1
|
Zhao L, Liu S, Peng Y, Zhang J. Lamc1 promotes osteogenic differentiation and inhibits adipogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep 2024; 14:19592. [PMID: 39179716 PMCID: PMC11344058 DOI: 10.1038/s41598-024-69629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exhibit multi-lineage differentiation potential and robust proliferative capacity. The late stage of differentiation signifies the functional maturation and characterization of specific cell lineages, which is crucial for studying lineage-specific differentiation mechanisms. However, the molecular processes governing late-stage BMSC differentiation remain poorly understood. This study aimed to elucidate the key biological processes involved in late-stage BMSC differentiation. Publicly available transcriptomic data from human BMSCs were analyzed after approximately 14 days of osteogenic, adipogenic, and chondrogenic differentiation. Thirty-one differentially expressed genes (DEGs) associated with differentiation were identified. Pathway enrichment analysis indicated that the DEGs were involved in extracellular matrix (ECM)-receptor interactions, focal adhesion, and glycolipid biosynthesis, a ganglion series process. Subsequently, the target genes were validated using publicly available single-cell RNA-seq data from mouse BMSCs. Lamc1 exhibited predominant distribution in adipocytes and osteoblasts, primarily during the G2/M phase. Tln2 and Hexb were expressed in chondroblasts, osteoblasts, and adipocytes, while St3gal5 was abundantly distributed in stem cells. Cell communication analysis identified two receptors that interact with LAMCI. q-PCR results confirmed the upregulation of Lamc1, Tln2, Hexb, and St3gal5 during osteogenic differentiation and their downregulation during adipogenic differentiation. Knockdown of Lamc1 inhibited adipogenic and osteogenic differentiation. In conclusion, this study identified four genes, Lamc1, Tln2, Hexb, and St3gal5, that may play important roles in the late-stage differentiation of BMSCs. It elucidated their interactions and the pathways they influence, providing a foundation for further research on BMSC differentiation.
Collapse
Affiliation(s)
- Lixia Zhao
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Shuai Liu
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Yanqiu Peng
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Jian Zhang
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China.
| |
Collapse
|
2
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. ECM proteins and cationic polymers coating promote dedifferentiation of patient-derived mature adipocytes to stem cells. Biomater Sci 2023; 11:7623-7638. [PMID: 37830400 DOI: 10.1039/d3bm00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Reprogramming of mature adipocytes is an attractive research area due to the plasticity of these cells. Mature adipocytes can be reprogrammed in vitro, transforming them into dedifferentiated fat cells (DFATs), which are considered a new type of stem cell, and thereby have a high potential for use in tissue engineering and regenerative medicine. However, there are still no reports or findings on in vitro controlling the dedifferentiation. Although ceiling culture performed in related studies is a relatively simple method, its yield is low and does not allow manipulation of mature adipocytes to increase or decrease the dedifferentiation. In this study, to understand the role of physicochemical surface effects on the dedifferentiation of patient-derived mature adipocytes, the surfaces of cell culture flasks were coated with extracellular matrix, basement membrane proteins, and cationic/anionic polymers. Extracellular matrix such as fibronectin and collagen type I, and basement membrane proteins such as collagen type IV and laminin strongly promoted dedifferentiation of mature adipocytes, with laminin showing the highest effect with a DFAT ratio of 2.98 (±0.84). Interestingly, cationic polymers also showed a high dedifferentiation effect, but anionic polymers did not, and poly(diallyl dimethylammonium chloride) showed the highest DFAT ratio of 2.27 (±2.8) among the cationic polymers. Protein assay results revealed that serum proteins were strongly adsorbed on the surfaces of the cationic polymer coating, including inducing high mature adipocyte adhesion. This study demonstrates for the first time the possibility of regulating the transformation of mature adipocytes to DFAT stem cells by controlling the physicochemical properties of the surface of conventional cell culture flasks.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
3
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
4
|
