1
|
Dong Z, Guo Z, Li H, Han D, Xie W, Cui S, Zhang W, Huang S. FOXO3a-interacting proteins' involvement in cancer: a review. Mol Biol Rep 2024; 51:196. [PMID: 38270719 DOI: 10.1007/s11033-023-09121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Due to its role in apoptosis, differentiation, cell cycle arrest, and DNA damage repair in stress responses (oxidative stress, hypoxia, chemotherapeutic drugs, and UV irradiation or radiotherapy), FOXO3a is considered a key tumor suppressor that determines radiotherapeutic and chemotherapeutic responses in cancer cells. Mutations in the FOXO3a gene are rare, even in cancer cells. Post-translational regulations are the main mechanisms for inactivating FOXO3a. The subcellular localization, stability, transcriptional activity, and DNA binding affinity for FOXO3a can be modulated via various post-translational modifications, including phosphorylation, acetylation, and interactions with other transcriptional factors or regulators. This review summarizes how proteins that interact with FOXO3a engage in cancer progression.
Collapse
Affiliation(s)
- Zhiqiang Dong
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Zongming Guo
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Hui Li
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Dequan Han
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Xie
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Shaoning Cui
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Zhang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
| | - Shuhong Huang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
2
|
Yang D, Chen Y, He ZNT, Wang Y, Ke C, Luo Y, Wang S, Ma Q, Chen M, Yang Q, Zhang Z. Indoleamine 2,3-dioxygenase 1 promotes osteosarcoma progression by regulating tumor-derived exosomal miRNA hsa-miR-23a-3p. Front Pharmacol 2023; 14:1194094. [PMID: 37284323 PMCID: PMC10239870 DOI: 10.3389/fphar.2023.1194094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Osteosarcoma (OS) is the most common primary malignant tumor originating in bone. Immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) participates in tumor immune tolerance and promotes tumor progression, while the study of IDO1 in OS is limited. Methods: Immunohistochemistry analysis was performed to test the expression of IDO1 and Ki67. The relationship between IDO1 or Ki67 positive count and clinical stage of the patient was analyzed. Laboratory test indexes including serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), white blood cell (WBC) count and C-reactive protein (CRP) at diagnosis of OS patients were collected. The relationship between positive count of IDO1 and Ki67 or laboratory test indexes was analyzed by Pearson's correlation analysis. IDO1 stably overexpressed cell lines of these cells (MG63 OE, 143B OE and hFOB1.19 OE) were constructed and validated by Western blot and Elisa. Exosomes were isolated from conditioned culture media of these cells and were identified by Zetaview nanoparticle tracking analyzer. Next-generation sequencing was conducted to identify miRNAs enriched in exosomes. Differentially expressed miRNAs (DE miRNAs) were verified in clinical samples and cell lines by qPCR. Biological processes and cell components analysis of DE miRNAs was conducted by GO enrichment analysis using the protein interaction network database. Results: Immunosuppressive enzyme IDO1 was highly expressed in tumor tissues. 66.7% (6/9) of the tissues showed moderately or strongly positive immunostaining signal of IDO1, and 33.3% (3/9) were weakly positive. The expression of IDO1 was positively related to Ki67 and associated with prognostic-related clinical features of OS patients. Overexpression of IDO1 significantly affected the exosome-derived miRNA subsets from MG63, 143B and hFOB1.19 cells. A total of 1244 DE miRNAs were identified, and hsa-miR-23a-3p was further screened as key DE miRNA involved in the progression of OS. GO analysis of target genes of the DE miRNA results showed that target enrichment in the functions of immune regulation and tumor progression. Discussion: Our results indicate that IDO1 has the potential to promote the progression of OS that is related to miRNAs mediated tumor immunity. Targeting IDO1-mediated hsa-miR-23a-3p may be a potential therapeutic strategy for OS treatment.
