1
|
Ye Q, Li X, Gao W, Gao J, Zheng L, Zhang M, Yang F, Li H. Role of Rho-associated kinases and their inhibitor fasudil in neurodegenerative diseases. Front Neurosci 2024; 18:1481983. [PMID: 39628659 PMCID: PMC11613983 DOI: 10.3389/fnins.2024.1481983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis of NDDs is complex, and currently, there is no cure available. With the increase in aging population, over 20 million people are affected by common NDDs alone (Alzheimer's disease and Parkinson's disease). Therefore, NDDs have profound negative impacts on patients, their families, and society, making them a major global health concern. Rho-associated kinases (ROCKs) belong to the serine/threonine protein kinases family, which modulate diverse cellular processes (e.g., apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington's disease, Parkinson's disease, and Alzheimer's disease) by disrupting synaptic plasticity and promoting inflammatory responses. Therefore, ROCK inhibitors have been regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage and promotes axonal regeneration. Thus, the current review summarizes the relationship between ROCKs and NDDs and the mechanism by which fasudil inhibits ROCKs to provide new ideas for the treatment of NDDs.
Collapse
Affiliation(s)
- Qiuyan Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu College of Nursing, Huaian, China
| | - Jiayue Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Zheng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miaomiao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengge Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honglin Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Wu Z, Xiao C, Li F, Huang W, You F, Li X. Mitochondrial fusion-fission dynamics and its involvement in colorectal cancer. Mol Oncol 2024; 18:1058-1075. [PMID: 38158734 PMCID: PMC11076987 DOI: 10.1002/1878-0261.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The incidence and mortality rates of colorectal cancer have elevated its status as a significant public health concern. Recent research has elucidated the crucial role of mitochondrial fusion-fission dynamics in the initiation and progression of colorectal cancer. Elevated mitochondrial fission or fusion activity can contribute to the metabolic reprogramming of tumor cells, thereby activating oncogenic pathways that drive cell proliferation, invasion, migration, and drug resistance. Nevertheless, excessive mitochondrial fission can induce apoptosis, whereas moderate mitochondrial fusion can protect cells from oxidative stress. This imbalance in mitochondrial dynamics can exert dual roles as both promoters and inhibitors of colorectal cancer progression. This review provides an in-depth analysis of the fusion-fission dynamics and the underlying pathological mechanisms in colorectal cancer cells. Additionally, it offers partial insights into the mitochondrial kinetics in colorectal cancer-associated cells, such as immune and endothelial cells. This review is aimed at identifying key molecular events involved in colorectal cancer progression and highlighting the potential of mitochondrial dynamic proteins as emerging targets for pharmacological intervention.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Institute of OncologyChengdu University of Traditional Chinese MedicineChina
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| |
Collapse
|
3
|
Wu Z, Xiao C, Long J, Huang W, You F, Li X. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets. Cell Commun Signal 2024; 22:91. [PMID: 38302953 PMCID: PMC10835948 DOI: 10.1186/s12964-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health concern, and its development is associated with mitochondrial dysfunction. Mitochondria can adapt to the high metabolic demands of cancer cells owing to their plasticity and dynamic nature. The fusion-fission dynamics of mitochondria play a crucial role in signal transduction and metabolic functions of CRC cells. Enhanced mitochondrial fission promotes the metabolic reprogramming of CRC cells, leading to cell proliferation, metastasis, and chemoresistance. Excessive fission can also trigger mitochondria-mediated apoptosis. In contrast, excessive mitochondrial fusion leads to adenosine triphosphate (ATP) overproduction and abnormal tumor proliferation, whereas moderate fusion protects intestinal epithelial cells from oxidative stress-induced mitochondrial damage, thus preventing colitis-associated cancer (CAC). Therefore, an imbalance in mitochondrial dynamics can either promote or inhibit CRC progression. This review provides an overview of the mechanism underlying mitochondrial fusion-fission dynamics and their impact on CRC biology. This revealed the dual role of mitochondrial fusion-fission dynamics in CRC development and identified potential drug targets. Additionally, this study partially explored mitochondrial dynamics in immune and vascular endothelial cells in the tumor microenvironment, suggesting promising prospects for targeting key fusion/fission effector proteins against CRC.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Wang C, Wang YJ, Ying L, Wong RJ, Quaintance CC, Hong X, Neff N, Wang X, Biggio JR, Mesiano S, Quake SR, Alvira CM, Cornfield DN, Stevenson DK, Shaw GM, Li J. Integrative analysis of noncoding mutations identifies the druggable genome in preterm birth. SCIENCE ADVANCES 2024; 10:eadk1057. [PMID: 38241369 PMCID: PMC10798565 DOI: 10.1126/sciadv.adk1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Preterm birth affects ~10% of pregnancies in the US. Despite familial associations, identifying at-risk genetic loci has been challenging. We built deep learning and graphical models to score mutational effects at base resolution via integrating the pregnant myometrial epigenome and large-scale patient genomes with spontaneous preterm birth (sPTB) from European and African American cohorts. We uncovered previously unidentified sPTB genes that are involved in myometrial muscle relaxation and inflammatory responses and that are regulated by the progesterone receptor near labor onset. We studied genomic variants in these genes in our recruited pregnant women administered progestin prophylaxis. We observed that mutation burden in these genes was predictive of responses to progestin treatment for preterm birth. To advance therapeutic development, we screened ~4000 compounds, identified candidate molecules that affect our identified genes, and experimentally validated their therapeutic effects on regulating labor. Together, our integrative approach revealed the druggable genome in preterm birth and provided a generalizable framework for studying complex diseases.
