1
|
Liu X, Dong L, Jiang Z, Song M, Yan P. Identifying the differentially expressed peripheral blood microRNAs in psychiatric disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1390366. [PMID: 38827444 PMCID: PMC11140110 DOI: 10.3389/fpsyt.2024.1390366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
Background Evidence has suggested that microRNAs (miRNAs) may play an important role in the pathogenesis of psychiatric disorders (PDs), but the results remain inconclusive. We aimed to identify specific differentially expressed miRNAs and their overlapping miRNA expression profiles in schizophrenia (SZ), major depression disorder (MDD), and bipolar disorder (BD), the three major PDs. Methods The literatures up to September 30, 2023 related to peripheral blood miRNAs and PDs were searched and screened from multiple databases. The differences in miRNA levels between groups were illustrated by the standardized mean difference (SMD) and 95% confidence interval (95% CI). Results In total, 30 peripheral blood miRNAs were included in the meta-analysis, including 16 for SZ, 12 for MDD, and 2 for BD, each was reported in more than 3 independent studies. Compared with the control group, miR-181b-5p, miR-34a-5p, miR-195-5p, miR-30e-5p, miR-7-5p, miR-132-3p, miR-212-3p, miR-206, miR-92a-3p and miR-137-3p were upregulated in SZ, while miR-134-5p, miR-107 and miR-99b-5p were downregulated. In MDD, miR-124-3p, miR-132-3p, miR-139-5p, miR-182-5p, miR-221-3p, miR-34a-5p and miR-93-5p were upregulated, while miR-144-5p and miR-135a-5p were downregulated. However, we failed to identify statistically differentially expressed miRNAs in BD. Interestingly, miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD. Conclusions Our study identified 13 differentially expressed miRNAs in SZ and 9 in MDD, among which miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD by systematically analyzing qualified studies. These miRNAs may be used as potential biomarkers for the diagnosis of SZ and MDD in the future. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO, identifier CRD42023486982.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liying Dong
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaowei Jiang
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingfen Song
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yan
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Li Z, Deng X, Lan Y. Identification of a potentially functional circRNA-miRNA-mRNA regulatory network in type 2 diabetes mellitus by integrated microarray analysis. Minerva Endocrinol (Torino) 2024; 49:33-46. [PMID: 33792237 DOI: 10.23736/s2724-6507.21.03370-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) function as miRNA sponges by adsorbing microRNAs (miRNAs), thereby regulating messenger RNA (mRNA) expression. The circRNA-miRNA-mRNA regulatory network associated with type 2 diabetes mellitus (T2DM) has rarely been explored. A circRNA-miRNA-mRNA regulatory network associated with T2DM was established to help deepen our understanding of the molecular mechanism of and therapeutic targets for T2DM. METHODS Differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were derived from the Gene Expression Omnibus (GEO) microarray datasets GSE114248, GSE51674 and GSE95849, respectively. A circRNA-miRNA-mRNA regulatory network associated with T2DM and its subnetwork were constructed. The hub genes were screened using a protein-protein interaction (PPI) network. Finally, a hub gene-related network was constructed. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. RESULTS The circRNA-miRNA-mRNA network included 9 circRNAs, 24 miRNAs and 320 mRNAs. When four key circRNAs (circMYO9B, circGRAMD1B, circTHAP4 and circTMC7) were chosen, the subnetwork contained 4 circRNAs, 18 miRNAs and 307 mRNAs. Afterwards, 8 hub genes (SIRT1, GNG7, KDR, FOS, SIN3B, STAT1, SP1, and MAPK3) were extracted from the PPI network. GO and KEGG pathway analyses revealed that the network might be involved in oxidative stress responses, regulation of inflammation, neovascularization, endocrine and cancer-related processes, etc. CONCLUSIONS A circRNA-miRNA-hub gene regulatory network was constructed, and the potential functions of the hub genes were analyzed. Four important circRNAs (circMYO9B, circGRAMD1B, circTHAP4 and circTMC7) might be involved in the occurrence and development of T2DM, and this finding provides new insight into the molecular mechanism of and therapeutic targets for T2DM and its complications. Future studies are needed to validate the sponge effects and mechanisms of these 4 circRNAs.
