 DEGs, and 5 DEMs were identified. Protein–protein interaction (PPI) network of DEGs containing 379 nodes and 1049 edges was constructed, and 4 key modules and 24 hub genes related to cisplatin-resistant OC were screened. Two hundred ninety-nine target genes of the 5 DEMs were found out. Subsequently, one of these 299 target genes (UBB) belonging to the hub genes of GSE58470 and GSE45553 was identified by MCODE and CytoHubba,which was regulated by one miRNA (mir-454). Conclusions One miRNA–mRNA regulatory pairs (mir-454-UBB) was established. Taken together, our study provided evidence concerning the alteration genes involved in cisplatin-resistant OC, which will help to unravel the mechanisms underlying drug resistant.
Collapse
|
15
|
EZH2-mediated lncRNA ABHD11-AS1 promoter regulates the progression of ovarian cancer by targeting miR-133a-3p. Anticancer Drugs 2021; 32:269-277. [PMID: 33491971 DOI: 10.1097/cad.0000000000001039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long-chain noncoding RNAs (lncRNAs) are involved in a wide range of biological and pathological processes in ovarian cancer. The purpose of this study was to investigate the effects of EZH2-mediated ABHD11-AS1 promoter on the pathogenesis of ovarian cancer. The expression levels of EZH2, ABHD11-AS1 and miR-133a-3p were examined in ovarian cancer tissues using reverse transcription-quantitative PCR. Cell proliferation was evaluated using cell counting kit 8 assay, and cell invasion/migration was determined using a Transwell assay. Cell apoptosis was evaluated using flow cytometry. Dual luciferase assay was performed to confirm the interaction between ABHD11-AS1 and miR-133a-3p. The binding site of H3K27me3 on ABHD11-AS1 promoter was confirmed by ChIP. The expression of ABHD11-AS1 was significantly upregulated in ovarian cancer samples, and its levels were closely associated with lymph node metastasis, tumor stage and 3-year survival rate. Furthermore, interference of ABHD11-AS1 suppressed the proliferation, migration and invasion of ovarian cancer cells, while cell apoptosis was promoted. Additionally, miR-133a-3p could be a novel target of ABHD11-AS1, and EZH2-mediated H3K27me3 protein might bind to ABHD11-AS1 promoter directly. Moreover, rescue experiments indicated that the effects caused by ABHD11-AS1 knockdown on the malignant characteristics of ovarian cancer cells were notably enhanced by miR-133a-3p mimics, whereas the influences on cell growth and metastasis induced by overexpressed ABHD11-AS1 were abrogated by the restoration of miR-133a-3p expression. In summary, EZH2-mediated enrichment of H3K27me3 on ABHD11-AS1 promoter could regulate the progression of ovarian cancer via miR-133a-3p. Therefore, EZH2/ABHD11-AS1/miR-133a-3p axis might be a putative candidate for targeted treatment of ovarian cancer.
Collapse
|
16
|
Zhao X, Tang D, Chen X, Chen S, Wang C. Functional lncRNA-miRNA-mRNA Networks in Response to Baicalein Treatment in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8844261. [PMID: 33511213 PMCID: PMC7825356 DOI: 10.1155/2021/8844261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/18/2020] [Accepted: 12/26/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Baicalein has been shown to have antitumor activities in several cancer types. However, its acting mechanisms remain to be further investigated. This work is aimed at exploring the functional long noncoding RNA (lncRNA)/microRNA (miRNA)/messenger RNA (mRNA) triplets in response to baicalein in hepatocellular carcinoma (HCC) cell to understand the mechanisms of baicalein in HCC. METHODS Differentially expressed lncRNAs (DELs) and miRNAs (DEMs) in HCC cell treated with baicalein were first screened using GSE95504 and GSE85511, respectively. miRNA targets for DELs were predicted and intersected with DEMs, after which the miRNA expression was validated using ENCORI and its prognostic value was assessed using Kaplan-Meier plotter. Potential miRNA targets were predicted by 3 prediction tools, after which expression level was validated at UALCAN and Human Protein Atlas. Kaplan-Meier plotter was used to evaluate the effects of these genes on overall survival and recurrence-free survival of HCC patients. Enrichment analyses for these genes were performed at DAVID. RESULTS Here, we identified 14 overlapping DELs and 26 overlapping DEMs in the baicalein treatment group than those in the DMSO treatment group. Subsequently, by analyzing expression and clinical significance of miRNAs, hsa-miR-4443 was found as a highly potential miRNA target. Then, targets of hsa-miR-4443 were predicted and analyzed, and we found AKT1 was the most potential target for hsa-miR-4443. Hence, the lncRNAs-hsa-miR-4443-AKT1 axis that can respond to baicalein was established. CONCLUSION Collectively, we elucidated a role of lncRNAs-hsa-miR-4443-AKT1 pathway in response to baicalein treatment in HCC, which could help us understand the roles of baicalein in inhibiting cancer progression and may provide novel insights into the mechanisms behind HCC progression.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacy, Xinxiang Central Hospital, Xinxiang, China
| | - Dongyang Tang
- Department of Experimental Management Center, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaofei Chen
- Clinical Laboratory, The People's Hospital of Suzhou New District, Suzhou, China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Wang
- School of Pharmaceutical Engineering & Life Science, School of Nursing, Changzhou University, Changzhou, China
| |
Collapse
|
17
|
Xiao J, Weng J, Wen F, Ye J. Red Blood Cell Membrane-Coated Silica Nanoparticles Codelivering DOX and ICG for Effective Lung Cancer Therapy. ACS OMEGA 2020; 5:32861-32867. [PMID: 33403246 PMCID: PMC7774068 DOI: 10.1021/acsomega.0c01541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/16/2020] [Indexed: 06/12/2023]
Abstract
The effective chemotherapy of cancer is usually hindered by the unsatisfied cell internalization of the drug delivery systems (DDS) as well as drug resistance of cancer cells. In order to solve these dilemmas in one design, red blood cell membrane (RBM)-coated silica nanoparticles (RS) were fabricated to codeliver doxorubicin (Dox) and indocyanine green (ICG) to effectively treat the model lung cancer using photothermal-assisted chemotherapy. Our results demonstrated that the RS/I-D was the nanoparticle at around 100 nm with superior stability and biocompatibility. Especially, the photothermal effects of ICG were well preserved and could be applied to accelerate the drug release from the DDS. More importantly, the RBM modification can mediate enhanced cell internalization of drugs as compared to their free forms, which finally resulted in enhanced anticancer efficacy in Dox-resistant A549 cells (A549/Dox) both in vitro and in vivo with enhanced cell apoptosis and cell arrest.
