1
|
Zheng X, Huang J, Meng J, Wang H, Chen L, Yao J. Identification and Experimental Verification of PDK4 as a Potential Biomarker for Diagnosis and Treatment in Rheumatoid Arthritis. Mol Biotechnol 2024:10.1007/s12033-024-01297-1. [PMID: 39466354 DOI: 10.1007/s12033-024-01297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by sustained joint inflammation, with an etiology that remains elusive. Achieving an early and precise diagnosis poses significant challenges. This study aims to elucidate the molecular pathways involved in RA pathogenesis by screening genes associated with its occurrence, analyzing the related molecular activities, and ultimately developing more effective molecular-level treatments for RA. METHODS Microarray expression profiling datasets GSE1919, GSE10500, GSE15573, GSE77298, GSE206848, and GSE236924 were sourced from the Gene Expression Omnibus (GEO) database. Samples were divided into experimental (RA) and control (normal) groups. Differentially expressed genes (DEGs) were identified using R software packages such as limma, glmnet, e1071 as well as randomForest. Cross-validation of DEGs was conducted using lasso regression and the random forest (RF) algorithm in R software to pinpoint intersecting genes that met the criteria. Among these, one gene was selected as the target for correlation analysis to identify DEGs related to the target gene. Enrichment analysis utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases and Gene Ontology (GO) data. Gene Set Enrichment Analysis (GSEA) was performed to compare the expression levels of the target gene (PDK4) across various biological pathways and functions in groups with high and low expression. The relationship between target gene expression levels and cellular immune function was assessed using the immune function score technique. The discrepancy in immune cell distribution between the control and experimental groups, as well as their correlation with target gene expression levels, was elucidated using CIBERSORT. The relationships between mRNA, lncRNA, and miRNA were depicted in the ceRNA regulation network. The expression levels of the target gene were validated using Western blot and qRT-PCR. RESULTS In this study, six intersecting genes meeting the criteria were identified through cross-validation, and PDK4 was chosen as the target gene for further investigation. Functional analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that PDK4-associated DEGs are primarily enriched in the PPAR signaling pathway, thereby regulating synovial cell proliferation and migration, ultimately influencing the onset and progression of rheumatoid arthritis (RA). Immune infiltration analysis suggested that eosinophil quantity may influence the progression of RA. Experimental results from PCR and Western blot confirmed the downregulation of PDK4 in the RA group. CONCLUSION The significant downregulation of PDK4 expression in patients diagnosed with rheumatoid arthritis (RA) was confirmed. PDK4 may function as a novel regulatory factor in the onset and progression of RA, with potential applications as a diagnostic biomarker for the condition.
Collapse
Affiliation(s)
- Xifan Zheng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junpu Huang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingyun Chen
- Spine Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Yao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Jawad MJ, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. Small molecule and big function: MicroRNA-mediated apoptosis in rheumatoid arthritis. Pathol Res Pract 2024; 261:155508. [PMID: 39116571 DOI: 10.1016/j.prp.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
3
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Pascual-García S, Martínez-Peinado P, Pujalte-Satorre C, Navarro-Sempere A, Esteve-Girbés J, López-Jaén AB, Javaloyes-Antón J, Cobo-Velacoracho R, Navarro-Blasco FJ, Sempere-Ortells JM. Exosomal Osteoclast-Derived miRNA in Rheumatoid Arthritis: From Their Pathogenesis in Bone Erosion to New Therapeutic Approaches. Int J Mol Sci 2024; 25:1506. [PMID: 38338785 PMCID: PMC10855630 DOI: 10.3390/ijms25031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | | | - Alicia Navarro-Sempere
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Jorge Esteve-Girbés
- Department of Legal Studies of the State, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Juan Javaloyes-Antón
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Raúl Cobo-Velacoracho
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | | |
Collapse
|
5
|
Kang J, Li Y, Qin Y, Huang Z, Wu Y, Sun L, Wang C, Wang W, Feng G, Qi Y. In Situ Deposition of Drug and Gene Nanoparticles on a Patterned Supramolecular Hydrogel to Construct a Directionally Osteochondral Plug. NANO-MICRO LETTERS 2023; 16:18. [PMID: 37975889 PMCID: PMC10656386 DOI: 10.1007/s40820-023-01228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone. Constructing multifactorial, spatially oriented scaffolds to stimulate osteochondral regeneration, has immense significance. Herein, targeted drugs, namely kartogenin@polydopamine (KGN@PDA) nanoparticles for cartilage repair and miRNA@calcium phosphate (miRNA@CaP) NPs for bone regeneration, were in situ deposited on a patterned supramolecular-assembled 2-ureido-4 [lH]-pyrimidinone (UPy) modified gelation hydrogel film, facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands. This hydrogel film can be rolled into a cylindrical plug, mimicking the Haversian canal structure of natural bone. The resultant hydrogel demonstrates stable mechanical properties, a self-healing ability, a high capability for reactive oxygen species capture, and controlled release of KGN and miR-26a. In vitro, KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways, respectively. In vivo, the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration, evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones, along with the successful integration of neocartilage with subchondral bone. This biomaterial delivery approach represents a significant toward improved osteochondral repair.