Collapse
Affiliation(s)
- Dan Yang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yinxian Chen
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghui Ke
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Luo
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Wang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qichao Ma
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjie Chen
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziming Zhang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Si Z, Shen Z, Luan F, Yan J. PINK1 regulates apoptosis of osteosarcoma as the target gene of cisplatin. J Orthop Surg Res 2023; 18:132. [PMID: 36823640 PMCID: PMC9948348 DOI: 10.1186/s13018-023-03615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Osteosarcoma is a common primary bone malignancy prevalent among adolescents and young adults. PTEN-induced kinase 1 (PINK1) regulates Parkinson's disease, but its role in cancers is unknown. OBJECTIVE This study was designed to analyze the mechanism by which PINK1 affects osteosarcoma using bioinformatics and cell experiments. MATERIALS AND METHODS The gene expression profiles were downloaded from the TARGET database. Several online databases were used to analyze the expression and protein‒protein interaction networks. CCK-8 cell viability assays and cisplatin treatment were used to assess cell activity with or without cisplatin treatment. Acridine orange/ethidium bromide (AO/EB) fluorescence staining was used to calculate the percentage of apoptotic cells. RESULTS Through bioinformatics analysis, we found that high expression of PINK1 was associated with poor prognosis in patients with osteosarcoma, and PINK1 inhibited apoptosis and promoted proliferation pathways. Next, we found that both PINK1 mRNA and protein levels were upregulated in osteosarcoma tissues. Additionally, we found that PTEN was reduced, while FOXO3a was markedly increased in osteosarcoma, suggesting that FOXO3a and not PTEN induced the overexpression of PINK1. CCK-8 and clonogenic assays showed that the knockdown of PINK1 decreased the growth of U2OS osteosarcoma cells. Ki67 immunofluorescence staining revealed that reduced cell proliferation in U2OS cells resulted in the depletion of PINK1. In addition, our AO/EB staining results indicated that the knockdown of PINK1 resulted in an increase in apoptotic cells and increased the levels of cleaved caspase-3. Furthermore, our experiments revealed that cisplatin promotes OS cell apoptosis by downregulating PINK1. CONCLUSION Collectively, our findings demonstrate that PINK1 is crucially involved in osteosarcoma and suggests that it can promote the apoptosis of OS cells as the downstream target gene of cisplatin.
Collapse
Affiliation(s)
- Zhenxing Si
- grid.412596.d0000 0004 1797 9737Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Shen
- grid.412463.60000 0004 1762 6325Department of Orthopedic Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001 Heilongjiang China
| | - Feiyu Luan
- grid.412596.d0000 0004 1797 9737Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedic Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
4
|
Li G, Li Y, Zhang X, Gao P, Xia X, Xiao S, Wen J, Guo T, Yang W, Li J. Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly(ε-caprolactone) scaffolds promote vascularized bone regeneration. J Mater Chem B 2023; 11:1115-1130. [PMID: 36636931 DOI: 10.1039/d2tb02309a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promotion of vascular network formation in the early stages of implantation is considered a prerequisite for successful functional bone regeneration. In this study, we successfully constructed 3D printed scaffolds with strong mechanical strength and a controllable pore structure that can sustainably release strontium (Sr) ions and simvastatin (SIM) for up to 28 days by incorporation of Sr2+ and SIM-loaded hydroxyapatite microspheres (MHA) into a poly(ε-caprolactone) (PCL) matrix. In vitro cell experiments showed that Sr-doped scaffolds were beneficial to the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs), an appropriate dose of SIM was beneficial to cell proliferation and angiogenesis, and a high dose of SIM was cytotoxic. The Sr- and SIM-dual-loaded scaffolds with an appropriate dose significantly induced osteogenic differentiation of BMSCs and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and promoted vascular network and functional bone formation in vivo. Ribose nucleic acid (RNA) sequencing analysis suggested that the mechanism of promotion of vascularized bone regeneration by fabricated scaffolds is that dual-loaded Sr2+ and SIM can upregulate osteogenic and vasculogenic-related genes and downregulate osteoclast-related genes, which is beneficial for vascular and new bone regeneration. The 3D printed composite scaffolds loaded with high-stability and low-cost inorganic Sr2+ ions and SIM small-molecule drugs hold great promise in the field of promoting vascularized bone regeneration.
Collapse
Affiliation(s)
- Gen Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Xianhui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jing Wen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Tao Guo
- Department of Orthopaedics, Guizhou Provincial People's hospital, Guiyang 550002, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Angiotensin II Inhibits Adipogenic Differentiation and Promotes Mature Adipocyte Browning through the Corepressor CtBP1. Biomedicines 2022; 10:biomedicines10123131. [PMID: 36551887 PMCID: PMC9775054 DOI: 10.3390/biomedicines10123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of angiotensin II (Ang II) on regulating adipogenic differentiation and function remain unknown. In this study, we focus on revealing the role of C-terminal-binding protein 1 (CtBP1) on Ang II-mediated adipogenic differentiation and mature adipocyte browning. Amounts of 3T3-L1 and CtBP1-KO 3T3-L1 were treated with Ang II for 24 h and then induced adipogenic differentiation, or cells were first induced differentiation and then treated with Ang II. The expressions of CtBP1 and adipogenic markers were checked by Western blot. Transcription of CtBP1 was assayed by Real-time RT-PCR. Lipid droplet formation and size were detected by Oil Red O. Mitochondrial content and reactive oxygenspecies (ROS) were detected by Mito-tracker and MitoSOX. Mitochondrial respiratory function was detected with the corresponding kits. Mitochondrial membrane potential (MMP) (∆Ψm) was assayed by JC-1. The results show that Ang II promoted CtBP1 transcription and expression via AT1 receptor during 3T3-L1 adipogenic differentiation. Ang II significantly inhibited lipid droplet formation and adipogenic markers expression in 3T3-L1 differentiation, which was blocked by CtBP1 knockout. In mature 3T3-L1, Ang II treatment increased uncoupling protein-1 (UCP-1) expression and the number of lipid droplets, and also reduced lipid droplet size and single cell lipid accumulation, which was reversed by CtBP1 knockout. In addition, Ang II treatment enhanced mitochondrial numbers, ATP production, oxygen consumption rate (OCR) and ROS generation, and reduced MMP (∆Ψm) via CtBP1 in mature 3T3-L1 adipocytes. In conclusion, this study demonstrates that CtBP1 plays a key role in the inhibitory effect of Ang II on adipogenesis. Moreover, Ang II regulates the function of mature adipocyte via CtBP1, including promoting adipocyte browning, mitochondrial respiration and ROS generation.