Collapse
Affiliation(s)
- Jia Xiao
- Department
of Clinical Oncology, The First People’s
Hospital of Yueyang, No. 39 of Dongmaoling Road, Yueyang, Hunan Province 414000, P. R. China
| | - Jie Weng
- Department
of Clinical Oncology, The First People’s
Hospital of Yueyang, No. 39 of Dongmaoling Road, Yueyang, Hunan Province 414000, P. R. China
| | - Fang Wen
- Department
of Clinical Oncology, The First People’s
Hospital of Yueyang, No. 39 of Dongmaoling Road, Yueyang, Hunan Province 414000, P. R. China
| | - Juan Ye
- Department
of Head and Neck Oncology, The Second Affiliated
Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou Province 563000, P. R. China
| |
Collapse
|
18
|
Li Y, Zhao Z, Sun D, Li Y. Novel long noncoding RNA LINC02323 promotes cell growth and migration of ovarian cancer via TGF-β receptor 1 by miR-1343-3p. J Clin Lab Anal 2020; 35:e23651. [PMID: 33247856 PMCID: PMC7891524 DOI: 10.1002/jcla.23651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This study was aimed at investigating the effects of long noncoding RNA (lncRNA) LINC02323 in ovarian cancer and its possible mechanism. METHODS Microarray analysis and QPCR were utilized to identify lncRNA LINC02323 expression in patients with ovarian cancer. MTT assay was used for analysis of ovarian cancer cell proliferation. Western blot was utilized to investigate its possible mechanism. RESULTS In patients with ovarian cancer, lncRNA LINC02323 expression was up-regulated and miR-1343-3p expression was down-regulated. Over-expression of lncRNA LINC02323 promoted cell growth and reduced LDH activity levels in vitro model by suppression of miR-1343-3p expression. Down-regulation of lncRNA LINC02323 reduced cell growth and increased LDH activity levels in vitro model by induction of miR-1343-3p expression. Over-expression of miR-1343-3p reduced cell growth and reduced LDH activity levels in vitro model by suppression of TGF-β receptor. Down-regulation of miR-1343-3p promoted cell growth and reduced LDH activity levels in vitro model by induced of TGF-β receptor. CONCLUSION Our findings show that Novel long noncoding RNA LINC02323 promotes cell growth of ovarian cancer via TGF-β receptor 1 by miR-1343-3p.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Gynaecology, CangZhou Central Hospital, Cangzhou City, China
| | - Zheng Zhao
- Department of Cardiology, CangZhou Central Hospital, Cangzhou City, China
| | - Dan Sun
- Department of Gynaecology, CangZhou Central Hospital, Cangzhou City, China
| | - Yanfei Li
- Department of Gynaecology, CangZhou Central Hospital, Cangzhou City, China
| |
Collapse
|
19
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
20
|
Jafarzadeh M, Soltani BM. Long Noncoding RNA LOC400043 (LINC02381) Inhibits Gastric Cancer Progression Through Regulating Wnt Signaling Pathway. Front Oncol 2020; 10:562253. [PMID: 33194632 PMCID: PMC7645048 DOI: 10.3389/fonc.2020.562253] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the common causes of cancer mortality worldwide, with a low survival rate for the affected people. Recent studies have revealed the key role of long non-coding RNAs (lncRNAs) in the development and progression of many cancers, including gastric cancer. Looking for the potential molecular regulators of gastric cancer incidence and progression, LINC02381 was identified as a downregulated lncRNA in gastric cancer tissues by analysis of available microarray and RNA-seq data and RT-qPCR confirmed this differential expression. MiR-21, miR-590, and miR-27a miRNAs were predicted to be sponged by LINC02381, and dual luciferase assay verified LINC02381 as a competitive endogenous RNA (CeRNA), which binds to them. Furthermore, we found that increased expression of LINC02381 attenuates Wnt pathway activity. Also, functional analysis indicates that LINC02381 arrests cell cycle, increases apoptosis and caspase activity, and reduces cell survival and proliferation rate of the human gastric cancer cell lines AGS and MKN45. Moreover, EMT analysis showed that LINC02381 is involved in gastric cancer progression and inhibits metastasis. Overall, this work for the first time introduces LINC02381 as a CeRNA involved in gastric cancer and provides novel insight into the molecular pathogenesis of gastric cancer.
