1
|
Abdullaev B, Alsaab HO, Hjazi A, Alkhafaji AT, Alawadi AH, Hamzah HF. The mechanisms behind the dual role of long non-coding RNA (lncRNA) metastasis suppressor-1 in human tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155189. [PMID: 38452581 DOI: 10.1016/j.prp.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Republic ofUzbekistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Quaid M, Goodrich JM, Calkins MM, Graber JM, Urwin D, Gabriel J, Caban-Martinez AJ, Petroff RL, Grant C, Beitel SC, Littau S, Gulotta JJ, Wallentine D, Hughes J, Burgess JL. Firefighting, per- and polyfluoroalkyl substances, and DNA methylation of genes associated with prostate cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:55-66. [PMID: 38523457 PMCID: PMC11006564 DOI: 10.1002/em.22589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Prostate cancer is the leading incident cancer among men in the United States. Firefighters are diagnosed with this disease at a rate 1.21 times higher than the average population. This increased risk may result from occupational exposures to many toxicants, including per- and polyfluoroalkyl substances (PFAS). This study assessed the association between firefighting as an occupation in general or PFAS serum levels, with DNA methylation. Only genomic regions previously linked to prostate cancer risk were selected for analysis: GSTP1, Alu repetitive elements, and the 8q24 chromosomal region. There were 444 male firefighters included in this study, with some analyses being conducted on fewer participants due to missingness. Statistical models were used to test associations between exposures and DNA methylation at CpG sites in the selected genomic regions. Exposure variables included proxies of cumulative firefighting exposures (incumbent versus academy status and years of firefighting experience) and biomarkers of PFAS exposures (serum concentrations of 9 PFAS). Proxies of cumulative exposures were associated with DNA methylation at 15 CpG sites and one region located within FAM83A (q-value <0.1). SbPFOA was associated with 19 CpG sites (q < 0.1), but due to low detection rates, this PFAS was modeled as detected versus not detected in serum. Overall, there is evidence that firefighting experience is associated with differential DNA methylation in prostate cancer risk loci, but this study did not find evidence that these differences are due to PFAS exposures specifically.
Collapse
Affiliation(s)
- Margaret Quaid
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Miriam M. Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Judith M. Graber
- Dept of Biostatistics and Epidemiology, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Derek Urwin
- Los Angeles County Fire Department, Los Angeles, CA, USA
- Dept. of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA
| | - Jamie Gabriel
- Los Angeles County Fire Department, Los Angeles, CA, USA
| | | | - Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA, USA
| | - Shawn C. Beitel
- Dept. of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Sally Littau
- Dept. of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA, USA
| | | |
Collapse
|
3
|
Gutierrez-Angulo M, Ayala-Madrigal MDLL, Moreno-Ortiz JM, Peregrina-Sandoval J, Garcia-Ayala FD. Microbiota composition and its impact on DNA methylation in colorectal cancer. Front Genet 2023; 14:1037406. [PMID: 37614819 PMCID: PMC10442805 DOI: 10.3389/fgene.2023.1037406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer is a complex disease resulting from the interaction of genetics, epigenetics, and environmental factors. DNA methylation is frequently found in tumor suppressor genes to promote cancer development. Several factors are associated with changes in the DNA methylation pattern, and recently, the gastrointestinal microbiota could be associated with this epigenetic change. The predominant phyla in gut microbiota are Firmicutes and Bacteroidetes; however, an enrichment of Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus bovis, among others, has been reported in colorectal cancer, although the composition could be influenced by several factors, including diet, age, sex, and cancer stage. Fusobacterium nucleatum, a gram-negative anaerobic bacillus, is mainly associated with colorectal cancer patients positive for the CpG island methylator phenotype, although hypermethylation in genes such as MLH1, CDKN2A, MTSS1, RBM38, PKD1, PTPRT, and EYA4 has also been described. Moreover, Hungatella hathewayi, a gram-positive, rod-shaped bacterium, is related to hypermethylation in SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and APC genes. The underlying epigenetic mechanism is unclear, although it could be implicated in the regulation of DNA methyltransferases, enzymes that catalyze the transfer of a methyl group on cytosine of CpG sites. Since DNA methylation is a reversible event, changes in gut microbiota could modulate the gene expression through DNA methylation and improve the colorectal cancer prognosis.