Collapse
Affiliation(s)
- Jiawei Kang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Yaping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China
| | - Yating Qin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China
| | - Zhongming Huang
- The Affiliated Nanhua Hospital, Orthopedic Research Centre, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yifan Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Long Sun
- Department of Radiology, Jining No. 1 People's Hospital, Jining Medical University, Jining, 272000, Shandong, People's Republic of China
| | - Cong Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China.
| | - Gang Feng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China.
| | - Yiying Qi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China.
| |
Collapse
|
6
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
7
|
Xing X, Xia Q, Gong B, Shen Z, Zhang Y. Identification of Tissue-Specific Expressed Hub Genes and Potential Drugs in Rheumatoid Arthritis Using Bioinformatics Analysis. Front Genet 2022; 13:855557. [PMID: 35368701 PMCID: PMC8971206 DOI: 10.3389/fgene.2022.855557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a common autoimmune disease characterized by progressive, destructive polyarthritis. However, the cause and underlying molecular events of RA are not clear. Here, we applied integrated bioinformatics to identify tissue-specific expressed hub genes involved in RA and reveal potential targeted drugs. Methods: Three expression profiles of human microarray datasets involving fibroblast-like synoviocytes (FLS) were downloaded from the Gene Expression Omnibus (GEO) database, the differentially expressed mRNAs (DEGs), miRNAs (DEMs), and lncRNAs (DELs) between normal and RA synovial samples were screened using GEO2R tool. BioGPS was used to identified tissue-specific expressed genes. Functional and pathway enrichment analyses were performed for common DEGs using the DAVID database, and the protein-protein interaction (PPI) network of common DEGs was constructed to recognize hub genes by the STRING database. Based on receiver operating characteristic (ROC) curve, we further investigated the prognostic values of tissue-specific expressed hub genes in RA patients. Connectivity Map (CMap) was run to identify novel anti-RA potential drugs. The DEM–DEG pairs and ceRNA network containing key DEMs were established by Cytoscape. Results: We obtain a total of 418 DEGs, 23 DEMs and 49 DELs. 64 DEGs were verified as tissue-specific expressed genes, most derive from the hematologic/immune system (20/64, 31.25%). GO term and KEGG pathway enrichment analysis showed that DEGs focused primarily on immune-related biological process and NF-κB pathway. 10 hub genes were generated via using MCODE plugin. Among them, SPAG5, CUX2, and THEMIS2 were identified as tissue-specific expressed hub genes, these 3 tissue-specific expressed hub genes have superior diagnostic value in the RA samples compared with osteoarthritis (OA) samples. 5 compounds (troleandomycin, levodopa, trichostatin A, LY-294002, and levamisole) rank among the top five in connectivity score. In addition, 5 miRNAs were identified to be key DEMs, the lncRNA–miRNA–mRNA network with five key DEMs was formed. The networks containing tissue-specific expressed hub genes are as follows: ARAP1-AS2/miR-20b-3p/TRIM3, ARAP1-AS2/miR-30c-3p/FRZB. Conclusion: This study indicates that screening for identify tissue-specific expressed hub genes and ceRNA network in RA using integrated bioinformatics analyses could help us understand the mechanism of development of RA. Besides, SPAG5 and THEMIS2 might be candidate biomarkers for diagnosis of RA. LY-294002, trichostatin A, and troleandomycin may be potential drugs for RA.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Qun Xia
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
| | - Baoqi Gong
- Department of Rheumatology, Tianjin First Central Hospital, Tianjin, China
| | - Zhongyang Shen
- Department of Transplant Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopaedic Surgery of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Chinese Academy of Engineering, Beijing, China
- *Correspondence: Yingze Zhang,
| |
Collapse
|
8