Collapse
|
6
|
Bao HJ, Chen X, Liu X, Wu W, Li QH, Xian JY, Zhao Y, Chen S. Box C/D snoRNA SNORD89 influences the occurrence and development of endometrial cancer through 2'-O-methylation modification of Bim. Cell Death Dis 2022; 8:309. [PMID: 35790714 PMCID: PMC9256700 DOI: 10.1038/s41420-022-01102-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
The small nucleolar RNA (snoRNA) is a type of small non-coding RNA widely distributed in the nucleoli of eukaryotic cells, promoting cancer development. The aim of this study was to assess box C/D snoRNA 89 (SNORD89) dysregulations in endometrial cancer. According to the TCGA database as well as the International Federation of Gynecology and Obstetrics (FIGO), higher SNORD89 expression is found in endometrial cancer tissues. In addition, the SNORD89 expression level was higher in endometrial carcinoma with lymph node metastasis than in endometrial carcinoma without lymph node metastasis. By interacting with the conservative chaperone protein methylase fibrillarin (Fbl), SNORD89 inhibits the translation process of the Bim gene, leading to a decrease in Bim protein. Cancer-promoting effect of SNORD89 can be reversed by Fbl knockdown or Bim overexpressing. What’s more, ASO-mediated silencing of SNORD89 could inhibit endometrial cancer cell proliferation and migration ability. Taken together, SNORD89 can modify Bim through 2′-O-methylation and affect downstream signaling pathways to promote endometrial cancer occurrence and development. The role of methylation modification in the prevention and treatment of endometrial cancer provides a new understanding and SNORD89 may be a new diagnostic and therapeutic target for endometrial cancer. Mechanism of action of SNORD89 ![]()
Collapse
Affiliation(s)
- Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing-Yuan Xian
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
7
|
Chen X, Zhang Q, Dang X, Fan J, Song T, Li Z, Duan N, Zhang W. The CtIP-CtBP1/2-HDAC1-AP1 transcriptional complex is required for the transrepression of DNA damage modulators in the pathogenesis of osteosarcoma. Transl Oncol 2022; 21:101429. [PMID: 35452995 PMCID: PMC9047009 DOI: 10.1016/j.tranon.2022.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
CtIP couples with CtBP1/2 heterodimer, HDAC1, and two subunits of AP1 transcription factor to assemble a complex. The CtIP-CtBP1/2-HDAC1-AP1 complex is required for the inhibition of MLH1, MSH3, BRCA1, and CDKN1A in osteosarcoma cells. Overexpression of MLH1, MSH3, BRCA1, and CDKN1A in osteosarcoma cells inhibits tumor cell growth in vitro and in vivo.
Most tumors, including osteosarcomas, have deficiencies in DNA damage repair. However, the regulatory mechanisms underlying dysregulation of DNA damage repair genes are still being investigated. In this study, we reveal that C-terminal binding protein (CtBP) interacting protein (CtIP) couples with three transcriptional regulators, CtBP1/2 heterodimer, histone deacetylase 1 (HDAC1), and two subunits of the activating protein 1 (AP1) transcription factor to assemble a transcriptional complex. This complex specifically controls the expression of four genes involved in DNA damage and repair processes: MutL homolog 1 (MLH1), MutS Homolog 3 (MSH3), breast cancer type 1 (BRCA1), and cyclin dependent kinase inhibitor 1A (CDKN1A). Chromatin immunoprecipitation (ChIP) assay results revealed that the CtIP-CtBP1/2-HDAC1-AP1 complex regulated these four genes by binding to their promoters through the TGAT/CTCA consensus sequence. The depletion of CtIP, CtBP1/2, and HDAC1 increased the expression levels of MLH1, MSH3, BRCA1, and CDKN1A and inhibited in vitro and in vivo osteosarcoma cell growth. Overexpression of MLH1, MSH3, BRCA1, or CDKN1A in osteosarcoma cells can reduce cell viability, colony formation, cell migration, and tumor growth. Our findings suggest that the CtIP-CtBP1/2-HDAC1-AP1 complex is required for mediation of DNA damage processes for the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Xun Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China; Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Qian Zhang
- The Department of Surgery Room, Xi'an Daxing Hospital, Xi'an, Shaanxi 710016, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Jinzhu Fan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China
| | - Zhong Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China.