Collapse
Affiliation(s)
- Melva Gutierrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Maria de la Luz Ayala-Madrigal
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jose Miguel Moreno-Ortiz
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Peregrina-Sandoval
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fernando Daniel Garcia-Ayala
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Han X, Long W, Liu Y, Xu J. Prognostic value and immunological role of BAIAP2L2 in liver hepatocellular carcinoma: A pan-cancer analysis. Front Surg 2022; 9:985034. [PMID: 36338652 PMCID: PMC9634486 DOI: 10.3389/fsurg.2022.985034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/28/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In recent years, the role of BAI1-associated protein 2-like 2 (BAIAP2L2) in the prognosis and immune microenvironment of various cancers has attracted increasing attention. However, its clinical value and immune infiltration in liver hepatocellular carcinoma (LIHC) remain unclear. OBJECTIVE To investigate the prognostic value of BAIAP2L2 and its correlation with immune infiltration in LIHC, we conducted corresponding data mining. METHODS In this study, The Cancer Genome Atlas, GTEx, StarBase, UALCAN, TIMER, GEPIA, Human Protein Atlas, Kaplan-Meier Plotter, cBioPortal, LinkedOmics, STRING and BioGPS databases were used to analyze BAIAP2L2 in cancers. Logistic regression and Cox regression were performed to analyze the correlation between clinical features and BAIAP2L2 expression in LIHC. In addition, the diagnostic and prognostic values of BAIAP2L2 in LIHC were determined by receiver operating characteristic (ROC) curves and nomograms. Single-sample gene set enrichment analysis (ssGSEA), BioGPS and TIMER were used to analyze the correlation between BAIAP2L2 and immune infiltration. More importantly, quantitative real-time polymerase chain reaction was used to verify BAIAP2L2 expression in a liver cancer cell line and a normal cell line. Visualization of data was mostly achieved using R language, version 3.6.3. RESULTS High BAIAP2L2 levels indicated poor overall survival (OS) and disease-free survival (DFS) of patients with LIHC. Abnormally increased expression of BAIAP2L2 in LIHC may be the result of both genetic alterations and lower DNA methylation levels. Furthermore, Cox regression analysis showed that high BAIAP2L2 expression was an independent risk factor for OS and DFS in patients with liver cancer. ROC curves and nomograms also confirmed the diagnostic and prognostic values of BAIAP2L2 in LIHC. Additionally, a PPI network of BAIAP2L2 was established and results implyed that BAIAP2L2 interacts with MTSS1, AMPH, FCHO1, SYT9, PDK2, MTSS1L, PM20D1, CHST4 and PALM3. ssGSEA showed that BAIAP2L2 was associated with T cells and natural killer cells. Simultaneously, the TIMER database showed that the expression of BAIAP2L2 in LIHC was positively correlated with tumor infiltrating cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells. CONCLUSIONS Through pan-cancer analysis, prognostic and immunological value of BAIAP2L2 in LIHC was identified. This is the first report on the potential of BAIAP2L2 as a prognostic biomarker and its correlation with immune infiltration in LIHC.
Collapse
Affiliation(s)
- Xiudan Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Wei Long
- Department of Rheumatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China,Correspondence: Jixiong Xu
| |
Collapse
|
5
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
6
|
Grandits AM, Nguyen CH, Schlerka A, Hackl H, Sill H, Etzler J, Heyes E, Stoiber D, Grebien F, Heller G, Wieser R. Downregulation of MTSS1 in acute myeloid leukemia is associated with a poor prognosis, chemotherapy resistance, and disease aggressiveness. Leukemia 2021; 35:2827-2839. [PMID: 33782537 PMCID: PMC8478650 DOI: 10.1038/s41375-021-01224-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Despite recent approval of targeted drugs for acute myeloid leukemia (AML) therapy, chemotherapy with cytosine arabinoside and anthracyclines remains an important pillar of treatment. Both primary and secondary resistance are frequent and associated with poor survival, yet the underlying molecular mechanisms are incompletely understood. In previous work, we identified genes deregulated between diagnosis and relapse of AML, corresponding to therapy naïve and resistant states, respectively. Among them was MTSS1, whose downregulation is known to enhance aggressiveness of solid tumors. Here we show that low MTSS1 expression at diagnosis was associated with a poor prognosis in AML. MTSS1 expression was regulated by promoter methylation, and reduced by cytosine arabinoside and the anthracycline daunorubicin. Experimental downregulation of MTSS1 affected the expression of numerous genes. It induced the DNA damage response kinase WEE1, and rendered human AML cell lines more resistant to cytosine arabinoside, daunorubicin, and other anti-cancer drugs. Mtss1 knockdown in murine MLL-AF9-driven AML substantially decreased disease latency, and increased leukemic burden and ex vivo chemotherapy resistance. In summary, low MTSS1 expression represents a novel factor contributing to disease aggressiveness, therapy resistance, and poor outcome in AML.
