1
|
Aladinskiy V, Kruse C, Qin L, Babin E, Fan Y, Andreev G, Zhao H, Fu Y, Zhang M, Ivanenkov Y, Aliper A, Zhavoronkov A, Ren F. Discovery of Bis-imidazolecarboxamide Derivatives as Novel, Potent, and Selective TNIK Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2024. [PMID: 39422731 DOI: 10.1021/acs.jmedchem.4c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Traf2- and Nck-interacting kinase (TNIK) has been identified as a promising therapeutic target for the treatment of fibrosis-driven diseases. Utilizing a structure-based drug design workflow, we developed a series of potent TNIK inhibitors that modulate the conformation of the gatekeeper Met105 side chain and access the TNIK back pocket. The lead optimization efforts culminated in the discovery of the recently reported compound 4 (INS018_055), a novel TNIK inhibitor. This molecule demonstrated excellent activity in both enzymatic and cell-based assays, along with high selectivity in a kinome panel. Further, in vitro and in vivo preclinical studies revealed favorable in vitro and in vivo DMPK properties. Results from multiple cell-based and animal models proved that compound 4 exhibits considerable antifibrotic and anti-inflammatory efficacy. Currently, phase II clinical trials of compound 4 are underway for the treatment of idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Vladimir Aladinskiy
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Chris Kruse
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, New Territories 999077, Hong Kong
| | - Luoheng Qin
- Insilico Medicine Shanghai Ltd., 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, Shanghai 200120, China
| | - Eugene Babin
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Yaya Fan
- Insilico Medicine Shanghai Ltd., 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, Shanghai 200120, China
| | - Georgiy Andreev
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Heng Zhao
- Insilico Medicine Shanghai Ltd., 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, Shanghai 200120, China
| | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, Shanghai 200120, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, Shanghai 200120, China
| | - Yan Ivanenkov
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, New Territories 999077, Hong Kong
| | - Alex Aliper
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building Masdar City, Abu Dhabi 145748, United Arab Emirates
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, New Territories 999077, Hong Kong
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building Masdar City, Abu Dhabi 145748, United Arab Emirates
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, New Territories 999077, Hong Kong
- Insilico Medicine Canada Inc, 1250 René-Lévesque Ouest, Suite 3710, Montréal, Québec H3B 4W8, Canada
| | - Feng Ren
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building Masdar City, Abu Dhabi 145748, United Arab Emirates
- Insilico Medicine Shanghai Ltd., 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, Shanghai 200120, China
| |
Collapse
|
2
|
Wu C, Cai X, Wang Y, Rodriguez CD, Zoaldi G, Herrmann L, Huang CY, Wang X, Sanghvi VR, Lu RO, Meng Z. Interplay of RAP2 GTPase and the cytoskeleton in Hippo pathway regulation. J Biol Chem 2024; 300:107257. [PMID: 38574891 PMCID: PMC11067347 DOI: 10.1016/j.jbc.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo signaling pathway activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers.
Collapse
Affiliation(s)
- Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carlos D Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Giorgia Zoaldi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lydia Herrmann
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Xiaoqiong Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Viraj R Sanghvi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, New York, USA
| | - Rongze O Lu
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Cancer Center, UCSF, San Francisco, California, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
3
|
Ren F, Aliper A, Chen J, Zhao H, Rao S, Kuppe C, Ozerov IV, Zhang M, Witte K, Kruse C, Aladinskiy V, Ivanenkov Y, Polykovskiy D, Fu Y, Babin E, Qiao J, Liang X, Mou Z, Wang H, Pun FW, Torres-Ayuso P, Veviorskiy A, Song D, Liu S, Zhang B, Naumov V, Ding X, Kukharenko A, Izumchenko E, Zhavoronkov A. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 2024:10.1038/s41587-024-02143-0. [PMID: 38459338 DOI: 10.1038/s41587-024-02143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.
Collapse
Affiliation(s)
- Feng Ren
- Insilico Medicine Shanghai Ltd., Shanghai, China
- Insilico Medicine AI Limited, Abu Dhabi, UAE
| | - Alex Aliper
- Insilico Medicine AI Limited, Abu Dhabi, UAE
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Jian Chen
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Heng Zhao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Sujata Rao
- Insilico Medicine US Inc., New York, NY, USA
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Nephrology, University Clinic RWTH Aachen, Aachen, Germany
| | - Ivan V Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Klaus Witte
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Chris Kruse
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yan Ivanenkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | | | - Junwen Qiao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Xing Liang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Zhenzhen Mou
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Hui Wang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Pedro Torres-Ayuso
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, PA, USA
| | | | - Dandan Song
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Sang Liu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Bei Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Vladimir Naumov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Andrey Kukharenko
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Evgeny Izumchenko
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Abu Dhabi, UAE.
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China.
- Insilico Medicine US Inc., New York, NY, USA.