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
8
|
Zheng C, Yu X, Liang Y, Zhu Y, He Y, Liao L, Wang D, Yang Y, Yin X, Li A, He Q, Li B. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm Sin B 2022; 12:1271-1287. [PMID: 35530161 PMCID: PMC9069409 DOI: 10.1016/j.apsb.2021.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the hallmarks of cancer, metabolic reprogramming leads to cancer progression, and targeting glycolytic enzymes could be useful strategies for cancer therapy. By screening a small molecule library consisting of 1320 FDA-approved drugs, we found that penfluridol, an antipsychotic drug used to treat schizophrenia, could inhibit glycolysis and induce apoptosis in esophageal squamous cell carcinoma (ESCC). Gene profiling and Ingenuity Pathway Analysis suggested the important role of AMPK in action mechanism of penfluridol. By using drug affinity responsive target stability (DARTS) technology and proteomics, we identified phosphofructokinase, liver type (PFKL), a key enzyme in glycolysis, as a direct target of penfluridol. Penfluridol could not exhibit its anticancer property in PFKL-deficient cancer cells, illustrating that PFKL is essential for the bioactivity of penfluridol. High PFKL expression is correlated with advanced stages and poor survival of ESCC patients, and silencing of PFKL significantly suppressed tumor growth. Mechanistically, direct binding of penfluridol and PFKL inhibits glucose consumption, lactate and ATP production, leads to nuclear translocation of FOXO3a and subsequent transcriptional activation of BIM in an AMPK-dependent manner. Taken together, PFKL is a potential prognostic biomarker and therapeutic target in ESCC, and penfluridol may be a new therapeutic option for management of this lethal disease.
Collapse
|
9
|
Activation of ABCC Genes by Cisplatin Depends on the CoREST Occurrence at Their Promoters in A549 and MDA-MB-231 Cell Lines. Cancers (Basel) 2022; 14:cancers14040894. [PMID: 35205642 PMCID: PMC8870433 DOI: 10.3390/cancers14040894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cisplatin resistance is a common issue that affects patients with a variety of cancers who are treated with this drug. In this research, we present a novel epigenetic mechanism that controls the expression of ABC-family transporters, which are involved in multidrug resistance. We report that the CoREST complex may be a key factor that determines the transcription of ABC transporters in non-small cell lung and triple-negative breast cancer cells (A549 and MDA-MB-231, respectively) treated with cisplatin. By occupying gene promoters, this multi-subunit repressor prevents both an EP300-dependent increase in ABCC transcription induced by the alkylating drug and gene overexpression in cisplatin-resistant phenotypes. Moreover, the CoREST-free promoter of ABCC10 responds to cisplatin with EP300-mediated gene activation, which is only possible in p53-proficient cells. Abstract Although cisplatin-based therapies are common among anticancer approaches, they are often associated with the development of cancer drug resistance. This phenomenon is, among others, caused by the overexpression of ATP-binding cassette, membrane-anchored transporters (ABC proteins), which utilize ATP to remove, e.g., chemotherapeutics from intracellular compartments. To test the possible molecular basis of increased expression of ABCC subfamily members in a cisplatin therapy mimicking model, we generated two cisplatin-resistant cell lines derived from non-small cell lung cancer cells (A549) and triple-negative breast cancer cells (MDA-MB-231). Analysis of data for A549 cells deposited in UCSC Genome Browser provided evidence on the negative interdependence between the occurrence of the CoREST complex at the gene promoters and the overexpression of ABCC genes in cisplatin-resistant lung cancer cells. Pharmacological inhibition of CoREST enzymatic subunits—LSD1 and HDACs—restored gene responsiveness to cisplatin. Overexpression of CoREST-free ABCC10 in cisplatin-resistant phenotypes was caused by the activity of EP300 that was enriched at the ABCC10 promoter in drug-treated cells. Cisplatin-induced and EP300-dependent transcriptional activation of ABCC10 was only possible in the presence of p53. In summary, the CoREST complex prevents the overexpression of some multidrug resistance proteins from the ABCC subfamily in cancer cells exposed to cisplatin. p53-mediated activation of some ABCC genes by EP300 occurs once their promoters are devoid of the CoREST complex.