Collapse
Affiliation(s)
| | - Bahram M. Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Wang Y, Wang X, Han L, Hu D. LncRNA MALAT1 Regulates the Progression and Cisplatin Resistance of Ovarian Cancer Cells via Modulating miR-1271-5p/E2F5 Axis. Cancer Manag Res 2020; 12:9999-10010. [PMID: 33116856 PMCID: PMC7567574 DOI: 10.2147/cmar.s261979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were reported to be related to the development of ovarian cancer (OC). In this study, the functional mechanisms of lncRNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) and microRNA-1271-5p (miR-1271-5p) were explored in OC. Methods The level of MALAT1, miR-1271-5p, or E2F transcription factor 5 (E2F5) was detected by qRT-PCR. MTT assay, flow cytometry analysis and transwell migration and invasion assays were performed to determine cell proliferation, apoptosis, migration and invasion, respectively. E2F5 protein expression was detected by Western blot. The interaction between miR-1271-5p and MALAT1 or E2F transcription factor 5 (E2F5) was confirmed by the dual-luciferase reporter assay. Results MALAT1 and E2F5 level were increased, while miR-1271-5p level was decreased in cisplatin (DDP)-resistant OC tissues and cells. MALAT1 knockdown or miR-1271-5p upregulation decreased IC50 of cisplatin, and inhibited cell proliferation, migration, invasion, and facilitated cell apoptosis in DDP-resistant OC cells. Moreover, MALAT1 sponged miR-1271-5p to upregulate E2F5 expression. Besides, MALAT1 knockdown decreased DDP resistance, inhibited cell proliferation, migration, invasion, and promoted cell apoptosis by sponging miR-1271-5p to downregulate E2F5 expression in DDP-resistant OC cell. Conclusion We demonstrated that MALAT1 mediated DDP-resistant OC development through miR-1271-5p/E2F5 axis, providing the theoretical basis for OC therapy.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Xiuying Wang
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Liwei Han
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Dongdong Hu
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| |
Collapse
|
22
|
Identifying of miR-98-5p/IGF1 axis contributes breast cancer progression using comprehensive bioinformatic analyses methods and experiments validation. Life Sci 2020; 261:118435. [PMID: 32950571 DOI: 10.1016/j.lfs.2020.118435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer (BC) is a huge health threat for women worldwide. Although numerous microRNAs (miRNA) have been found to be aberrantly expressed in BC, the construction of a comprehensive miRNA-messenger RNA (mRNA) network is still needed. METHODS Limma package was used to identify differentially expressed miRNAs (DEMs) in microarray datasets downloaded from GEO database. Genes targeted by DEMs were analyzed using mirTarBase. Gene Ontology and pathway enrichment analysis for these genes were performed at DAVID. Expression correlations of DEMs and target genes were analyzed at ENCORI. Based on these results, a miRNA-mRNA regulatory network was constructed. RESULTS A total of 17 overlapping DEMs were identified at these two microarray datasets. Expression of DEMs in BC tissues compared with normal tissues were further validated by ENCORI. By utilizing miRTarBase, a total of 167 target genes for DEMs were obtained. 10 hub genes (AKT1, MYC, VEGFA, CCND1, PTEN, IL6, CASP3, KRAS, IGF1, ESR1) were identified. Through analyzing the effects of hub genes on overall survival of BC patients and their expression correlation with miRNAs, we found hsa-miR-98-5p/IGF1 axis may play a crucial role in BC progression. The connections of hsa-miR-98-5p and IGF1 were further validated by luciferase activity reporter assay and functional assays. CONCLUSIONS In this work, a miRNA-mRNA network related to BC progression was built, and identified one important miRNA-mRNA axis in BC.