Collapse
MESH Headings
- Animals
- Anthracyclines/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cytarabine/administration & dosage
- Daunorubicin/administration & dosage
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Inbred C57BL
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Survival Rate
- Mice
Collapse
Affiliation(s)
- Alexander Michael Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Chi Huu Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Angela Schlerka
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Julia Etzler
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Elizabeth Heyes
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Dagmar Stoiber
- Division of Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
7
|
Cheng H, Tang S, Lian X, Meng H, Gu X, Jiang J, Li X. The Differential Antitumor Activity of 5-Aza-2'-deoxycytidine in Prostate Cancer DU145, 22RV1, and LNCaP Cells. J Cancer 2021; 12:5593-5604. [PMID: 34405020 PMCID: PMC8364635 DOI: 10.7150/jca.56709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation is a DNA methyltransferase-mediated epigenetic modification affecting gene expression. This process is involved in the initiation and development of malignant disease. 5-Aza-2'-deoxycytidine (5-Aza), a classic DNA methyltransferase inhibitor, possesses antitumor proliferation activity. However, whether 5-Aza induces cytotoxicity in solid tumors warrants further investigated. In this study, human prostate cancer (CaP) cells were treated with 5-Aza and subjected to cell viability and cytotoxicity analysis. Reverse transcription-polymerase chain reaction and methylation-specific polymerase chain reaction assay were utilized to test the gene expression and methylation status of the p53 and p21 gene promoters. The results showed that 5-Aza differentially inhibited spontaneous proliferation, arrested the cell cycle at S phase in DU145, at G1 phase in 22RV1 and LNCaP cells, and G2 phase in normal RWPE-1 cells, as well as induced the expression of phospho-H2A.X and tumor suppressive mammary serine protease inhibitor (maspin) in all three types of CaP cells. 5-Aza also increased p53 and p21 transcription through promoter demethylation, and decreased the expression of oncogene c-Myc in 22RV1 and LNCaP cells. Western blotting analysis showed that the poly (ADP-ribose) polymerase cleavage was detected in DU145 and 22RV1 cells. Moreover, there were no significant changes in p53, p21 and c-Myc expression in DU145 cells following treatment with 5-Aza. Thus, in responsible for its apoptotic induction and DNA damage, the mechanism of the antitumor activities of 5-Aza may involve in an increase of tumor suppressive maspin, upregulation of wild type p53-mediated p21 expression and a decrease of oncogene c-Myc level in 22RV1 and LNCaP cells, and enhancing the tumor suppressive maspin expression in DU145 cells. These results enriched our understanding of the multifaceted antitumor activity of 5-Aza, and provided the expression basis of biomarkers for its possible clinical application in prostate cancer.
Collapse
Affiliation(s)
- Huiying Cheng
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Sijie Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xueqi Lian
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit 48201, MI, USA
| | - Xiang Gu
- Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xiaohua Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Ltd., 2800 Chuangxin Blvd., Building H4, Hefei 230088, China.,National Center for Gene Testing Technology Application & Demonstration(Hefei), 2800 Chuangxin Blvd., Building H4, Hefei 230088, China
| |
Collapse
|
8
|
Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12092593. [PMID: 32932846 PMCID: PMC7565426 DOI: 10.3390/cancers12092593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.
Collapse
|