Collapse
|
10
|
Feng Y, Wang H, Chen Z, Chen B. High glucose mediates the ChREBP/p300 transcriptional complex to activate proapoptotic genes Puma and BAX and contributes to intervertebral disc degeneration. Bone 2021; 153:116164. [PMID: 34461288 DOI: 10.1016/j.bone.2021.116164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Emerging evidence shows that obesity and type 2 diabetes (T2D) are associated with intervertebral disc degeneration (IDD). However, the underlying mechanisms are still obscure. Here, we found that serum glucose concentrations were significantly increased in T2D-IDD patients. Detection of molecular changes indicated that two glucose transporters (GLUTs), including GLUT1 and GLUT4, were hyperactivated in these IDD patients with obesity. Using a microarray assay to detect the dysregulated genes in IDD patients with obesity, we identified 33 differentially expressed genes and verified only two proapoptotic genes, including Puma (p53 upregulated modulator of apoptosis) and BAX (BCL2 associated X) responded to glucose. The mechanistic investigation revealed that carbohydrate-responsive element-binding protein (ChREBP) coupled with the histone acetyltransferase p300 to bind to the promoter of Puma and BAX genes and activated their expression in the condition of high glucose. The accumulation of Puma and BAX triggered mitochondrial dysfunction and caspase activation, resulting in apoptosis. Moreover, we found that glucose could accelerate the occurrence of IDD in a rat model. Interestingly, we administrated two GLUT inhibitors (BAY-876 and Fasentin) in rats injected glucose and found that these two inhibitors could reverse the defects of IDD by decreasing apoptosis. Our in vitro and in vivo data support a model in which high glucose activates the ChREBP/p300 transcriptional complex to bind to the promoters of Puma and BAX, causing apoptosis and IDD pathogenesis. Our discovery suggests that the control of glucose absorption in T2D-IDD patients may decrease the outcome of IDD.
Collapse
Affiliation(s)
- Yu Feng
- Department of Traumatic Orthopedics, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hantao Wang
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Bin Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 2021; 99:1335-1347. [PMID: 34196767 DOI: 10.1007/s00109-021-02107-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.
Collapse
|
12
|
Zeng J, Xiao XQ, Zhou ZY. A Hypoxia-Induced SCFFBXL1 E3 Ligase Ubiquitinates and Degrades the MEN1 Tumor Suppressor to Promote Colorectal Cancer Tumorigenesis. Cancer Res Treat 2021; 54:525-540. [PMID: 34237211 PMCID: PMC9016320 DOI: 10.4143/crt.2021.373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Emerging evidence has shown that SKP1-cullin-1-F-box-protein (SCF) E3 ligases contribute to the pathogenesis of different cancers by mediating the ubiquitination and degradation of tumor suppressors. However, the functions of SCF E3 ligases in the pathogenesis of colorectal cancer (CRC) remain obscure. Materials and Methods The cancerous and adjacent noncancerous tissues from CRC patients were collected, and protein levels were analyzed. Lentiviral short hairpin RNA (shRNA) and plasmid transfection were used to knock down and overexpress gene expression in CRC cell lines. Immunoprecipitation (IP), mass spectrometry, and co-IP analyses were used to determine protein interactions and the assembly of the SCF complex. Cell proliferation, migration, and tumor xenograft assays were performed to examine the effects of SCF members on CRC cell growth in vitro and in vivo. Results Hypoxia activated the docking of HIF1a onto the CUL1 promoter and induced CUL1 expression in CRC cells. CUL1 coupled with RBX1, SKP1, and FBXL1 to assemble the SCFFBXL1 complex in CRC biopsies and cells. The SCFFBXL1 E3 ligase specifically ubiquitinated and degraded the MEN1 tumor suppressor. Knockdown of HIF1a or SCFFBXL1 members, or blockage of SCFFBXL1 by two inhibitors (DT204 and SZLP1-41) caused the accumulation of MEN1 protein and led to a significant decrease in cell proliferation and migration in vitro and tumor growth in vivo. Conclusion The SCFFBXL1 E3 ligase is required for the ubiquitination of MEN1, and disruption of this complex may represent a new therapeutic strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Qing Xiao
- Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Yong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Zhu L, Wu J, Liu H. Downregulation of HERC5 E3 ligase attenuates the ubiquitination of CtBP1 to inhibit apoptosis in colorectal cancer cells. Carcinogenesis 2021; 42:1119-1130. [PMID: 34147029 DOI: 10.1093/carcin/bgab053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
The Homologous to E6AP C-terminus (HECT) domain and RCC1-like domain-containing (HERC) proteins can function as tumour suppressors and as oncogenes, depending on the cancer type. However, the expression patterns of HERCs in colorectal cancer (CRC) cells are unclear. Here, we show that only HERC1 and HERC5 are downregulated in CRC tumours, and we focus our study on revealing HERC5-mediating signalling because the change in downregulation is much more obvious for HERC5 than for HERC1. We demonstrate that HERC5 recruits an adaptor protein, CREB binding protein (CRB), to ubiquitinate C-terminal binding protein 1 (CtBP1) in noncancerous colon cells. The downregulation of HERC5 in CRC cells attenuates the ubiquitination of CtBP1, which then accumulates and assembles into a transcriptional complex with histone deacetylase 1 (HDAC1) and a transcription factor c-MYC. This transcriptional complex binds to the promoters of three proapoptotic genes, Bcl2 associated