Collapse
|
23
|
Miao S, Wang J, Xuan L, Liu X. LncRNA TTN-AS1 acts as sponge for miR-15b-5p to regulate FBXW7 expression in ovarian cancer. Biofactors 2020; 46:600-607. [PMID: 32049388 DOI: 10.1002/biof.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
Emerging evidence showed that long noncoding RNA (lncRNA) plays crucial roles in regulating various cancer biological behaviors. Titin-antisense RNA1 (TTN-AS1) has been reported to have crucial roles in cancers but its role in ovarian cancer remains unknown. The levels of TTN-AS1, microNRA-15b-5p (miR-15b-5p), and F-box and WD repeat domain containing 7 (FBXW7) in ovarian cancer cells were measured by quantitative reverse-transcription PCR. Targets for TTN-AS1 and miR-15b-5p were predicted by bioinformatic tools, and validated by luciferase activity reporter assay. Cell proliferation, colony formation, and cell apoptosis were analyzed with cell counting kit-8 assay, colony formation assay, and flow cytometry. Correlation of TTN-AS1 and FBXW7 was analyzed at gene expression profiling interactive analysis. TTN-AS1 was found decreased expression in ovarian cancer tissues and cells. Dual-luciferase activity validated TTN-AS1 and FBXW7 shared binding site in miR-15b-5p. Functional assays showed TTN-AS1 overexpression inhibits ovarian cancer cell proliferation, colony formation but promotes apoptosis. Rescue experiments showed that knockdown of FBXW7 could partially counteracted the effects of TTN-AS1 overexpression on ovarian cancer cell behaviors. Our results indicated that the TTN-AS1/miR-15b-5p/FBXW7 axis identified in this work could help to identify treatment biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Sheng Miao
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lili Xuan
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaojun Liu
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Zhao W, Chen T, Zhao Y. Upregulated lncRNA CASC9 Contributes to Progression of Non-Small Cell Lung Cancer Through Inhibition of miR-335-3p and Activation S100A14 Expression. Onco Targets Ther 2020; 13:6027-6036. [PMID: 32606808 PMCID: PMC7321690 DOI: 10.2147/ott.s249973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Non-small cell lung cancer (NSCLC) is a deadly cancer type worldwide and the main sub-type of lung cancer. Cancer susceptibility candidate-9 (CASC9) was reported to be a key player in cancer progression. However, its function and underlying mechanism in NSCLC remain unclear. Materials and Methods Expression level of CASC9 in NSCLC tissues and cells was measured with RT-qPCR. Biological roles of CASC9 in NSCLC were analyzed with a series of in vitro experiments. Potential mechanisms of CASC9 in NSCLC were analyzed by predicting and validating the possible targets of CASC9 in NSCLC. Results In this study, we found CASC9 expression was upregulated in NSCLC tissues and cell lines. High CASC9 expression was identified as a predictor for poorer overall survival of NSCLC patients. Furthermore, functional assays showed CASC9 knockdown suppressed NSCLC cell proliferation, migration, and invasion, while CASC9 overexpression caused opposite effects. We also found microRNA-335-3p (miR-335-3p) could act as a target of CASC9 in NSCLC and the inhibition effect of CASC9 knockdown on NSCLC progression required the activity of miR-335-3p. In addition, we identified S100 calcium-binding protein A14 (S100A14) acts as a target of miR-335-3p. Discussion Taken together, our study suggested CASC9 could promote NSCLC progression via miR-335-3p/S100A14 axis. The CASC9/miR-335-3p/S100A14 regulatory triplets identified in this work might provide new therapeutic strategies for NSCLC treatment.
Collapse
Affiliation(s)
- Weigang Zhao
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, People's Republic of China
| | - Tangbing Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Yonghong Zhao
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, People's Republic of China
| |
Collapse
|
25
|
Zhao T, Zhang J, Ye C, Tian L, Li Y. lncRNA FOXD2-AS1 promotes hemangioma progression through the miR-324-3p/PDRG1 pathway. Cancer Cell Int 2020; 20:189. [PMID: 32489325 PMCID: PMC7247140 DOI: 10.1186/s12935-020-01277-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) are reported could function as tumor promoter in several cancers. However, its role in hemangioma was not reported to yet. Methods Expression level of FOXD2-AS1 in hemangioma tissues and cells was explored using quantitative reverse-time PCR. Cell counting kit-8 (CCK-8) assay, colony formation assay, wound-healing assay, and transwell invasion assay were conducted to measure the roles of FOXD2-AS1. In addition, the levels of markers for proliferation and Epithelial-Mesenchymal Transition were investigated. Connection of FOXD2-AS1 and mcroRNA-324-3p (miR-324-3p) or miR-324-3p and p53 and DNA damage regulated 1 (PDRG1) was analyzed with bioinformatic analysis method and dual-luciferase activity reporter assay. Results Here, we found that FOXD2-AS1 was highly expressed in proliferating-phase hemangioma tissues compared with the involuting-phase hemangioma tissues. Functionally, FOXD2-AS1 knockdown suppressed cell proliferation, colony formation, migration, and invasion in vitro. Conversely, overexpression of FOXD2-AS1 promoted tumor growth in vitro. Mechanistically, FOXD2-AS1 inversely regulated miR-324-3p abundance in hemangioma cells. We also found FOXD2-AS1 acted as a competing endogenous RNA (ceRNA) by directly sponging miR-324-3p to regulate PDRG1 expression. In addition, the knockdown of PDRG1 reversed the stimulation effects of FOXD2-AS1 overexpression on HA cells. Conclusion To conclude, our study sheds novel light on the biological roles of FOXD2-AS1 in hemangioma, which may help the development of targeted therapy method for cancer.