Collapse
Affiliation(s)
- Zijing Li
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Provincial Clinical Research Center of Diabetes Mellitus and its Chronic Complications, Guangzhou, China
- Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Deng
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Provincial Clinical Research Center of Diabetes Mellitus and its Chronic Complications, Guangzhou, China
- Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Lan
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China -
- Provincial Clinical Research Center of Diabetes Mellitus and its Chronic Complications, Guangzhou, China
- Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Shi Y, Sheng P, Guo M, Chen K, Zhao Y, Wang X, Wu M, Li B. Banxia Xiexin Decoction Prevents HT22 Cells from High Glucose-induced Neurotoxicity via JNK/SIRT1/Foxo3a Signaling Pathway. Curr Comput Aided Drug Des 2024; 20:911-927. [PMID: 37608672 DOI: 10.2174/1573409920666230822110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Type 2 diabetes-associated cognitive dysfunction (DCD) is a chronic complication of diabetes that has gained international attention. The medicinal compound Banxia Xiexin Decoction (BXXXD) from traditional Chinese medicine (TCM) has shown potential in improving insulin resistance, regulating endoplasmic reticulum stress (ERS), and inhibiting cell apoptosis through various pathways. However, the specific mechanism of action and medical value of BXXXD remain unclear. METHODS We utilized TCMSP databases to screen the chemical constituents of BXXXD and identified DCD disease targets through relevant databases. By using Stitch and String databases, we imported the data into Cytoscape 3.8.0 software to construct a protein-protein interaction (PPI) network and subsequently identified core targets through network topology analysis. The core targets were subjected to Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The results were further validated through in vitro experiments. RESULTS Network pharmacology analysis revealed the screening of 1490 DCD-related targets and 190 agents present in BXXXD. The topological analysis and enrichment analysis conducted using Cytoscape software identified 34 core targets. Additionally, GO and KEGG pathway analyses yielded 104 biological targets and 97 pathways, respectively. BXXXD exhibited its potential in treating DCD by controlling synaptic plasticity and conduction, suppressing apoptosis, reducing inflammation, and acting as an antioxidant. In a high glucose (HG) environment, the expression of JNK, Foxo3a, SIRT1, ATG7, Lamp2, and LC3 was downregulated. BXXXD intervention on HT22 cells potentially involved inhibiting excessive oxidative stress, promoting neuronal autophagy, and increasing the expression levels of JNK, SIRT1, Foxo3a, ATG7, Lamp2, and LC3. Furthermore, the neuroprotective effect of BXXXD was partially blocked by SP600125, while quercetin enhanced the favorable role of BXXXD in the HG environment. CONCLUSION BXXXD exerts its effects on DCD through multiple components, targets, levels, and pathways. It modulates the JNK/SIRT1/Foxo3a signaling pathway to mitigate autophagy inhibition and apoptotic damage in HT22 cells induced by HG. These findings provide valuable perspectives and concepts for future clinical trials and fundamental research.
Collapse
Affiliation(s)
- Yinli Shi
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Sheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Guo
- Southeast University, Zhongda Hospital Southeast University, Nanjing, China
| | - Kai Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Zhao
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mianhua Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Cao Q, Zou L, Fan Z, Yan Y, Qi C, Wu B, Song B. Ozone causes depressive-like response through PI3K/Akt/GSK3β pathway modulating synaptic plasticity in young rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114171. [PMID: 36228356 DOI: 10.1016/j.ecoenv.2022.114171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Ozone pollution has been associated with several adverse effects, including memory impairment, intellectual retardation, emotional disturbances. However, the potential mechanisms remain uncertain. The present study aimed to investigate whether ozone (O3) regulates synaptic plasticity through PI3K/Akt/GSK3β signaling pathway and induces neurobehavioral modifications among the young rats. In vivo, the newborn rats were used to construct the animal model of early postnatal O3 treatment. In vitro, this study measured the effect of different concentrations of serum from O3 treated rats on the viability of the PC12 cells, and investigated the modifications of synaptic plasticity and PI3K/Akt/GSK3β signaling pathway in the hippocampus and PC12 cells after O3 treated. The results revealed significant depression-like behavior and increased hippocampal histopathological damage in the young rats after O3 treated. Compared with the control group, the expression levels of synaptic related proteins including Drebrin, PSD95, Synaptophysin and PIK3R1, p-Akt, and p-GSK3β were decreased in the O3 treated group. In vitro assays, a significant reduction in Drebrin, PSD95, Synaptophysin, PIK3R1, p-Akt, and p-GSK3β was found in PC12 cells after O3 serum treated. While 740Y-P (a specific PI3K activator) administered, the expression levels of Drebrin, PSD95, Synaptophysin, PIK3R1, p-Akt, and p-GSK3β in the 740Y-P + O3 group were significantly elevated in vivo and vitro compared with the O3-only group. In addition, miRNAs modulating PIK3R1 were screened on bioinformatics website, the study found aberrant expression of miR-221-3p in the hippocampus and serum of O3 treated group. Inhibition of miR-221-3p expression effectively reversed the reduction of Drebrin, PSD95, Synaptophysin, PIK3R1, p-Akt, and p-GSK3β in PC12 cells induced by O3 treatment. Altogether, these studies indicate that O3 restrained the expression of PI3K/Akt/GSK3β signaling pathway and impaired synaptic plasticity that resulted in depressive-like behavior in young rats. Moreover, miR-221-3p plays an important role in this procedure by regulating PIK3R1.