X (BAX), Bcl2 interacting killer (BIK) and p53upregulated modulator of apoptosis (PUMA), and inhibits their expression, thereby suppressing apoptotic signalling and promoting tumourigenesis. Overexpression of HERC5, downregulation of CtBP1 or blocking of the CtBP1 function with its inhibitors (NSC95397 and 4-methylthio-2-oxobutyric acid [MTOB]) significantly prevents CRC cell proliferation in vitro and tumour growth in vivo. Combining NSC95397 (or MTOB) with chemotherapeutic drugs (oxaliplatin or capecitabine) gives a much stronger inhibition of cell proliferation and tumour growth compared to their single treatments. Collectively, our results reveal that downregulation of HERC5 E3 ligase attenuates the ubiquitination of CtBP1 to inhibit apoptosis. Therefore, CtBP1 may be a promising target in CRC chemotherapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Wu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Hong Liu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
14
|
Duan N, Zhang W, Li Z, Sun L, Song T, Yu Z, Chen X, Ma W. Overexpression of HIPK2 removes the transrepression of proapoptotic genes mediated by the CtBP1-p300-FOXO3a complex and increases the chemosensitivity in osteosarcoma cells. J Cancer 2021; 12:1826-1837. [PMID: 33613771 PMCID: PMC7890331 DOI: 10.7150/jca.52115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Decreased expression of proapoptotic genes can lead to the chemoresistenance in cancer therapy. Carboxyl-terminal binding protein 1 (CtBP1), a transcriptional corepressor with multiple oncogenic effects, has been previously identified to suppress the expression of two proapoptotic genes [BAX (BCL2 associated X) and BIM (Bcl-2 interacting mediator of cell death)] by assembling a complex with the Forkhead box O3 (FOXO3a) transcription factor and the p300 histone acetyltransferase. However, the upstream regulatory signaling of the CtBP1-p300-FOXO3a complex is obscure, and the effects of changing this signaling on chemosensitivity in osteosarcoma are unknown. Herein, we discovered that the downregulation of HIPK2 (Homeodomain-interacting protein kinase 2) was essential for the function of the CtBP1-p300-FOXO3a complex. Downregulation of HIPK2 prevented the phosphorylation and subsequent degradation of CtBP1, thereby allowing the assembly of the CtBP1-p300-FOXO3a complex and suppression of the expression of proapoptotic genes, such as BAX, BIM, BIK (Bcl-2 interacting killer) and NOXA/PMAIP1 (Phorbol-12-myristate-13-acetate-induced protein 1). Overexpression of HIPK2 promoted the phosphorylation of CtBP1 and the degradation of CtBP1 by proteasomes, thereby preventing the formation of the CtBP1-p300-FOXO3a complex. The abolition of CtBP1 transrepression increased the expression of proapoptotic genes to induce apoptosis and increase chemosensitivity in osteosarcoma cells. Taken together, our in vitro and in vivo results revealed that overexpression of HIPK2 could remove the CtBP1-mediated transrepression of proapoptotic genes, indicating a new therapeutic option for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ning Duan
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.,Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Wentao Zhang
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhong Li
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Sun
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Tao Song
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zirui Yu
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xun Chen
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Wei Ma
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
15
|
Chen X, Zhang Q, Dang X, Song T, Wang Y, Yu Z, Zhang S, Fan J, Cong F, Zhang W, Duan N. Targeting the CtBP1-FOXM1 transcriptional complex with small molecules to overcome MDR1-mediated chemoresistance in osteosarcoma cancer stem cells. J Cancer 2021; 12:482-497. [PMID: 33391445 PMCID: PMC7739006 DOI: 10.7150/jca.50255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Chemoresistance is a major barrier for the chemotherapy of osteosarcoma. The induction of multidrug resistance protein 1 (MDR1), an ATP-dependent transporter, can efflux anti-cancer drugs, thereby decreasing chemosensitivity. However, an actual involvement of MDR1 in the chemoresistance of osteosarcoma cells has not been established. We obtained two cisplatin (CDDP)-resistant osteosarcoma cancer stem cell (CSC) lines using sphere formation medium supplemented with CDDP. These two CDDP-resistant CSC cell lines showed substantial cell proliferation, colony formation, cell invasion, and in vivo tumor growth in the presence of CDDP. Microarray analysis revealed that three genes, MDR1, FOXM1 (forkhead box M1), and CtBP1 (C-Terminal binding protein 1), showed significant overexpression in both cell lines. Mechanistically, CtBP1 assembled with FOXM1 to form a transcriptional complex, which docked onto the MDR1 promoter to activate MDR1 expression. Knockdown or inhibition of the CtBP1-FOXM1 components with specific small molecules, including NSM00158 and NSC95397 for CtBP1 and RCM1 for FOXM1, significantly repressed MDR1 expression. Administration of these three small molecules also significantly inhibited tumor growth in mouse tumor xenograft model. The MDR1-mediated chemoresistance could be reversed by NSM00158 and RCM1. Collectively, our data revealed that the CtBP1-FOXM1 complex activated MDR1 expression and that targeting this complex with their specific inhibitors could reverse MDR1-mediated chemoresistance both in vitro and in vivo. Our results indicate a new therapeutic strategy for overcoming chemoresistance during osteosarcoma treatment.