Collapse
Affiliation(s)
- Tiancheng Zhao
- Department of Endoscopic Center, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Jiayu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Cong Ye
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Leilei Tian
- Operating Room, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Yezhou Li
- Department of Vascular Surgery, The Third Hospital of Jilin University, Changchun, 130000 Jilin China
| |
Collapse
|
26
|
Wei P, Yang J, Zhang D, Cui M, Li L. lncRNA HAND2-AS1 Regulates Prostate Cancer Cell Growth Through Targeting the miR-106a-5p/RBM24 Axis. Onco Targets Ther 2020; 13:4523-4531. [PMID: 32547083 PMCID: PMC7247600 DOI: 10.2147/ott.s246274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Increasing evidence has shown that abnormally expressed long non-coding RNA (lncRNA) plays crucial roles in prostate cancer (PCa) progression. Materials and Methods Here, we analyzed the expression level of lncRNA HAND2 antisense RNA 1 (HAND2-AS1) in PCa cells and tissues. Function assays were performed to investigate the biological roles of HAND2-AS1 in PCa cell behaviors. Bioinformatics methods, luciferase activity reporter assay, and RNA pull-down assay were performed to validate the connection of microRNA-106a-5p (miR-106a-5p) with HAND2-AS1. Also, the target of miR-106a-5p was explored using the same methods. Results Our results revealed HAND2-AS1 expression was decreased in both PCa cells and tissues. In vitro functional assays showed HAND2-AS1 could inhibit PCa cell proliferation and colony formation through promoting cell apoptosis. Dual-luciferase activity assays showed miR-106a-5p could directly bind with HAND2-AS1 and RNA binding motif protein 24 (RBM24). Mechanistically, we showed that HAND2-AS1 regulates PCa cell behaviors via targeting miR-106a-5p/RBM24 axis. Conclusion In summary, our results illustrated that HAND2-AS1 functions as miR-106a-5p sponge to regulate RBM24 expression, and to influence PCa progression.
Collapse
Affiliation(s)
- Pengtao Wei
- Department of Urology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, People's Republic of China
| | - Jing Yang
- Central Sterile Supply Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Dandan Zhang
- Urinary Surgery, YiDu Central Hospital in Weifang City, Qingzhou, People's Republic of China
| | - Meng Cui
- Department of Gynecology, Shandong Provincial Maternity and Childcare Hospital, Jinan, People's Republic of China
| | - Lianjun Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250014, People's Republic of China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
27
|
Xu W, Lou Y, Chen W, Kang Y. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. ACTA ACUST UNITED AC 2020; 65:229-236. [PMID: 31605575 DOI: 10.1515/bmt-2019-0056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023]
Abstract
Effective cancer therapy usually requires the assistance of well-designed drug carriers. In order to increase the drug accumulation to tumor tissue as well as to reduce the side effects of drug carriers, the hybrid drug delivery system (DDS) was developed by integrating folic acid (FA) and a metal-organic framework (MOF). The anticancer drug doxorubicin (DOX) was preloaded into the MOF nanoparticles during the synthesis process of the MOF nanoparticles. After surface modification with FA, the resulting FA/MOF/DOX nanoparticles were capable of serving as a biocompatible osteosarcoma targeting a DDS to enhance the chemotherapy of osteosarcoma. The dynamic light scattering method revealed that the obtained FA/MOF/DOX nanoparticles were particles with a size around 100 nm. Moreover, FA/MOF/DOX nanoparticles could enhance the delivery efficacy of DOX into MG63 (human osteosarcoma) cells as compared to FA free nanoparticles (MOF/DOX), in which a folate receptor (FR) might be involved. It was worth mentioning that in vitro [methylthio tetrazole (MTT) study in the MG63 cells] and in vivo (anticancer study in the MG63 xenograft model) assays both revealed that FA/MOF/DOX nanoparticles possessed stronger anticancer capability than free DOX or MOF/DOX nanoparticles.
Collapse
Affiliation(s)
- Weifan Xu
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - Yi Lou
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - WangShenjie Chen
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - Yifan Kang
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| |
Collapse
|
28
|
Li Y, Huang S, Wei Z, Yang B. A putative competing endogenous RNA network in cisplatin-resistant lung adenocarcinoma cells identifying potentially rewarding research targets. Oncol Lett 2020; 19:4040-4052. [PMID: 32382346 PMCID: PMC7202328 DOI: 10.3892/ol.2020.11483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer and has a poor 5 year survival rate (<10%). Cisplatin is one of the most effective chemotherapeutic treatments for LUAD, even though it is of limited overall utility due to acquired drug resistance. To identify possible genetic targets for the mitigation of cisplatin resistance, gene expression data from cisplatin-resistant cell lines were integrated with patient information. Expression data for cisplatin-resistant and cisplatin-sensitive A549 cell lines were obtained from the Gene Expression Omnibus database, while LUAD patient data was obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs (DEmRNAs), microRNAs (DEmiRNAs) and long non-coding RNAs (DElncRNAs) were identified between the cisplatin-sensitive and cisplatin-resistant cells. Using the TCGA patient data, 33 DEmRNAs associated with survival were identified. A total of 74 DElncRNAs co-expressed with the survival-associated DEmRNAs, and 11 DEmiRNAs that regulated the survival-associated DEmRNAs, were also identified. A competing endogenous RNA (ceRNA) network was constructed based on the aforementioned results, which included 17 survival-associated DEmRNAs, 9 DEmiRNAs and 16 DElncRNAs. This network revealed 8 ceRNA pathway axes possibly associated with cisplatin resistance in A549 cells. Specifically, the network suggested that the lncRNAs HOXD-AS2, LINC01123 and FIRRE may act as ceRNAs to increase cisplatin resistance in human LUAD cells. Therefore, it was speculated that these lncRNAs represent potentially rewarding research targets.