- Insilico Medicine Canada Inc, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Deng YJ, Wang XG, Li Z, Wang B, Li J, Ma J, Xue X, Tian X, Liu QC, Liu JY, Zhang Y, Yuan B. Comprehensive analysis of senescence-related genes and immune infiltration in intervertebral disc degeneration: a meta-data approach utilizing bulk and single-cell RNA sequencing data. Front Mol Biosci 2023; 10:1296782. [PMID: 38187091 PMCID: PMC10770860 DOI: 10.3389/fmolb.2023.1296782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objectives: This study aims to identify the key senescence genes and potential regulatory mechanisms that contribute to the etiology of intervertebral disc degeneration (IDD). Method: We analyzed GSE34095 and GSE70362 datasets, identifying key senescence-related differentially expressed genes (DEGs) in IDD using lasso regression. Risk scores classified patients into high- and low-risk groups. We compared pathways, functions, and immune infiltration between these groups. Diagnostic ability was assessed using ROC curves and a nomogram predicted IDD incidence. In single-cell dataset GSE165722, we evaluated expression of key senescence-related DEGs. Results: We identified 12 key senescence-related DEGs distinguishing high- and low-risk IDD patients. Enrichment analysis revealed cellular stress response, apoptotic signaling pathway, and protein kinase activation differences. Immune cell analysis showed elevated eosinophils in low-risk group and increased effector memory CD8 T, central memory CD4 T, myeloid-derived suppressor, natural killer, monocyte, Type 1 T helper, plasmacytoid dendritic, and natural killer T cells in high-risk group. A nomogram using AUC >0.75 genes (CXCL8, MAP4K4, MINK1, and TNIK) predicted IDD incidence with good diagnostic power. High senescence scores were observed in neutrophils. Conclusion: Our diagnostic model, based on key senescence-related DEGs and immune cell infiltration, offers new insights into IDD pathogenesis and immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bin Yuan
- Department of Spine Surgery, Xi’an Daxing Hospital, Yanan University, Xi’an, China
| |
Collapse
|
5
|
Wu C, Cai X, Wang Y, Rodriguez CD, Herrmann L, Zoaldi G, Huang CY, Wang X, Sanghvi VR, Lu RO, Meng Z. Interplay of RAP2 GTPase and the cytoskeleton in Hippo pathway regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561687. [PMID: 37873252 PMCID: PMC10592777 DOI: 10.1101/2023.10.10.561687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo kinase cascade activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers.
Collapse
Affiliation(s)
- Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lydia Herrmann
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Giorgia Zoaldi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
| | - Xiaoqiong Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Viraj R. Sanghvi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, USA
| | - Rongze O. Lu
- Brain Tumor Center, Department of Neurological Surgery, Helen Diller Cancer Center, UCSF, San Francisco, CA, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Daulat AM, Wagner MS, Audebert S, Kowalczewska M, Ariey-Bonnet J, Finetti P, Bertucci F, Camoin L, Borg JP. The serine/threonine kinase MINK1 directly regulates the function of promigratory proteins. J Cell Sci 2022; 135:276338. [PMID: 35971817 DOI: 10.1242/jcs.259347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Upregulation of the developmental Wnt/planar cell polarity pathway is observed in many cancers and is associated with cancer development. We recently showed that PRICKLE1, a core Wnt/PCP component, is a poor-prognosis marker in triple negative breast cancer (TNBC). PRICKLE1 is phosphorylated by the serine/threonine kinase MINK1 and contributes to TNBC cell motility and invasiveness. However, the identity of MINK1 substrates and the role of MINK1 enzymatic activity in this process remain to be addressed. We performed a phosphoproteomic strategy and identified MINK1 substrates including LL5β. LL5β anchors microtubules at the cell cortex through its association with CLASPs to trigger focal adhesion disassembly. LL5β is phosphorylated by MINK1 promoting its interaction with CLASPs. Using a kinase inhibitor, we demonstrate that the enzymatic activity of MINK1 is involved in the protein complex assembly and localization, and cell migration. Analysis of gene expression data show that the concomitant up-regulation of PRICKLE1 and LL5β mRNA levels encoding MINK1 substrates is associated with a poor metastasis-free survival in TNBC patients. Altogether, our results suggest that MINK1 may represent a potential target in TNBC.
Collapse
Affiliation(s)
- Avais M Daulat
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Mônica S Wagner
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Malgorzata Kowalczewska
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jeremy Ariey-Bonnet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Biologie Structurale et Chimie-Biologie Intégrée, Marseille, France
| | - Pascal Finetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - François Bertucci
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.,Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France.,Institut universitaire de France, France
| |
Collapse
|
7
|
Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, Zhang X. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res 2022; 417:113131. [DOI: 10.1016/j.yexcr.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
|
8
|
Kong D, Lu JY, Li X, Zhao S, Xu W, Fang J, Wang X, Ma X. Misshapen Disruption Cooperates with RasV12 to Drive Tumorigenesis. Cells 2021; 10:cells10040894. [PMID: 33919765 PMCID: PMC8070713 DOI: 10.3390/cells10040894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Although RAS family genes play essential roles in tumorigenesis, effective treatments targeting RAS-related tumors are lacking, partly because of an incomplete understanding of the complex signaling crosstalk within RAS-related tumors. Here, we performed a large-scale genetic screen in Drosophila eye imaginal discs and identified Misshapen (Msn) as a tumor suppressor that synergizes with oncogenic Ras (RasV12) to induce c-Jun N-terminal kinase (JNK) activation and Hippo inactivation, then subsequently leads to tumor overgrowth and invasion. Moreover, ectopic Msn expression activates Hippo signaling pathway and suppresses Hippo signaling disruption-induced overgrowth. Importantly, we further found that Msn acts downstream of protocadherin Fat (Ft) to regulate Hippo signaling. Finally, we identified msn as a Yki/Sd target gene that regulates Hippo pathway in a negative feedback manner. Together, our findings identified Msn as a tumor suppressor and provide a novel insight into RAS-related tumorigenesis that may be relevant to human cancer biology.
Collapse
Affiliation(s)
- Du Kong
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jin-Yu Lu
- Baylor College of Medicine, Hematology & Oncology, Houston, TX 77054, USA;
| | - Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Sihua Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jinan Fang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
- Correspondence: (X.W.); (X.M.)
| | - Xianjue Ma
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Correspondence: (X.W.); (X.M.)
| |
Collapse
|