Obesity-Associated ECM Remodeling in Cancer Progression. Cancers (Basel) 2022; 14:cancers14225684. [PMID: 36428776 PMCID: PMC9688387 DOI: 10.3390/cancers14225684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose tissue, an energy storage and endocrine organ, is emerging as an essential player for ECM remodeling. Fibrosis is one of the hallmarks of obese adipose tissue, featuring excessive ECM deposition and enhanced collagen alignment. A variety of ECM components and ECM-related enzymes are produced by adipocytes and myofibroblasts in obese adipose tissue. Data from lineage-tracing models and a single-cell analysis indicate that adipocytes can transform or de-differentiate into myofibroblast/fibroblast-like cells. This de-differentiation process has been observed under normal tissue development and pathological conditions such as cutaneous fibrosis, wound healing, and cancer development. Accumulated evidence has demonstrated that adipocyte de-differentiation and myofibroblasts/fibroblasts play crucial roles in obesity-associated ECM remodeling and cancer progression. In this review, we summarize the recent progress in obesity-related ECM remodeling, the mechanism underlying adipocyte de-differentiation, and the function of obesity-associated ECM remodeling in cancer progression.
Collapse
|
5
|
Adipose Tissue Development Relies on Coordinated Extracellular Matrix Remodeling, Angiogenesis, and Adipogenesis. Biomedicines 2022; 10:biomedicines10092227. [PMID: 36140327 PMCID: PMC9496222 DOI: 10.3390/biomedicines10092227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Despite developing prenatally, the adipose tissue is unique in its ability to undergo drastic growth even after reaching its mature size. This development and subsequent maintenance rely on the proper coordination between the vascular niche and the adipose compartment. In this review, the process of adipose tissue development is broken down to explain (1) the ultrastructural matrix remodeling that is undertaken during simultaneous adipogenesis and angiogenesis, (2) the paracrine crosstalk involved during adipose development, (3) the mechanical regulators involved in adipose growth, and (4) the proteolytic and paracrine oversight for matrix remodeling during adipose development. It is crucial to gain a better understanding of the complex relationships that exist between adipose tissue and the vasculature during tissue development to provide insights into the pathological tissue expansion of obesity and to develop improved soft-tissue reconstruction techniques.
Collapse
|
6
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Li B, Yang J, Gong Y, Xiao Y, Chen W, Zeng Q, Xu K, Duan Y, Ma H. Effects of age on subcutaneous adipose tissue proteins in Chinese indigenous Ningxiang pig by TMT-labeled quantitative proteomics. J Proteomics 2022; 265:104650. [PMID: 35690344 DOI: 10.1016/j.jprot.2022.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Adipose tissue not only affects meat quality and animal productivity, but also participates in inflammation and immunity. Ningxiang pig is famous for their excellent meat quality, disease resistance and tolerance of roughage. It is not yet well known how proteins in adipose tissue is dynamically regulated during the growth of Ningxiang pig. This report studies the proteomic changes in subcutaneous adipose tissue in Ningxiang pigs to gain a better understanding of the molecular mechanism of fat development during the growth period. By TMT-labeled quantitative proteomic analysis of subcutaneous adipose tissue of 9 purebred Ningxiang pigs of different ages, we identified 2533 unique proteins and 716 differentially abundant proteins (DAPs), of which more than half of the DAPs were concentrated in the 90d-210d period. Retrograde endocannabinoid signaling was only significantly enriched in DAPs of N90d vs N30d, Alcoholism and Graft-versus-host disease were only significantly enriched in DAPs of N210d vs N90d. Proteins related to dilated cardiomyopathy was found to be an important pathway in fat development and lipid metabolism. A variety of novel DAPs involved in maintaining mitochondrial function and cell viability, such as NDUFS6, SDHB, COX5A, ATP5D and TNNT1, which play a role in controlling the prediction networks, may indirectly regulate the development and functional maintenance of adipocytes. SIGNIFICANCE: These age-dependent DAPs discovered in this study may help expand the understanding of the molecular mechanisms of the development, function maintenance and transformation of adipose tissue in Ningxiang pig for developing new strategies for improving meat quality and pig breeding in the future.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610000, Sichuan, China; Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| | - Yan Gong