Collapse
Affiliation(s)
- Yepeng Li
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Shiqing Huang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhongheng Wei
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Bo Yang
- Key Laboratory of Guangxi College and Universities, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
29
|
Zhao J, Yang T, Li L. LncRNA FOXP4-AS1 Is Involved in Cervical Cancer Progression via Regulating miR-136-5p/CBX4 Axis. Onco Targets Ther 2020; 13:2347-2355. [PMID: 32256085 PMCID: PMC7094166 DOI: 10.2147/ott.s241818] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Cervical cancer (CC) is a major health threat to women worldwide. Long non-coding RNA (lncRNA) has been reported to play crucial roles in regulating carcinogenesis, including CC. Methods In this work, levels of lncRNA forkhead box P4 antisense RNA 1 (FOXP4-AS1) in CC cell lines and normal cell lines were analyzed with quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) method. Effects of FOXP4-AS1 on CC cellular behaviors including proliferation, migration, and invasion were explored. Bioinformatic prediction tools and luciferase activity reporter assay were conducted to explore the downstream molecules for FOXP4-AS1. Results We found FOXP4-AS1 expression was significantly higher in CC cell lines than in normal cell line. Functionally, force FOXP4-AS1 expression increased CC cell proliferation, migration, and invasion, while FOXP4-AS1 knockdown caused opposite effects. Mechanistically, we found FOXP4-AS1 acts as competing endogenous RNA (ceRNA) for microRNA-136-5p (miR-136-5p) to regulate chromobox 4 (CBX4) expression. Discussion These findings indicated FOXP4-AS1 plays an oncogenic role in CC, which may provide novel therapeutic biomarker against CC.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Long Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
30
|
Kong X, Hu S, Yuan Y, Du Y, Zhu Z, Song Z, Lu S, Zhao C, Yan D. Analysis of lncRNA, miRNA and mRNA-associated ceRNA networks and identification of potential drug targets for drug-resistant non-small cell lung cancer. J Cancer 2020; 11:3357-3368. [PMID: 32231742 PMCID: PMC7097957 DOI: 10.7150/jca.40729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Drug resistance to chemotherapeutic drugs or targeted medicines is an obstacle encountered in the treatment of non-small-cell lung cancer (NSCLC). However, the mechanisms of competing endogenous RNA (ceRNA) on the drug resistance in NSCLC are rarely reported. In this paper, the comprehensive expression profiles of lncRNAs and mRNAs in drug-resistant NSCLC cells were obtained by RNA sequencing. Methods: The dysregulated lncRNAs, miRNAs and mRNAs in drug-resistant NSCLC cell lines were identified by RNA-sequencing and bioinformatics methods. Results: A total of 39 dysregulated lncRNAs and 650 dysregulated mRNAs were identified between drug-resistant NSCLC cell lines and their parental cell lines. Additionally, 33 lncRNA-miRNA-mRNA pathways in the ceRNA network in drug-resistant NSCLC were constructed through bioinformatics methods and ceRNA regulatory rules. These comprised 12 dysregulated lncRNAs, five dysregulated miRNAs, and eight dysregulated mRNAs. In addition, lncRNA ATP2B1/miR-222-5p/TAB2 and lncRNA HUWE1/miR-222-5p/TAB2 were identified as potential ceRNA networks involved in drug resistance to NSCLC. Conclusions: The current study provides a promising therapeutic strategy against the lncRNA-miRNA-mRNA ceRNA regulatory network for NSCLC treatment and deepens our comprehension of the ceRNA regulatory mechanisms related to drug resistance to NSCLC.
Collapse
Affiliation(s)
- Xiangzhen Kong
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongliang Yuan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yue Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zijia Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhizhen Song
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shanshan Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Chang Zhao
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Yan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Peng L, Liu F, Yang J, Liu X, Meng Y, Deng X, Peng C, Tian G, Zhou L. Probing lncRNA-Protein Interactions: Data Repositories, Models, and Algorithms. Front Genet 2020; 10:1346. [PMID: 32082358 PMCID: PMC7005249 DOI: 10.3389/fgene.2019.01346] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022] Open
Abstract
Identifying lncRNA-protein interactions (LPIs) is vital to understanding various key biological processes. Wet experiments found a few LPIs, but experimental methods are costly and time-consuming. Therefore, computational methods are increasingly exploited to capture LPI candidates. We introduced relevant data repositories, focused on two types of LPI prediction models: network-based methods and machine learning-based methods. Machine learning-based methods contain matrix factorization-based techniques and ensemble learning-based techniques. To detect the performance of computational methods, we compared parts of LPI prediction models on Leave-One-Out cross-validation (LOOCV) and fivefold cross-validation. The results show that SFPEL-LPI obtained the best performance of AUC. Although computational models have efficiently unraveled some LPI candidates, there are many limitations involved. We discussed future directions to further boost LPI predictive performance.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Fuxing Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Jialiang Yang
- Department of Sciences, Genesis (Beijing) Co. Ltd., Beijing, China
| | - Xiaojun Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Yajie Meng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiaojun Deng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Cheng Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Geng Tian
- Department of Sciences, Genesis (Beijing) Co. Ltd., Beijing, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
32
|
Tang D, Zhao X, Zhang L, Wang C. Comprehensive analysis of pseudogene HSPB1P1 and its potential roles in hepatocellular carcinoma. J Cell Physiol 2020; 235:6515-6527. [PMID: 31985034 DOI: 10.1002/jcp.29459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
The incidence and mortality rate of hepatocellular carcinoma (HCC) nowadays is still at high levels. The regulatory roles of pseudogene in cancers have been gradually recognized in recent years. However, comprehensive investigation of abnormally expressed pseudogene and related mechanisms in HCC remains lacking. GSE124535 dataset was used to identify differentially expressed pseudogenes in HCC tissues compared with normal tissues. Prognostic value of these differentially expressed pseudogenes was analyzed at GEPIA. StarBase used to analyze microRNAs (miRNAs) can bind with pseudogene, while the targets for these miRNAs were analyzed at miRTarBase. Protein-protein interaction (PPI) network was then established for miRNA targets, after that hub genes were selected. Expression correlation of pseudogene and hub genes was analyzed at StarBase. In total, 16 upregulated and 17 downregulated pseudogenes were identified. Pseudogene HSPB1P1 was identified abnormally expressed in 20 types of human cancers and could be used as an indicator for poorer overall survival of patients with HCC. Functional analyses showed that HSPB1P1 was strongly correlated with signaling pathways related to cancer progression. Further studied revealed that HSPB1P1 could direct regulate the EZH2 expression in HCC. In summary, our study indicated that HSPB1P1 was a predictor for poorer overall survival of patients with HCC and may be potential therapeutic target against HCC.