Collapse
Affiliation(s)
- Cheng Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yuejun Jessie Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lihua Ying
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J. Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cecele C. Quaintance
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph R. Biggio
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Obstetrics and Gynecology, Ochsner Health, New Orleans, LA, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina M. Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David N. Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Liu X, Jiang Y, Zhou H, Zhao X, Li M, Bao Z, Wang Z, Zhang C, Xie Z, Zhao J, Dong Z, Liu K, Guo Z. Dasabuvir suppresses esophageal squamous cell carcinoma growth in vitro and in vivo through targeting ROCK1. Cell Death Dis 2023; 14:118. [PMID: 36781836 PMCID: PMC9924867 DOI: 10.1038/s41419-023-05633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an upper gastrointestinal cancer with high morbidity and mortality. New strategies are urgently needed to prolong patients' survival. Through screening FDA-approved drugs, we found dasabuvir, a drug approved for hepatitis C virus (HCV) treatment, suppressed ESCC proliferation. Dasabuvir could inhibit the growth of ESCC cells in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was further validated in vivo using patient-derived xenograft tumor models. In terms of mechanism, we unveil that dasabuvir is a Rho-associated protein kinase 1 (ROCK1) inhibitor. Dasabuvir can bind to ROCK1 and suppress its kinase activity, thus downregulating the phosphorylation of ERK1/2 by ROCK1 and the expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1. These results provide evidence that dasabuvir suppresses ESCC growth in vivo and in vitro through blocking ROCK1/ERK signaling pathway.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Hao Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Xiaokun Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Mingzhu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Zhuo Bao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Zitong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenliang Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China.
| | - Zhiping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
- Fuwai Central China Cardiovascular Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Wang W, Li C, Zhuang C, Zhang H, Wang Q, Fan X, Qi M, Sun R, Yu J. Research on the Mechanism and Prevention of Hypertension Caused by Apatinib Through the RhoA/ROCK Signaling Pathway in a Mouse Model of Gastric Cancer. Front Cardiovasc Med 2022; 9:873829. [PMID: 35811723 PMCID: PMC9262125 DOI: 10.3389/fcvm.2022.873829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension is one of the main adverse effects of antiangiogenic tumor drugs and thus limits their application. The mechanism of hypertension caused by tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors is mainly related to inhibition of the nitric oxide (NO) pathway and activation of the endothelin pathway, as well as vascular rarefaction and increased salt sensitivity; consequently, prevention and treatment differ for this type of hypertension compared with primary hypertension. Apatinib is a highly selective TKI approved in China for the treatment of advanced or metastatic gastric cancer. The RhoA/ROCK pathway is involved in the pathogenesis of hypertension and mediates smooth muscle contraction, eNOS inhibition, endothelial dysfunction and vascular remodeling. In this study, in vivo experiments were performed to explore whether the RhoA/ROCK signaling pathway is part of a possible mechanism of apatinib in the treatment of gastric cancer-induced hypertension and the impairment of vascular remodeling and left ventricular function. Y27632, a selective small inhibitor of both ROCK1 and ROCK2, was combined with apatinib, and its efficacy was evaluated, wherein it can reduce hypertension induced by apatinib treatment in gastric cancer mice and weaken the activation of the RhoA/ROCK pathway by apatinib and a high-salt diet (HSD). Furthermore, Y-27632 improved aortic remodeling, fibrosis, endothelial dysfunction, superior mesenteric artery endothelial injury, left ventricular dysfunction and cardiac fibrosis in mice by weakening the activation of the RhoA/ROCK pathway. The expression of RhoA/ROCK pathway-related proteins and relative mRNA levels in mice after apatinib intervention were analyzed by various methods, and blood pressure and cardiac function indexes were compared. Endothelial and cardiac function and collagen levels in the aorta were also measured to assess vascular and cardiac fibrosis and to provide a basis for the prevention and treatment of this type of hypertension.