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yu Xiao
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Wenwu Chen
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Qinghua Zeng
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China; Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
8
|
Gao Y, Ma K, Kang Y, Liu W, Liu X, Long X, Hayashi T, Hattori S, Mizuno K, Fujisaki H, Ikejima T. Type I collagen reduces lipid accumulation during adipogenesis of preadipocytes 3T3-L1 via the YAP-mTOR-autophagy axis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159181. [PMID: 35595017 DOI: 10.1016/j.bbalip.2022.159181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
The extracellular matrix (ECM) regulates cell behavior through signal transduction and provides a suitable place for cell survival. As one of the major components of the extracellular matrix, type I collagen is involved in regulating cell migration, proliferation and differentiation. We present a system in which 3T3-L1 preadipocyte cells are induced for adipogenic differentiation on type I collagen coated dishes. Our previous study has found that type I collagen inhibits adipogenic differentiation via YAP activation. Here we further reveal that type I collagen inactivates autophagy by up-regulating mTOR activity via the YAP pathway. Under collagen-coating conditions, co-localization of lysosomes with mTOR was increased and the level of downstream protein p-S6K was elevated, accompanied by a decrease in the level of autophagy. Autophagy is negatively correlated with adipogenesis under type I collagen coating. Through the YAP-autophagy axis, type I collagen improves glycolipid metabolism accompanied by increased mitochondrial content, enhanced glucose uptake, reduced release of free fatty acids (FFAs) and decreased intracellular lipid accumulation. Our findings provide insight into the strategy for dealing with obesity: Type I collagen or the drugs with inhibitory effects on autophagy or YAP, have a potential to accelerate the energy metabolism of adipose tissue, so as to better maintain the homeostasis of glucose and lipids in the body, which can be used for achieving weight loss.
Collapse
Affiliation(s)
- Yanfang Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Kang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xinyu Long
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan; Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Liaoning, China.
| |
Collapse
|
9
|
Fusion protein-driven IGF-IR/PI3K/AKT signals deregulate Hippo pathway promoting oncogenic cooperation of YAP1 and FUS-DDIT3 in myxoid liposarcoma. Oncogenesis 2022; 11:20. [PMID: 35459264 PMCID: PMC9033823 DOI: 10.1038/s41389-022-00394-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Myxoid liposarcoma (MLS) represents a common subtype of liposarcoma molecularly characterized by a recurrent chromosomal translocation that generates a chimeric FUS-DDIT3 fusion gene. The FUS-DDIT3 oncoprotein has been shown to be crucial in MLS pathogenesis. Acting as a transcriptional dysregulator, FUS-DDIT3 stimulates proliferation and interferes with adipogenic differentiation. As the fusion protein represents a therapeutically challenging target, a profound understanding of MLS biology is elementary to uncover FUS-DDIT3-dependent molecular vulnerabilities. Recently, a specific reliance on the Hippo pathway effector and transcriptional co-regulator YAP1 was detected in MLS; however, details on the molecular mechanism of FUS-DDIT3-dependent YAP1 activation, and YAP1´s precise mode of action remain unclear. In elaborate in vitro studies, employing RNA interference-based approaches, small-molecule inhibitors, and stimulation experiments with IGF-II, we show that FUS-DDIT3-driven IGF-IR/PI3K/AKT signaling promotes stability and nuclear accumulation of YAP1 via deregulation of the Hippo pathway. Co-immunoprecipitation and proximity ligation assays revealed nuclear co-localization of FUS-DDIT3 and YAP1/TEAD in FUS-DDIT3-expressing mesenchymal stem cells and MLS cell lines. Transcriptome sequencing of MLS cells demonstrated that FUS-DDIT3 and YAP1 co-regulate oncogenic gene signatures related to proliferation, cell cycle progression, apoptosis, and adipogenesis. In adipogenic differentiation assays, we show that YAP1 critically contributes to FUS-DDIT3-mediated adipogenic differentiation arrest. Taken together, our study provides mechanistic insights into a complex FUS-DDIT3-driven network involving IGF-IR/PI3K/AKT signals acting on Hippo/YAP1, and uncovers substantial cooperative effects of YAP1 and FUS-DDIT3 in the pathogenesis of MLS.