Collapse
Affiliation(s)
- Qi Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Lingyun Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Zhuo Fan
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Yuandong Yan
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Changcun Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Bailin Wu
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Bo Song
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
5
|
Huang Y, Yi Q, Feng J, Xie W, Sun W, Sun W. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum Cell 2022; 35:1640-1649. [PMID: 35969349 DOI: 10.1007/s13577-022-00768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of multifunctional endogenous RNA transcript. The dysregulation of lncRNAs is considered to play a role in the initiation and progression of cancer. One such lncRNA, long intergenic non-coding RNA-p21 (lincRNA-p21), was identified in 2010 as a regulator in the p53 pathway and is gradually being identified to play crucial roles in diverse cellular processes. In this review, we have summarised the diverse regulatory functions of lincRNA-p21. For example, lincRNA-p21 has been reported to function as a protein decoy, act as a competitive endogenous RNA, regulate the transcription, regulate the translation processes and exist in the secreted exosomes. Furthermore, we highlight the emerging roles of lincRNA-p21 in cancer cell regulation. Various types of cancers, including colorectal carcinoma, hepatocellular carcinoma and non-small cell lung carcinoma, aberrantly express lincRNA-p21. However, the current understanding of the roles of lincRNA-p21 in cancer remains limited. Therefore, considering its potential as a valuable therapeutic target or biomarker for cancer, more research should be conducted to understand the role of lincRNA-p21 in cancer and other diseases.
Collapse
Affiliation(s)
- Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Qian Yi
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China. .,The Central Laboratory, Shenzhen Second People' Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
6
|
Winkler L, Jimenez M, Zimmer JT, Williams A, Simon MD, Dimitrova N. Functional elements of the cis-regulatory lincRNA-p21. Cell Rep 2022; 39:110687. [PMID: 35443176 PMCID: PMC9118141 DOI: 10.1016/j.celrep.2022.110687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.
Collapse
Affiliation(s)
- Lauren Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Maria Jimenez
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
7
|
Wang H, He F, Liang B, Jing Y, Zhang P, Liu W, Zhu B, Dou D. LincRNA-p21 alleviates atherosclerosis progression through regulating the miR-221/SIRT1/Pcsk9 axis. J Cell Mol Med 2021; 25:9141-9153. [PMID: 34541816 PMCID: PMC8500963 DOI: 10.1111/jcmm.16771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is the main aetiology of coronary heart disease, cerebral infarction and peripheral vascular disease in humans. Long‐noncoding RNA (LincRNA)‐p21 has been reported to participate in the development of AS. Therefore, this study was designed to investigate the mechanism of LincRNA‐p21 on suppressing the development of AS. We fed ApoE−/− mice with a high‐fat diet to induce an AS mouse model where the lesion area of AS and the extent of lipid deposition were measured. The binding of LincRNA‐p21 and miR‐221 or miR‐221 and SIRT1 was measured using a dual luciferase reporter gene assay and RIP. Following loss‐ and gain‐ function assays, CCK8, EdU, Transwell assay and scratch test were performed to determine the biological processes of human aortic endothelial cells (HAECs). miR‐221 was highly expressed while SIRT1 was poorly expressed in AS. LincRNA‐p21 acted as a sponge for miR‐221. miR‐221 targeted and negatively regulated the expression of SIRT1. LincRNA‐p21 promoted the deacetylation of Pcsk9 by SIRT1 by competitively binding to miR‐221, whereby promoting HAEC proliferation, migration and tube formation. In conclusion, LincRNA‐p21 acted as a molecular sponge for miR‐221 to promote deacetylation of the promoter region of Pcsk9 by SIRT1, therefore preventing the development of AS.