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Lu L, Wang J, Fan A, Wang P, Chen R, Lu L, Yin F. Synovial mesenchymal stem cell-derived extracellular vesicles containing microRN555A-26a-5p ameliorate cartilage damage of osteoarthritis. J Gene Med 2021; 23:e3379. [PMID: 34296780 DOI: 10.1002/jgm.3379] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative disease characterized by cartilage damage. We aimed to improve the understanding of the protective mechanism of synovial mesenchymal stem cell (SMSC)-derived extracellular vesicles (EVs) in cartilage damage of OA. METHODS SMSCs and SMSC-EVs were isolated from synovial biopsies of patients without OA and then identified. The pathological microenvironment of chondrocytes in OA was simulated by inducing SW1353 cells with interleukin (IL)-1β, followed by SMSC-EV treatment to assess SW1353 cell proliferation, apoptosis and inflammation. Endocytosis of Dil-labeled EVs by SW1353 cells was observed. microRNA (miR)-26a-5p expression in EVs and EV-treated SW1353 cells was assessed. The effect of miR-26a-5p was evaluated after it was down-regulated in SMSCs, followed by extraction of EVs, which acted on SW1353 cells. The target relationship of miR-26a-5p and phosphatase and tensin homologue (PTEN) was predicted and confirmed. The role of PTEN in OA was evaluated after it was overexpressed. Functional assays were implemented in vivo to certify the role of SMSC-EVs in OA. RESULTS SMSC-EVs enhanced IL-1β-induced SW1353 cell proliferation, whereas they inhibited apoptosis and inflammation. EVs were endocytosed by SW1353 cells and delivered miR-26a-5p into SW1353 cells to overexpress miR-26a-5p. Down-regulation of miR-26a-5p in EVs attenuated the protection of EVs against IL-1β-induced cell damage. miR-26a-5p targeted PTEN, for which overexpression spoiled the protection of EVs against IL-1β-induced cell damage. SMSC-EVs carrying miR-26a-5p repaired cartilage damage of OA. CONCLUSIONS SMSC-EVs carried miR-26a-5p into chondrocytes to up-regulate miR-26a-5p and inhibit PTEN, thereby inhibiting apoptosis and inflammation and ameliorating cartilage damage of OA.
Collapse
Affiliation(s)
- Laiya Lu
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jingyi Wang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Aoyuan Fan
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Pei Wang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Runzhi Chen
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Laibing Lu
- Department of Physical Education, Henan Institute of Technology, Xinxiang, Henan, China
| | - Feng Yin
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
11
|
Zhao B, Qian M, Zhang Y, Yin F. Retracted: Stem cells from human exfoliated deciduous teeth transmit microRNA-26a to protect rats with experimental intracerebral hemorrhage from cerebral injury via suppressing CTGF. Brain Res Bull 2021; 168:146-155. [PMID: 33333175 DOI: 10.1016/j.brainresbull.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE A large number of studies have shown that stem cells from human exfoliated deciduous teeth (SHED) has a protective effect on brain damage, but its specific mechanism is unclear. This research focused on the effect of microRNA (miR)-26a that transmitted by SHED in intracerebral hemorrhage (ICH). METHODS SHED were extracted from deciduous teeth of healthy children and miR-26a expression in SHED was altered through transfection, and then the SHED were conducted with neuron differentiated induction, expression of β3 tubulin, MAP-2 and glial fibrillary acidic protein (GFAP), number of dendritic spines and cell proliferation were detected. ICH rat models were established by stereotactic injection of collagenase VII into the left striatum and the modeled rats were injected with miR-26a mimic or inhibitor-transfected SHED suspension. Then, the brain water content, blood-brain barrier permeability, pathological changes, and injury and apoptosis in the nervous cells in brain were assessed. The expression of miR-26a and CTGF in SHED and rats' brain tissues was evaluated and the target relation between miR-26a and CTGF was detected. RESULTS In SHED after induction, upregulated miR-26a could increase number of dendritic spines, cell proliferation, and expression of β3 tubulin, MAP-2 and GFAP, and restrain CTGF expression. In rat models, SHED engineered to overexpress miR-26a could attenuate brain water content, Evans blue content, apoptosis, pathological injury and expression of CTGF and Bax, while promoted number of Nissl bodies and expression of Bcl-2 in the nervous cells in brain in ICH rats. Furthermore, miR-26a competitively bound to CTGF. CONCLUSION Our findings provided the evidence that SHED could transmit miR-26a to protect ICH rats from cerebral injury by repressing CTGF, which may contribute to ICH therapy.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Fei Yin