Collapse
Affiliation(s)
- Xun Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Qian Zhang
- The department of surgery room, Xi'an Daxing Hospital, Xi'an 710016, Shaanxi, China.1Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Yufei Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zirui Yu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Shihui Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Jinzhu Fan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Fei Cong
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
16
|
Zheng C, Tang F, Min L, Hornicek F, Duan Z, Tu C. PTEN in osteosarcoma: Recent advances and the therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188405. [PMID: 32827577 DOI: 10.1016/j.bbcan.2020.188405] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumor, predominantly occurring in children and adolescents. Despite treated with surgery and neoadjuvant chemotherapy, osteosarcoma has a high potential of local recurrence and lung metastasis. Overall survival rates for osteosarcoma have plateaued in the past four decades, therefore, identification of novel targets and development of more effective treatment strategies are urgent. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene that negatively regulates the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway. Over half of clinical osteosarcoma samples presented loss or low expression of PTEN, which usually indicated an advanced stage of tumor and a poor prognosis. The expression of PTEN is regulated by epigenetic silence, transcription regulation, post-translational modifications, and protein interactions in osteosarcoma. Therefore, explicating regulations to restore the anti-tumor function of PTEN might provide novel targeted therapies for osteosarcoma. Preclinical evidence suggested directly targeting the altered PTEN in osteosarcoma was promising. Current clinical application of PTEN related therapies in osteosarcoma are PI3K/mTOR inhibitors, and these drugs have shown the favorable efficacy in patients with advanced osteosarcoma.
Collapse
Affiliation(s)
- Chuanxi Zheng
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan 610041, People's Republic of China
| | - Fan Tang
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Min
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan 610041, People's Republic of China
| | - Francis Hornicek
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095-6902, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095-6902, USA.
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
17
|
Chen Z, Dong WH, Qiu ZM, Li QG. The Monocyte-Derived Exosomal CLMAT3 Activates the CtBP2-p300-NF-κB Transcriptional Complex to Induce Proinflammatory Cytokines in ALI. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1100-1110. [PMID: 32866716 PMCID: PMC7476810 DOI: 10.1016/j.omtn.2020.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023]
Abstract
Monocytes and macrophages are the two major cell types involved in innate immunity. Exosomes act as signaling molecules to regulate cell-to-cell communication by releasing proteins, mRNAs, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs). However, it is still unclear whether monocyte-derived exosomes are involved in the communication between monocytes and macrophages. In this study, we analyzed the differentially expressed lncRNA profiles in monocytes isolated from blood samples of healthy controls and acute lung injury (ALI) patients. We focused our study on investigating the signaling downstream of CLMAT3 (colorectal liver metastasis-associated transcript 3), a lncRNA that regulated proinflammatory cytokine genes. We revealed that CLMAT3 specifically targeted CtBP2 (C-terminal binding protein 2) and repressed its expression. Elevated CtBP2 acted as a coactivator to assemble a transcriptional complex with histone acetyltransferase p300 and NF-κB (nuclear factor κB) subunits. In vitro coculture and in vivo injection of ALI monocyte-derived exosomes increased the production of proinflammatory cytokines. Importantly, the administration of two CtBP2 inhibitors, NSC95397 and MTOB, could significantly reverse CtBP2-mediated transactivation. Collectively, our results support a model in which monocyte-derived exosomal CLMAT3 activates the CtBP2-p300-NF-κB complex to induce proinflammatory cytokines, thus contributing to the pathogenesis of ALI.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wei-Hua Dong
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhong-Min Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qiu-Gen Li
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
18
|
Gruber M, Ferrone L, Puhr M, Santer FR, Furlan T, Eder IE, Sampson N, Schäfer G, Handle F, Culig Z. p300 is upregulated by docetaxel and is a target in chemoresistant prostate cancer. Endocr Relat Cancer 2020; 27:187-198. [PMID: 31951590 PMCID: PMC7040497 DOI: 10.1530/erc-19-0488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Administration of the microtubule inhibitor docetaxel is a common treatment for metastatic castration-resistant prostate cancer (mCRPC) and results in prolonged patient overall survival. Usually, after a short period of time chemotherapy resistance emerges and there is urgent need to find new therapeutic targets to overcome therapy resistance. The lysine-acetyltransferase p300 has been correlated to prostate cancer (PCa) progression. Here, we aimed to clarify a possible function of p300 in chemotherapy resistance and verify p300 as a target in chemoresistant PCa. Immunohistochemistry staining of tissue samples revealed significantly higher p300 protein expression in patients who received docetaxel as a neoadjuvant therapy compared to control patients. Elevated p300 expression was confirmed by analysis of publicly available patient data, where significantly higher p300 mRNA expression was found in tissue of mCRPC tumors of docetaxel-treated patients. Consistently, docetaxel-resistant PCa cells showed increased p300 protein expression compared to docetaxel-sensitive counterparts. Docetaxel treatment of PCa cells for 72 h resulted in elevated p300 expression. shRNA-mediated p300 knockdown did not alter colony formation efficiency in docetaxel-sensitive cells, but significantly reduced clonogenic potential of docetaxel-resistant cells. Downregulation of p300 in docetaxel-resistant cells also impaired cell migration and invasion. Taken together, we showed that p300 is upregulated by docetaxel, and our findings suggest that p300 is a possible co-target in treatment of chemoresistant PCa.