Collapse
|
7
|
Azevedo-Silva J, Tavares-Valente D, Almeida A, Queirós O, Baltazar F, Ko YH, Pedersen PL, Preto A, Casal M. Cytoskeleton disruption by the metabolic inhibitor 3-bromopyruvate: implications in cancer therapy. Med Oncol 2022; 39:121. [PMID: 35716210 DOI: 10.1007/s12032-022-01712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
The small molecule 3-bromopyruvate (3BP), is an anticancer molecule that acts by hindering glycolysis and mitochondrial function leading to energy depletion and consequently, to cell death. In this work we have focused on understanding how the glycolytic inhibition affects cancer cell structural features. We showed that 3BP leads to a drastic decrease in the levels of β-actin and α-tubulin followed by disorganization and shrinkage of the cytoskeleton in breast cancer cells. 3BP inhibits cell migration and colony formation independently of the activity of metalloproteinases. To disclose if these structural alterations occurred prior to 3BP toxic effect, non-toxic concentrations of 3BP were used and we could observe that 3BP was able to inhibit energy production and induce loss of β-actin and α-tubulin proteins. This was accompanied with alterations in cytoskeleton organization and an increase in E-cadherin levels which may indicate a decrease in cancer cells aggressiveness. In this study we demonstrate that 3BP glycolytic inhibition of breast cancer cells is accompanied by cytoskeleton disruption and consequently loss of migration ability, suggesting that 3BP can potentially be explored for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- J Azevedo-Silva
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - D Tavares-Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, CRL, University Institute of Health Sciences (IUCS), Gandra, Portugal
| | - A Almeida
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal
| | - O Queirós
- Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, CRL, University Institute of Health Sciences (IUCS), Gandra, Portugal
| | - F Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Y H Ko
- KoDiscovery, LLC, University of Maryland BioPark, Suites 502 E & F, 801 West Baltimore St., Baltimore, MD, 21201, USA
| | - P L Pedersen
- Departments of Biological Chemistry and Oncology, Member at Large, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, 21205-2185, USA
| | - A Preto
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Casal
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
8
|
Li R, He C, Shen L, Wang S, Shen Y, Feng F, Zhang J, Zheng J. NDRG4 sensitizes CRC cells to 5-FU by upregulating DDIT3 expression. Oncol Lett 2021; 22:782. [PMID: 34594423 PMCID: PMC8456512 DOI: 10.3892/ol.2021.13043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/13/2021] [Indexed: 11/05/2022] Open
Abstract
The incidence of colorectal cancer (CRC) has remained high in recent years, and 5-fluorouracil (5-FU) is a vital chemotherapeutic agent for its treatment. Our previous study reported that N-myc downstream-regulated gene 4 (NDRG4) plays a tumor-suppressive role in CRC, but the mechanisms associated with NDRG4 and 5-FU chemosensitivity remain unclear. The results of the present study demonstrate that NDRG4 sensitized CRC cells to 5-FU by upregulating DNA damage inducible transcript 3 (DDIT3). NDRG4 inhibited the proliferation of CRC cells and the activation of PI3K/AKT and ERK signaling. Furthermore, NDRG4 promoted CRC cell apoptosis induced by 5-FU. Mechanistic analyses revealed that NDRG4 upregulated DDIT3 expression, and that the proapoptotic effect of NDRG4 under 5-FU treatment conditions was dependent on DDIT3. These findings support the biological value of the association between NDRG4, DDIT3 and 5-FU chemosensitivity in CRC, and may advance the clinical treatment of CRC in the future.
Collapse
Affiliation(s)
- Ruikai Li
- Department of Gastrointestinal Surgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chenxiang He
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai 200080, P.R. China
| | - Liangliang Shen
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Wang
- Department of Gastrointestinal Surgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yao Shen
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fan Feng
- Department of Gastrointestinal Surgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
9
|
Mitochondrion-Directed Nanoparticles Loaded with a Natural Compound and a microRNA for Promoting Cancer Cell Death via the Modulation of Tumor Metabolism and Mitochondrial Dynamics. Pharmaceutics 2020; 12:pharmaceutics12080756. [PMID: 32796618 PMCID: PMC7464316 DOI: 10.3390/pharmaceutics12080756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction may cause cancer and metabolic syndrome. Ellagic acid (abbreviated as E), a phytochemical, possesses anticancer activity. MicroRNA 125 (miR-125) may regulate metabolism. However, E has low aqueous solubility, and miR-125 is unstable in a biological fluid. Hence, this study aimed to develop nanoparticle formulations for the co-treatment of miR-125 and E. These nanoparticles were modified with one mitochondrion-directed peptide and a tumor-targeted ligand, and their modulating effects on mitochondrial dysfunction, antitumor efficacy, and safety in head and neck cancer (HNC) were evaluated. Results revealed that miR-125- and E-loaded nanoparticles effectively targeted cancer cells and intracellular mitochondria. The co-treatment significantly altered cellular bioenergetics, lipid, and glucose metabolism in human tongue squamous carcinoma SAS cells. This combination therapy also regulated protein expression associated with bioenergenesis and mitochondrial dynamics. These formulations also modulated multiple pathways of tumor metabolism, apoptosis, resistance, and metastasis in SAS cells. In vivo mouse experiments showed that the combined treatment of miR-125 and E nanoparticles exhibited significant hypoglycemic and hypolipidemic effects. The combinatorial therapy of E and miR-125 nanoparticles effectively reduced SAS tumor growth. To our best knowledge, this prospective study provided a basis for combining miRNA with a natural compound in nanoformulations to regulate mitochondrial dysfunction and energy metabolism associated with cancer.
Collapse
|
10
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|