Collapse
Affiliation(s)
- Dongyang Tang
- Department of Experimental Management Center, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Zhao
- Department of Pharmacy, Xinxiang Central Hospital, Xinxiang, China
| | - Li Zhang
- Department of Architecture, College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Cheng Wang
- School of Pharmaceutical Engineering & Life Science, School of Nursing, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
33
|
Liu H, Chen R, Kang F, Lai H, Wang Y. KCNQ1OT1 promotes ovarian cancer progression via modulating MIR-142-5p/CAPN10 axis. Mol Genet Genomic Med 2020; 8:e1077. [PMID: 31909901 PMCID: PMC7005641 DOI: 10.1002/mgg3.1077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/09/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background Long non‐coding RNA (lncRNA) has been regarded as crucial regulator for cancer progression. Roles of KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in cancers including osteosarcoma and colon cancer have been previously reported. However, its role in ovarian cancer (OC) remains unclear. Methods Expression level of KCNQ1OT1 on OC cells and normal cell was analyzed with quantitative real‐time PCR. Gain and loss‐of‐function experiments were performed to analyze the biological roles of KCNQ1OT1 in OC. Moreover, whether KCNQ1OT1 functions its role via mediating MICRORNA‐142‐5p (MIR‐142‐5p)/calpain 10 (CAPN10) axis was analyzed. In addition, effects of KCNQ1OT1, MIR‐142‐5p, and CAPN10 on overall survival of OC patients were analyzed at Kaplan–Meier plotter website. Results We showed KCNQ1OT1 was elevated expression in OC cells and indicated poorer overall survival of OC patients. Besides, we found KCNQ1OT1 could promote OC cell proliferation and migration in vitro. Moreover, MIR‐142‐5p was found reduced expression, while CAPN10 was found elevated expression in OC cells compared with normal cell. Kaplan–Meier curve analysis showed low MIR‐142‐5p or high CAPN10 expression were indicators for poorer overall survival of OC patients. At length, we showed KCNQ1OT1 could regulate OC development via MIR‐142‐5p/CAPN10 axis. Conclusions Taken together, KCNQ1OT1 upregulates CAPN10 expression via sponging MIR‐142‐5p, thus promoting the proliferation and migration of OC.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian, China
| | - Ruixin Chen
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian, China
| | - Fenhong Kang
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian, China
| | - Haiqing Lai
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian, China
| | - Yanlong Wang
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian, China
| |
Collapse
|
34
|
Li H, Zhu G, Xing Y, Zhu Y, Piao D. miR-4324 functions as a tumor suppressor in colorectal cancer by targeting HOXB2. J Int Med Res 2019; 48:300060519883731. [PMID: 31852342 PMCID: PMC7607221 DOI: 10.1177/0300060519883731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective MicroRNAs (miRNAs) are reported to have crucial roles in human cancers; however, their
role in colorectal cancer (CRC) remains largely unknown. Methods In this study, we analyzed the expression of miR-4324 in CRC cell lines using reverse
transcription-quantitative polymerase chain reaction (RT-qPCR). We also examined
miR-4324 expression in CRC tumor tissues using a miRNA expression dataset obtained from
the Gene Expression Omnibus. We validated the connection between miR-4324 and homeobox
B2 (HOXB2) using a luciferase activity reporter assay and western blotting. The effects
of miR-4324 and HOXB2 on CRC cell malignant behaviors in vitro were
further investigated. Results miR-4324 expression was significantly decreased in both CRC tumor tissues and cell
lines. Overexpression of miR-4324 suppressed CRC cell proliferation, migration, and
invasion. In contrast, overexpression of HOXB2 promoted CRC malignant cell behaviors.
Furthermore, we validated HOXB2 as a direct target of miR-4324. Conclusions miR-4324 expression was decreased in CRC. miR-4324 regulates CRC cell proliferation,
migration, and invasion by targeting HOXB2.