Collapse
Affiliation(s)
- Martina Gruber
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lavinia Ferrone
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Martin Puhr
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tobias Furlan
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E Eder
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zoran Culig
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Zhou P, Wan X, Zou Y, Chen Z, Zhong A. Transforming growth factor beta (TGF-β) is activated by the CtBP2-p300-AP1 transcriptional complex in chronic renal failure. Int J Biol Sci 2020; 16:204-215. [PMID: 31929749 PMCID: PMC6949151 DOI: 10.7150/ijbs.38841] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic renal failure (CRF), also known as chronic kidney disease (CKD), is a common renal disorder characterized by gradual kidney dysfunction. Molecular dissection reveals that transforming growth factor beta (TGF-β) plays a central role in the pathogenesis of CRF. However, the mechanism underlying TGF-β upregulation has not been demonstrated. Here, we verified that the elevated level of TGF-β was associated with the severity of CRF stages and the activation of TGF-β-mediated signaling in 120 renal biopsies from CRF patients. By analyzing the promoter region of the TGFB1 gene, we identified one AP-1 (activator protein 1) and four NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) binding sites. Knockdown of two AP-1 subunits (c-Jun and c-FOS) or blockage of AP-1 signaling with two inhibitors T-5224 and SR11302 could cause the downregulation of TGFB1, whereas knockdown of two NF-κB subunits (p65 and p50) or blockage of NF-κB signaling with two inhibitors TPCA1 and BOT-64 could not change the expression of TGFB1. Using mass spectrometry and coimmunoprecipitation analyses, we found that both c-Jun and c-FOS formed a complex with CtBP2 (C-terminal binding protein 2) and histone acetyltransferase p300. Our in vitro data demonstrated that induction of CtBP2 by recombinant IL-1β (interleukin-1 beta) led to the upregulation of TGFB1 and the activation of TGF-β downstream signaling, while knockdown of CtBP2 resulted in the reversed effects. Using chromatin immunoprecipitation assays, we revealed that the CtBP2-p300-AP1 complex specifically bound to the promoter of TGFB and that knockdown or blockage of CtBP2 significantly decreased the occupancies of the p300 and AP-1 subunits. Our results support a model in which the CtBP2-p300-AP1 transcriptional complex activates the expression of TGFB1, increasing its production and extracellular secretion. The secreted TGF-β binds to its receptors and initiates downstream signaling.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaoxiao Wan
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yan Zou
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhi Chen
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Aimin Zhong
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
20
|
Chen Z, Dong WH, Chen Q, Li QG, Qiu ZM. Downregulation of miR-199a-3p mediated by the CtBP2-HDAC1-FOXP3 transcriptional complex contributes to acute lung injury by targeting NLRP1. Int J Biol Sci 2019; 15:2627-2640. [PMID: 31754335 PMCID: PMC6854378 DOI: 10.7150/ijbs.37133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that microRNAs (miRNAs) play fundamental roles in the pathogenesis of multiple diseases, including acute lung injury (ALI). Here, we discovered that miR-199a-3p was significantly downregulated in ALI lung tissues using a microarray analysis. In vitro lipopolysaccharide (LPS) treatment of the human epithelial cell line A549 and the human macrophage cell line U937 caused a decrease of miR-199a-3p. Mechanically, miR-199a-3p specifically bound to the 3'-untranslated region (3'-UTR) of NLRP1 (nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 1), a critical member of inflammasomes. Ectopic overexpression or downregulation of miR-199a-3p resulted in the repression or induction of NLRP1, respectively, thereby downregulating or activating its downstream events. Moreover, transcription factor FOXP3 (forkhead box P3) was able to specifically bind to the promoter of miR-199a-3p. Knockdown or overexpression of FOXP3 resulted in a decrease or induction miR-199a-3p expression, respectively. Using immunoprecipitation (IP), mass spectrometry and co-IP assays, we found that FOXP3 formed a transcriptional complex with HDAC1 (histone deacetylase 1) and CtBP2 (C-terminal-binding protein 2). Collectively, our results suggested that the CtBP2-HDAC1-FOXP3 transcriptional complex (CHFTC) could specifically bind to the promoter of miR-199a-3p and repress its expression. Downregulation of miR-199a-3p eliminated its inhibition of NLRP1, causing activation of NLRP1 and cleavage of pro-IL-1β and pro-IL-18 mediated by Caspase-1. The secretion of IL-1β and IL-18 further aggravated the inflammatory response and resulted in the occurrence of ALI.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wei-Hua Dong
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiang Chen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qiu-Gen Li
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhong-Min Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|