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
12
|
MicroRNA-338-5p alleviates cerebral ischemia/reperfusion injury by targeting connective tissue growth factor through the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuroreport 2021; 31:256-264. [PMID: 32032283 DOI: 10.1097/wnr.0000000000001404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury could lead to the function of brain cell disorder and cerebral infarction. MicroRNAs (miRNAs) have been reported to participate in the progression and protection of CIR injury. Thus, our study aimed to investigate the functional effects of microRNA-338-5p (miR-338-5p) on proliferation, apoptosis, and inflammatory response of CIR injury. According to the results, miR-338-5p was downregulated in the brain of the mice caused by CIR injury, and overexpression of miR-338-5p reduced the neurological deficit and infarct volume of the brain in the mice caused by CIR injury. Meanwhile, miR-338-5p overexpression promoted the proliferation, while suppressed the apoptosis and the inflammatory response of Neuro-2a cells exposed to hypoxia/reoxygenation (H/R). Interestingly, miR-338-5p directly targeted connective tissue growth factor (CTGF) and overexpression of CTGF reversed the functional effects of miR-338-5p on proliferation, apoptosis, and inflammatory response in Neuro-2a cells caused by H/R. More importantly, miR-338-5p affected the adenosine 5¢-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway by regulating CTGF expression in Neuro-2a cells exposed to H/R. Taken together, we concluded that MiR-338-5p promoted the proliferation, while suppressed the apoptosis and the inflammatory response of cells exposed to H/R by targeting CTGF through the AMPK/mTOR signaling pathway.
Collapse
|
13
|
Liu Y, Zong Y, Shan H, Lin Y, Xia W, Wang N, Zhou L, Gao Y, Ma X, Jiang C. MicroRNA-23b-3p participates in steroid-induced osteonecrosis of the femoral head by suppressing ZNF667 expression. Steroids 2020; 163:108709. [PMID: 32730776 DOI: 10.1016/j.steroids.2020.108709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Clinical treatment with high-dose of steroid hormone causes steroid-induced osteonecrosis of the femoral head (SONFH), whereas the internal regulation mechanism remains elusive. Numerous studies have reported that microRNAs participated in the development of SONFH through modulating gene expression. The aim of the current study was to clarify the function of microRNA-23b-3p (miR-23b-3p) and ZNF667 in SONFH. EXPERIMENTAL DESIGN Bioinformatics prediction and luciferase reporter system were utilized to confirm the target relation between miR-23b-3p and ZNF667. To examine the function of miR-23b-3p in vivo, rat SONFH models were established by specific inducers. The morphological changes, plasma viscosity, blood lipid, and inflammatory cytokines were measure by corresponding experiments. RESULTS MiR-23b-3p and ZNF667 was negatively correlated in SONFH patient tissues, miR-23b-3p was down-regulated, while ZNF667 was up-regulated. MiR-23b-3p targeted ZNF667, the expression level of ZNF667 was suppressed by miR-23b-3p activation whereas strengthened by miR-23b-3p inhibition. SONHF rats with overexpressed miR-23b-3p displayed alleviated symptoms, including reduced plasma viscosity, declined blood lipids, decreased levels of pro-inflammatory cytokines and improved bone integrality. Moreover, elevation of ZNF667 reversed the repression of SONFH induced by miR-23b-3p overexpression. CONCLUSIONS We found that miR-23b-3p played a protective role in SONFH by targeting ZNF667, which provided a novel reference for SONFH prevention and therapy.