Collapse
Affiliation(s)
- Haojie Wang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Fei He
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bing Liang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yuanhu Jing
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Pei Zhang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Weichao Liu
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bowen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Dongmei Dou
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Liu Y, Sun H, Sun Y. LncRNA p21, downregulating miR-181b, aggravates neuropathic pain by upregulating Tnfaip1 and inhibit the AKT/CREB axis. Brain Res Bull 2021; 171:150-161. [PMID: 33774143 DOI: 10.1016/j.brainresbull.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Recently, there is evidence that long non-coding RNA p21 may play a regulatory role in the development of neuropathic pain (NPP), but it remains to be studied. In this study, we found that lncRNA p21 and tumor necrosis factor alpha-induced protein 1 (Tnfaip1) expression were up-regulated and miR-181b expression was down-regulated in lipopolysaccharide (LPS)-induced and activated BV-2 microglia. The results of flow cytometry and ELISA suggested that overexpression of lncRNA p21 or Tnfaip1 promoted apoptosis and inflammatory factors secretion, and miR-181b overexpression inhibited apoptosis and secretion of inflammatory factors. Luciferase reporter gene analysis validated the adsorption of miR-181b by lncRNA p21. In addition, the targeting relationship between miR-181b and Tnfaip1 was determined. Next, the up-regulation of lncRNA p21 and miR-181b was used as a reversal experiment, and the results suggested that the up-regulation of miR-181b attenuated the promoting effect of lncRNA p21 and Tnfaip1 on apoptosis and inflammatory response, which may be related to the activation of AKT/cAMP response element binding protein (CREB) axis. Finally, the rat model of SNL with lncRNA p21 knockdown was constructed, and the results of paw retraction mechanical threshold (PWMT) and paw retraction thermal latency (PWTL) measurements showed that knockdown of lncRNA p21 alleviated neuropathic pain in rats. In conclusion, our study found that the lncRNA p21/miR-181b/Tnfaip1 axis probably plays an important role in the progression of neuropathic pain, among which lncRNA p21 may become a new insight in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hai Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
9
|
Tu Y, Wu W, Guo Y, Lu F, Li X, Xu D, Zou D, Tu Y, Chai Y, He L. Up-regulation of hsa-miR-221-3p induced by UVB affects proliferation and apoptosis of keratinocytes via Bcl-xL/Bax pathway. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:269-277. [PMID: 33351232 DOI: 10.1111/phpp.12647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic actinic dermatitis (CAD) is a photoallergic skin disease with abnormal hyperplasia. At present, the mechanism of abnormal proliferation is not clear. OBJECTIVE To explore possible mechanism of CAD proliferative lesions. METHODS Immunohistochemistry (IHC) assay and small RNA sequencing were carried out. Quantitative real-time PCR (qRT-PCR) analysis was performed to evaluate expression levels of hsa-miR-221-3p and FOS. The interaction between hsa-miR-221-3p and FOS was identified by dual-luciferase reporter assay. Expression of hsa-miR-221-3p also was detected by qRT-PCR after UVB irradiation. Influences of hsa-miR-221-3p and FOS on cell viability and apoptosis were assessed through a series of functional experiments and rescue experiments. Western blot analysis was used to detect protein expression of fos, Bax, Bcl-xL, and caspase-3. RESULTS Patients with CAD had marked epidermal hyperplasia. The expression of hsa-miR-221-3p was up-regulated in CAD while FOS was significantly down-regulated. Dual-luciferase reporter assay confirmed that hsa-miR-221-3p targeted FOS 3'UTR. Hsa-miR-221-3p induced by UVB ranged from 0 to 30 mJ. Moreover, hsa-miR-221-3p overexpression or FOS knockdown promoted cell proliferation and reduced cell apoptosis. Western blot showed that hsa-miR-221-3p negatively regulated fos, which regulated Bcl-xL/Bax. Cell proliferation caused by hsa-miR-221-3p overexpression or FOS knockdown could be reversed by Bcl-xL inhibitor. CONCLUSION Hsa-miR-221-3p induced by UVB targeted FOS 3'UTR, which played an important role in regulating proliferation and apoptosis of keratinocytes via Bcl-xL/Bax pathway; this may provide a new insight for CAD proliferative lesions.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Dermatology, The Second People's Hospital of Guiyang, Guizhou, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Fengyan Lu
- Department of Dermatology, The First People's Hospital of Qujing, Qujing, China
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanjie Chai
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|