Collapse
|
10
|
Fu X, Almenglo C, Fernandez ÁL, Martínez-Cereijo JM, Iglesias-Alvarez D, Duran-Muñoz D, García-Caballero T, Gonzalez-Juanatey JR, Rodriguez-Mañero M, Eiras S. The Effect of Mineralocorticoid Receptor 3 Antagonists on Anti-Inflammatory and Anti-Fatty Acid Transport Profile in Patients with Heart Failure. Cells 2022; 11:cells11081264. [PMID: 35455943 PMCID: PMC9027091 DOI: 10.3390/cells11081264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Epicardial fat thickness is associated with cardiovascular disease. Mineralocorticoid receptor antagonist (MRA), a pharmaceutical treatment for CVD, was found to have an effect on adipose tissue. Our aim was to analyse the main epicardial fat genesis and inflammation-involved cell markers and their regulation by risk factors and MRA. We included blood and epicardial or subcutaneous fat (EAT or SAT) from 71 patients undergoing heart surgery and blood from 66 patients with heart failure. Cell types (transcripts or proteins) were analysed by real-time polymerase chain reaction or immunohistochemistry. Plasma proteins were analysed by Luminex technology or enzyme-linked immunoassay. Our results showed an upregulation of fatty acid transporter levels after aldosterone-induced genesis. The MRA intake was the main factor associated with lower levels in epicardial fat. On the contrary, MRA upregulated the levels and its secretion of the anti-inflammatory marker intelectin 1 and reduced the proliferation of epicardial fibroblasts. Our results have shown the local MRA intake effect on fatty acid transporters and anti-inflammatory marker levels and the proliferation rate on epicardial fat fibroblasts. They suggest the role of MRA on epicardial fat genesis and remodelling in patients with cardiovascular disease. Translational perspective: the knowledge of epicardial fat genesis and its modulation by drugs might be useful for improving the treatments of cardiovascular disease.
Collapse
Affiliation(s)
- Xiaoran Fu
- Translational Cardiology Group, Health Research Institute, 15706 Santiago de Compostela, Spain;
| | - Cristina Almenglo
- Cardiology Group, Health Research Institute, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (C.A.); (D.I.-A.); (J.R.G.-J.)
| | - Ángel Luis Fernandez
- Heart Surgery Department, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (Á.L.F.); (J.M.M.-C.); (D.D.-M.)
- CIBERCV Madrid, Department of Morphological Sciences, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - José Manuel Martínez-Cereijo
- Heart Surgery Department, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (Á.L.F.); (J.M.M.-C.); (D.D.-M.)
| | - Diego Iglesias-Alvarez
- Cardiology Group, Health Research Institute, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (C.A.); (D.I.-A.); (J.R.G.-J.)
| | - Darío Duran-Muñoz
- Heart Surgery Department, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (Á.L.F.); (J.M.M.-C.); (D.D.-M.)
- CIBERCV Madrid, Department of Morphological Sciences, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Morphological Sciences Department, Medicine Faculty, University of Santiago de Compostela and Pathology Department, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Jose Ramón Gonzalez-Juanatey
- Cardiology Group, Health Research Institute, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (C.A.); (D.I.-A.); (J.R.G.-J.)