Collapse
Affiliation(s)
- Yingjie Liu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Zong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Nan Wang
- Department of Emergency, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, Zhejiang, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xin Ma
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
14
|
Long non-coding RNA PVT1 can regulate the proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes by targeting microRNA-145-5p. Hum Cell 2020; 33:1081-1090. [PMID: 32918701 DOI: 10.1007/s13577-020-00419-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) function in rheumatoid arthritis (RA). The present work was designed to explore the roles of lncRNA PVT1 in RA and the related mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine mRNA level. The binding sites between PVT1 and miR-145-5p were verified by a dual-luciferase reporter assay. Furthermore, RA-FLSs were treated with TNF-α to establish the RA model. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Flow cytometry and TUNEL assays were performed to detect cell apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of inflammatory cytokines. PVT1 was significantly increased and miR-145-5p was decreased in synovial tissues of RA patients. miR-145-5p is a target miRNA of PVT1, and the levels of PVT1 and miR-145-5p in synovial tissues of RA patients were negatively correlated. In RA-FLSs, tumour necrosis factor-α (TNF-α) led to increased PVT1 levels and decreased miR-145-5p levels. Knockdown of PVT1 inhibited TNF-α-induced RA-FLS over-proliferation and reversed TNF-α-induced RA-FLS apoptosis reduction. Moreover, knockdown of PVT1 inhibited TNF-α-induced production of interleukin (IL)-1β and IL-6 and the activation of NF-κB through miR-145-5p. PVT1 can regulate apoptosis and inflammatory responses in RA-FLSs by targeting miR-145-5p.
Collapse
|
15
|
Kong R, Gao J, Ji L, Zhao D. MicroRNA-126 promotes proliferation, migration, invasion and endothelial differentiation while inhibits apoptosis and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell Cycle 2020; 19:2119-2138. [PMID: 32787491 DOI: 10.1080/15384101.2020.1788258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used for the treatment of inflammatory and immune diseases, and microRNA-126 (miR-126) is a critical regulator in inflammation as well as immunity. However, the mediating role of miR-126 in BMSCs is still not clear. Thus, this study aimed to preliminarily investigate the effect of miR-126 on proliferation, apoptosis, migration, invasion, differentiation, and its potential regulating pathways in BMSCs. Human BMSCs were obtained and infected with miR-126 overexpression lentivirus, control overexpression lentivirus, miR-126 knock-down lentivirus and control knock-down lentivirus, then cell functions, the PI3 K/AKT pathway and MEK1/ERK1 pathway were evaluated. Subsequently, PI3 K overexpression plasmid and MEK1 overexpression plasmid were transfected into BMSCs with miR-126 knockdown, then the cell functions were assessed as well. BMSCs with miR-126 overexpression displayed elevated proliferation, migration and invasion while decreased apoptosis; however, BMSCs with miR-126 knockdown presented with decreased proliferation, migration, invasion but increased apoptosis. As for differentiation, BMSCs with miR-126 overexpression showed higher levels of CD31, eNOS and VE-cadherin but lower expressions of ALP, OPN and RUNX2, while BMSCs with miR-126 knockdown disclosed the opposite results. Additionally, BMSCs with miR-126 overexpression showed elevated PI3 K, pAKT, MEK1 and pERK1 expressions, while BMSCs with miR-126 knockdown displayed opposite results. Furthermore, PI3 K overexpression and MEK1 overexpression both reversed the effects of miR-126 on cell functions in BMSCs. In conclusion, miR-126 is a genetic regulator in BMSCs via modulating multiple cell functions through the PI3 K/AKT and MEK1/ERK1 signaling pathways.