Collapse
Affiliation(s)
- Hailin Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Guiling Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
35
|
Pan H, Sun Y, Cao D, Wang L. Low-density lipoprotein decorated and indocyanine green loaded silica nanoparticles for tumor-targeted photothermal therapy of breast cancer. Pharm Dev Technol 2019; 25:308-315. [PMID: 31820663 DOI: 10.1080/10837450.2019.1684944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongying Pan
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Yi Sun
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Danxia Cao
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Lihui Wang
- Central Laboratory, Danyang People’s Hospital, Danyang, Jiangsu, China
| |
Collapse
|
36
|
He J, Gong C, Qin J, Li M, Huang S. Cancer Cell Membrane Decorated Silica Nanoparticle Loaded with miR495 and Doxorubicin to Overcome Drug Resistance for Effective Lung Cancer Therapy. NANOSCALE RESEARCH LETTERS 2019; 14:339. [PMID: 31705398 PMCID: PMC6841775 DOI: 10.1186/s11671-019-3143-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
Current cancer therapy usually succumbs to many extracellular and intracellular barriers, among which untargeted distribution and multidrug resistance (MDR) are two important difficulties responsible for poor outcome of many drug delivery systems (DDS). Here, in our study, the dilemma was addressed by developing a cancer cell membrane (CCM)-coated silica (SLI) nanoparticles to co-deliver miR495 with doxorubicin (DOX) for effective therapy of lung cancer (CCM/SLI/R-D). The homologous CCM from MDR lung cancer cells (A549/DOX) was supposed to increase the tumor-homing property of the DDS to bypass the extracellular barriers. Moreover, the MDR of cancer cells were conquered through downregulation of P-glycoprotein (P-gp) expression using miR495. It was proved that miR495 could significantly decrease the expression of P-gp which elevated intracellular drug accumulation in A549/DOX. The in vitro and in vivo results exhibited that CCM/SLI/R-D showed a greatly enhanced therapeutic effect on A549/DOX, which was superior than applying miR495 or DOX alone. The preferable effect of CCM/SLI/R-D on conquering the MDR in lung cancer provides a novel alternative for effective chemotherapy of MDR cancers.
Collapse
Affiliation(s)
- Jinyuan He
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Chulian Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Jie Qin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Mingan Li
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Shaohong Huang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| |
Collapse
|
37
|
Li Z, Ma J, Li X, Chan MTV, Wu WKK, Wu Z, Shen J. Aberrantly expressed long non-coding RNAs in air pollution-induced congenital defects. J Cell Mol Med 2019; 23:7717-7725. [PMID: 31557384 PMCID: PMC6815773 DOI: 10.1111/jcmm.14645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Air pollution has been a serious public health issue over the past few decades particularly in developing countries. Air pollution exposure during pregnancy poses potential threat to offspring as the deleterious substances might pass through placenta to alter foetal development. A growing number of studies have demonstrated that long non-coding RNAs (lncRNAs) participate in the development of many diseases, including congenital defects. Here, we used RNA sequencing to identify differentially expressed lncRNAs in air pollution-exposed rat embryos compared with control group. Our data suggested that 554 lncRNAs (216 up-regulated and 338 down-regulated) were significantly differentially expressed in the air pollution-exposed embryos. Moreover, potential cellular functions of these deregulated lncRNAs were predicted via KEGG signal pathway/GO enrichment analyses, which suggested the possible involvements of neurological process, sensory perception of smell and the G-protein signalling pathway. Furthermore, potential functional network of deregulated lncRNAs and their correlated mRNAs in the development of congenital spinal abnormality was established. Our data suggested that lncRNAs may play a vital role in the pathophysiology of air pollution-exposed congenital spinal malformation.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianqing Ma
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Xingye Li
- Department of Orthopedic SurgeryBeijing Jishuitan HospitalFourth Clinical College of Peking UniversityJishuitan Orthopaedic College of Tsinghua UniversityBeijingChina
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
| | - William K. K. Wu
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
- State Key Laboratory of Digestive DiseasesLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhanyong Wu
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
38
|
Dai X, Kaushik AC, Zhang J. The Emerging Role of Major Regulatory RNAs in Cancer Control. Front Oncol 2019; 9:920. [PMID: 31608229 PMCID: PMC6771296 DOI: 10.3389/fonc.2019.00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Alterations and personal variations of RNA interactions have been mechanistically coupled with disease etiology and phenotypical variations. RNA biomarkers, RNA mimics, and RNA antagonists have been developed for diagnostic, prognostic, and therapeutic uses. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two major types of RNA molecules with regulatory roles, deregulation of which has been implicated in the initiation and progression of many human malignancies. Accumulating evidence indicated the clinical roles of regulatory RNAs in cancer control, stimulating a surge in exploring the functionalities of regulatory RNAs for improved understanding on disease pathogenesis and management. In this review, we highlight the critical roles of lncRNAs and miRNAs played in tumorigenesis, scrutinize their potential functionalities as diagnostic/prognostic biomarkers and/or therapeutic targets in clinics, outline opportunities that ncRNAs may bring to complement current clinical practice for improved cancer management and identify challenges faced by translating frontier knowledge on non-coding RNAs (ncRNAs) to bedside clinics as well as possible solutions.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianying Zhang
- Henan Key Laboratory of Tumor Epidemiology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|