- CIBERCV Madrid, Department of Morphological Sciences, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Cardiology Department, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Moises Rodriguez-Mañero
- Translational Cardiology Group, Health Research Institute, 15706 Santiago de Compostela, Spain;
- CIBERCV Madrid, Department of Morphological Sciences, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Cardiology Department, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Correspondence: (M.R.-M.); (S.E.); Tel.: +34-616903275 (M.R.-M.); +34-981955074 (S.E.)
| | - Sonia Eiras
- Translational Cardiology Group, Health Research Institute, 15706 Santiago de Compostela, Spain;
- CIBERCV Madrid, Department of Morphological Sciences, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Correspondence: (M.R.-M.); (S.E.); Tel.: +34-616903275 (M.R.-M.); +34-981955074 (S.E.)
| |
Collapse
|
11
|
Bi X, Li Y, Dong Z, Zhao J, Wu W, Zou J, Guo L, Lu F, Gao J. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol 2021; 9:767362. [PMID: 34977018 PMCID: PMC8716396 DOI: 10.3389/fcell.2021.767362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Gao N, Lu L, Ma X, Liu Z, Yang S, Han G. Targeted inhibition of YAP/TAZ alters the biological behaviours of keloid fibroblasts. Exp Dermatol 2021; 31:320-329. [PMID: 34623712 DOI: 10.1111/exd.14466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Abnormal activation of fibroblasts plays a crucial role in keloid development. However, the mechanism of fibroblast activation remains to be determined. YAP/TAZ are key molecules in the Hippo signalling pathway that promote cell proliferation and inhibit apoptosis. Here, we show that keloid fibroblasts have higher levels of YAP/TAZ mRNA and proteins on primary culture. Targeted knockdown of endogenous YAP or TAZ significantly inhibited cell proliferation, reduced cell migration, induced cell apoptosis and down-regulated collagen1a1 production by keloid fibroblasts. Moreover, we demonstrate that verteporfin, an inhibitor of YAP/TAZ, has similar but stronger inhibitory effects on fibroblasts compared to YAP/TAZ knockdown. Our study provides evidence that YAP/TAZ may be involved in the pathogenesis of keloids. Targeted inhibition of YAP/TAZ could change the biological behaviours of fibroblasts and can potentially be used as therapy for keloids.
Collapse
Affiliation(s)
- Na Gao
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Lulu Lu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Xiaolei Ma
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Zhengyi Liu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Gangwen Han
- Department of Dermatology, Peking University International Hospital, Beijing, China
| |
Collapse
|
13
|
Xiang S, Li Z, Fritch MR, Li L, Velankar S, Liu Y, Sohn J, Baker N, Lin H, Tuan RS. Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2021; 12:347. [PMID: 34127047 PMCID: PMC8201886 DOI: 10.1186/s13287-021-02356-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human bone marrow-derived mesenchymal stem cells (hBMSCs) can differentiate into adipocytes upon stimulation and are considered an appropriate cell source for adipose tissue engineering. In addition to biochemical cues, the stiffness of a substrate that cells attach to has also been shown to affect hBMSC differentiation potential. Of note, most current studies are conducted on monolayer cultures which do not directly inform adipose tissue engineering, where 3-dimensional (3D) scaffolds are often used to create proper tissue architecture. In this study, we aim to examine the adipogenic differentiation of hBMSCs within soft or stiff scaffolds and investigate the molecular mechanism mediating the response of hBMSCs to substrate stiffness in 3D culture, specifically the involvement of the integral membrane protein, caveolin-1 (CAV1), known to regulate signaling in MSCs via compartmentalizing and concentrating signaling molecules. METHODS By adjusting the photo-illumination time, photocrosslinkable gelatin scaffolds with the same polymer concentration but different stiffnesses were created. hBMSCs were seeded within soft and stiff scaffolds, and their response to adipogenic induction under different substrate mechanical conditions was characterized. The functional involvement of CAV1 was assessed by suppressing its expression level using CAV1-specific siRNA. RESULTS The soft and stiff scaffolds used in this study had a compressive modulus of ~0.5 kPa and ~23.5 kPa, respectively. hBMSCs showed high viability in both scaffold types, but only spread out in the soft scaffolds. hBMSCs cultured in soft scaffolds displayed significantly higher adipogenesis, as revealed by histology, qRT-PCR, and immunostaining. Interestingly, a lower CAV1 level was observed in hBMSCs in the soft scaffolds, concomitantly accompanied by increased levels of Yes-associated protein (YAP) and decreased YAP phosphorylation, when compared to cells seeded in the stiff scaffolds. Interestingly, reducing CAV1 expression with siRNA was shown to further enhance hBMSC adipogenesis, which may function through activation of the YAP signaling pathway. CONCLUSIONS Soft biomaterials support superior adipogenesis of encapsulated hBMSCs in 3D culture, which is partially mediated by the CAV1-YAP axis. Suppressing CAV1 expression levels represents a robust method in the promotion of hBMSC adipogenesis.