Collapse
Affiliation(s)
- Ruina Kong
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Lianmei Ji
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| |
Collapse
|
16
|
Guo H, Huang B, Wang Y, Zhang Y, Ma Q, Ren Y. Bone marrow mesenchymal stem cells-derived exosomes improve injury of hippocampal neurons in rats with depression by upregulating microRNA-26a expression. Int Immunopharmacol 2020; 82:106285. [PMID: 32088640 DOI: 10.1016/j.intimp.2020.106285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/16/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes have been widely applied in disease therapies. However, the role of BMSCs-derived exosomes in depression remains obscure. This study aims to explore the mechanism of BMSCs-derived exosomal microRNA-26a (miR-26a) on hippocampal neuronal injury of depressed rats. METHODS BMSCs and their exosomes were obtained and identified. Rat models of depression were established by corticosterone injection, then injected with BMSCs-derived exosomes. The contents of superoxide dismutase (SOD), imalondialdehyde (MDA), lactate dehydrogenase (LDH), tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β) in rats' serum, hippocampal tissues and neurons were determined. The expression of miR-26a in hippocampal tissues and neurons was detected by RT-qPCR. The injury models of rat hippocampal neurons were established to figure out the role of BMSCs-derived exosomes and miR-26a in neuron apoptosis and proliferation. RESULTS In hippocampal tissues of depressed rats, miR-26a was lowly expressed, and BMSCs-derived exosomes upregulated miR-26a expression. BMSCs-derived exosomes restrained apoptosis in hippocampal tissues of depressed rats. BMSCs-derived exosomes and upregulated miR-26a elevated SOD level, lessened MDA, LDH, TNF-α and IL-1β levels, boosted hippocampal neuron proliferation and suppressed apoptosis in depressed rats. CONCLUSION Collectively, our study reveals that miR-26a is lowly expressed in depressed rats, and BMSCs-derived exosomes improve hippocampal neuron injury of rat with depression by upregulating miR-26a.
Collapse
Affiliation(s)
- Huirong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Bailing Huang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yali Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanyan Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quangang Ma
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuming Ren
- School of Basic Medicine, Xinxiang Medical University, 450052 Xinxiang, Henan, China.
| |
Collapse
|
17
|
Liu D, Fang Y, Rao Y, Tan W, Zhou W, Wu X, Zhang C, Zhang Y, Liu Y, Sunagawa M, Hisamitsu T, Li G. Synovial fibroblast-derived exosomal microRNA-106b suppresses chondrocyte proliferation and migration in rheumatoid arthritis via down-regulation of PDK4. J Mol Med (Berl) 2020; 98:409-423. [PMID: 32152704 DOI: 10.1007/s00109-020-01882-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Fibroblast-derived exosomes have been reported to transfer microRNAs to recipient cells, where they regulate target gene expression, which is of interest for understanding the basic biology of inflammation, tissue homeostasis, and development of therapeutic approaches. Initial microarray-based analysis carried out in this study identified the rheumatoid arthritis (RA)-related differentially expressed gene pyruvate dehydrogenase kinase 4 (PDK4). Subsequently, the upstream regulatory microRNA-106b (miR-106b) of PDK4 was predicted with bioinformatic analyses. A collagen-induced arthritis (CIA)-induced mouse model was established, and exosomes were isolated from synovial fibroblasts (SFs) and transferred into chondrocytes to identify the role of exosomes in rheumatoid arthritis (RA). We found that PDK4 was poorly expressed in RA cartilage tissues and chondrocytes, while miR-106b was highly expressed in RA SFs and SF-derived exosomes. Notably, PDK4 was confirmed as a target gene of miR-106b. Over-expression of PDK4 promoted the proliferation and migration abilities of chondrocytes and inhibited their apoptosis as well as affected the receptor activator of nuclear factor kappa B ligand (RANKL)/RANK/osteoprotegerin (OPG) system. Meanwhile, miR-106b was delivered from SFs to chondrocytes through exosomes, which suppressed chondrocyte proliferation and migration and accelerated apoptosis as well as affected the RANKL/RANK/OPG system via down-regulation of PDK4. Furthermore, in vivo results validated that miR-106b inhibition could relieve CIA-induced RA. Taken together, SF-derived exosomal miR-106b stimulates RA initiation by targeting PDK4, indicating a physiologically validated potential approach for the prevention and treatment of RA. KEY MESSAGES: PDK4 is decreased in chondrocytes of RA, while miR-106b is increased in SFBs. PDK4 promotes proliferation and migration of chondrocytes. miR-106b could target 3'UTR of PDK4 gene. SFB-exosomal miR-106b inhibits proliferation and migration of chondrocytes. Inhibition of miR-106b attenuates RA progression in a CIA mouse model.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pathology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yuxuan Fang