Collapse
Affiliation(s)
- Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sachin Velankar
- Department of Chem/Petroleum Engineering and Mechanical Engineering & Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Yuwei Liu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Present Address: Biogen, Boston, Massachusetts, USA
| | - Natasha Baker
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Present Address: Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA. .,Present Address: Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
14
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
15
|
Ghasemi H, Mousavibahar SH, Hashemnia M, Karimi J, Khodadadi I, Tavilani H. Transitional cell carcinoma matrix stiffness regulates the osteopontin and YAP expression in recurrent patients. Mol Biol Rep 2021; 48:4253-4262. [PMID: 34086159 DOI: 10.1007/s11033-021-06440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Cells translate the mechanosensing of extracellular matrix component dysregulation and stiffness into the signal transduction including Osteopontin (OPN) through the Hippo pathway. But how extracellular matrix (ECM) component dysregulation and stiffness are ultimately linked to transitional cell carcinoma (TCC) development remains poorly understood. This study was aimed to evaluate the possible links between ECM component alteration after cancer surgery and OPN and Yes-associated protein (YAP) expression in TCC and adjacent tissues. In this study, we used 50 TCC (25 newly diagnosed and 25 recurrent) and 50 adjacent tissues to determine the tissue stiffness using atomic force microscopy. The mRNA expression of SPP1, Indian hedgehog (IHH), and YAP was also determined using qRT-PCR. Western blotting and ELISA were performed to assess the tissue and serum levels of OPN, respectively. To assess the glycoproteins and elastic fibers content, Periodic Acid Schiff, and Verhoeff-Van Gieson Staining were performed, respectively. Matrix stiffness was markedly higher in TCCs than adjacent tissues (p < 0.05). Gene expression analysis showed that YAP, SPP1, and IHH genes were upregulated in TCC tissues (p < 0.05). Additionally, the OPN protein overexpression was observed in the tissue and the serum of TCC patients (p < 0.05). We also found that glycoproteins, elastic fibers content of recurrent TCC tissues was remarkably higher as compared to adjacent tissues (p < 0.05). Our results suggest that glycoproteins and elastic fibers content modulation and ECM stiffness may upregulates the expression of YAP, SPP1 and IHH genes, and possibly contribute to the TCC development and relapse.