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Yujun Rao
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Wei Tan
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Wei Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Xia Wu
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
- Clinical Medical College, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chunwang Zhang
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
- Clinical Medical College, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yu Zhang
- Medical College of Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yanqing Liu
- Medical College of Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142-8555, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142-8555, Japan
| | - Guoqing Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
18
|
Li G, Liu H, Zhang X, Liu X, Zhang G, Liu Q. The protective effects of microRNA-26a in steroid-induced osteonecrosis of the femoral head by repressing EZH2. Cell Cycle 2020; 19:551-566. [PMID: 32054404 DOI: 10.1080/15384101.2020.1717043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, the role of microRNAs (miRs) in human diseases has been verified. This study was determined to explore the protective effects of microRNA-26a (miR-26a) in steroid-induced osteonecrosis of the femoral head (SONFH) with the involvement of enhancer of zeste homologue 2 (EZH2).Femoral head (FH) samples from SONFH patients and patients with femoral neck fracture were collected, and rat SONFH models were established by Escherichia coli endotoxin combining with large dose steroid pulse assay. The hemorheology, blood lipid, inflammatory factors, and pathologic changes were measured by a series of experiments. Moreover, the detection of osteoblasts, osteoclasts, miR-26a expression, EZH2 expression, osteoprotegerin (OPG) and osteoprotegerin ligand (OPGL), and the apoptosis of osteocytes were conducted. The target relation between miR-26a and EZH2 was clarified by bioinformatics and dual-luciferase reporter gene assay.MiR-26a was poorly expressed, while EZH2 was highly expressed in SONFH, and the elevation of miR-26a could repress EZH2 expression. Elevated miR-26a and reduced EZH2 were able to decelerate the apoptosis of osteocytes, increase osteoblasts, and decrease osteoclasts, resulting in a repression of SONFH progression. Additionally, EZH2 was a target gene of miR-26a. Furthermore, the elevation of EZH2 could reverse the repression of SONFH progression that is induced by elevated miR-26a.We found that up-regulation of miR-26a and knockdown of EZH2 could suppress the development of SONFH, which would contribute to the therapy of SONFH.
Collapse
Affiliation(s)
- Gang Li
- Department of Orthopedics, Hebei Yanda Hospital, Hebei Medical University, Sanhe, China
| | - Haifeng Liu
- Department of Orthopedics, Hebei Yanda Hospital, Hebei Medical University, Sanhe, China
| | - Xiaogang Zhang
- Department of Orthopedics, Hebei Yanda Hospital, Hebei Medical University, Sanhe, China
| | - Xingchao Liu
- Department of Orthopedics, Hebei Yanda Hospital, Hebei Medical University, Sanhe, China
| | - Guodong Zhang
- Department of Orthopedics, Hebei Yanda Hospital, Hebei Medical University, Sanhe, China
| | - Qinghe Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Tseng CC, Chen YJ, Chang WA, Tsai WC, Ou TT, Wu CC, Sung WY, Yen JH, Kuo PL. Dual Role of Chondrocytes in Rheumatoid Arthritis: The Chicken and the Egg. Int J Mol Sci 2020; 21:E1071. [PMID: 32041125 PMCID: PMC7038065 DOI: 10.3390/ijms21031071] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases that display features of articular cartilage destruction. The underlying disturbance results from immune dysregulation that directly and indirectly influence chondrocyte physiology. In the last years, significant evidence inferred from studies in vitro and in the animal model offered a more holistic vision of chondrocytes in RA. Chondrocytes, despite being one of injured cells in RA, also undergo molecular alterations to actively participate in inflammation and matrix destruction in the human rheumatoid joint. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the chondrocyte signatures of RA and its potential applications for diagnosis and prognosis in RA.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|