Collapse
Affiliation(s)
- Hadi Ghasemi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Urology & Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Harris M, Potgieter J, Ishfaq K, Shahzad M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2806. [PMID: 34070353 PMCID: PMC8197487 DOI: 10.3390/ma14112806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
The collagen hydrolysate, a proteinic biopeptide, is used for various key functionalities in humans and animals. Numerous reviews explained either individually or a few of following aspects: types, processes, properties, and applications. In the recent developments, various biological, biochemical, and biomedical functionalities are achieved in five aspects: process, type, species, disease, receptors. The receptors are rarely addressed in the past which are an essential stimulus to activate various biomedical and biological activities in the metabolic system of humans and animals. Furthermore, a systematic segregation of the recent developments regarding the five main aspects is not yet reported. This review presents various biological, biochemical, and biomedical functionalities achieved for each of the beforementioned five aspects using a systematic approach. The review proposes a novel three-level hierarchy that aims to associate a specific functionality to a particular aspect and its subcategory. The hierarchy also highlights various key research novelties in a categorical manner that will contribute to future research.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| | - Johan Potgieter
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Muhammad Shahzad
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| |
Collapse
|
17
|
Tsutsui S, Wakasa H, Tsugami Y, Suzuki T, Nishimura T, Kobayashi K. Distinct Expression Patterns of Fibrillar Collagen Types I, III, and V in Association with Mammary Gland Remodeling during Pregnancy, Lactation and Weaning. J Mammary Gland Biol Neoplasia 2020; 25:219-232. [PMID: 32915396 DOI: 10.1007/s10911-020-09457-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022] Open
Abstract
The mammary gland structurally and functionally remodels during pregnancy, during lactation and after weaning. There are three types of fibrillar collagens, types I, III, and V, in mammary stromal tissue. While the importance of the fibrillar structure of collagens for mammary morphogenesis has been suggested, the expression patterns of each type of fibrillar collagen in conjunction with mammary remodeling remain unclear. In this study, we investigated their expression patterns during pregnancy, parturition, lactation and involution. Type I collagen showed a well-developed fibril structure during pregnancy, but the fibrillar structure of type I collagen then became sparse at parturition and during lactation, which was concurrent with the downregulation of its mRNA and protein levels. The well-developed fibrillar structure of type I collagen reappeared after weaning. On the other hand, type V collagen showed a well-developed fibrillar structure and upregulation in the lactation period but not in the periods of pregnancy and involution. Type III collagen transiently developed a dense fibrillar network at the time of parturition and exhibited drastic increases in mRNA expression. These results indicate that each type of fibrillar collagen is distinctly involved in structural and functional remodeling in mammary glands during pregnancy, parturition, lactation, and involution after weaning. Furthermore, in vitro studies of mammary epithelial cells showed regulatory effects of type I collagen on cell adhesion, cell proliferation, ductal branching, and β-casein secretion. Each type of fibrillar collagen may have different roles in defining the cellular microenvironment in conjunction with structural and functional mammary gland remodeling.
Collapse
Affiliation(s)
- Shiori Tsutsui
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
18
|
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q, Wu Y. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res 2020; 39:156. [PMID: 32787888 PMCID: PMC7425140 DOI: 10.1186/s13046-020-01666-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a malignant breast tumor confronted with high invasion, metastasis and recurrence rate, and adipocytes are the largest components in breast tissue. The aberrant adipocytes, especially the BC-neighbored cancer-associated adipocytes (CAAs), are found in the invasive front of BC. CAAs present a vicious phenotype compared with mature mammary adipocytes and mediate the crosstalk network between adipocytes and BC cells. By releasing multiple adipokines such as leptin, adiponectin, interleukin (IL)-6, chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5), CAAs play essential roles in favor of proliferation, angiogenesis, dissemination, invasion and metastasis of BC. This article reviews the recent existing CAAs studies on the functions and mechanisms of adipocytes in the development of BC, including adipokine regulating, metabolic reprogramming, extracellular matrix (ECM) remodeling, microRNAs (miRNAs) and immune cell adjusting. Besides, adipocyte secretome and cellular interactions are implicated in the intervention to BC therapy and autologous fat grafting of breast reconstruction. Therefore, the potential functions and mechanisms of CAAs are very important for unveiling BC oncogenesis and progress. Deciphering the complex network between CAAs and BC is critical for designing therapeutic strategies and achieving the maximum therapeutic effects of BC.
Collapse
Affiliation(s)
- Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Ning Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|