1
|
He CM, Zhang D, He Z. Gene regulation and signaling transduction in mediating the self-renewal, differentiation, and apoptosis of spermatogonial stem cells. Asian J Androl 2025; 27:4-12. [PMID: 39162186 DOI: 10.4103/aja202464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/04/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Infertility has become one of the most serious diseases worldwide, and 50% of this disease can be attributed to male-related factors. Spermatogenesis, by definition, is a complex process by which spermatogonial stem cells (SSCs) self-renew to maintain stem cell population within the testes and differentiate into mature spermatids. It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility. Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs. In this review, we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal, differentiation, and apoptosis of SSCs, and we illustrate the networks of genes and signaling pathways in SSC fate determinations. We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways. This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.
Collapse
Affiliation(s)
- Cai-Mei He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Dong Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| |
Collapse
|
2
|
Ran L, Zhao R, Hu G, Dai G, Yao Q, Chen C, Liu X, Xue B. Chronic oral administration of L-carnitine induces testicular injury: in vivo evidence. Int Urol Nephrol 2025; 57:35-47. [PMID: 39044024 DOI: 10.1007/s11255-024-04164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE While L-carnitine is commonly used to treat oligoasthenozoospermia, concerns have been raised regarding its potential harm to spermatogenesis. This study aims to investigate the potential testicular toxicity of long-term oral administration of L-carnitine. METHODS In this study, we refer to the clinical adult dosage and mode of L-carnitine administration, and after converting to mouse doses, mice were daily intragastrical administered L-carnitine to investigate whether it was harmful to the testis. The investigation involved assessing its potential testicular toxicity through histopathological staining, sperm motility analysis, and quantitative real-time PCR. RESULTS Our results showed that L-carnitine increased sperm motility after 14 days of continuous administration, but increased luminal exfoliated spermatogenic cells occurred in the testis, and TUNEL results showed increased apoptotic cells. Compared with the control group, the mRNA expression of the spermatogenic cell marker at each stage was decreased in mice treated for 14 consecutive days of L-carnitine. After 50 days of continuous administration followed by 14 days of drug withdrawal, the total sperm motility of mice was almost 0, and a large number of abnormal eosinophilic spermatogenic cells appeared in the testis. These indicate that oral L-carnitine for more than 14 days impairs spermatogenesis in mice, and sudden discontinuation of administration results in substantial death of established spermatogenic cell populations. CONCLUSION Our findings suggest that chronic oral administration of L-carnitine impairs spermatogenic function in the testis. The oral administration of L-carnitine to enhance sperm motility should not exceed the 2/5 point of the spermatogenic cycle.
Collapse
Affiliation(s)
- Lingxiang Ran
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Rui Zhao
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, 210006, Jiangsu, China
| | - Guangmo Hu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Urology, The First People's Hospital of Hefei, Hefei, 230041, Anhui, China
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qiu Yao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Cai Chen
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiaolong Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
3
|
Wang X, Wen J, Tian H, Li X, Xie W, Zou K. SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF. Theriogenology 2024; 234:198-207. [PMID: 39721337 DOI: 10.1016/j.theriogenology.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood. Utilizing a porcine in vitro model system, this investigation elucidated the molecular mechanisms underlying the SDF-1/CXCR4 axis in ProSGs fate determination. Through integrated molecular and transcriptomic analyses, we investigated the consequences of CXCR4 inhibition on ProSG cellular dynamics. Our findings demonstrated that the SDF-1/CXCR4 axis exerts regulatory control over ProSGs differentiation via the PI3K-AKT-AP-1 signaling cascade. This regulation significantly influences the transcriptional landscape of ProSGs, particularly modulating the expression of PLZF, a crucial suppressor of spermatogonial differentiation, and DMRT1, an essential mediator of germ cell differentiation. These findings elucidate the molecular mechanisms orchestrating ProSGs homing and emphasize the significance of maintaining male reproductive competence. Furthermore, this research could enhance our understanding of ProSGs biology and its relationship to boar fertility, while potentially facilitating the development of innovative reproductive technologies and sustainable livestock management strategies.
Collapse
Affiliation(s)
- Xingju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hairui Tian
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Ghasemi N, Azizi H, Razavi-Amoli SK, Skutella T. The Role of Plzf in Spermatogonial Stem Cell Maintenance and Differentiation: Mapping the Transcriptional Dynamics and Key Interactions. Cells 2024; 13:1930. [PMID: 39682679 DOI: 10.3390/cells13231930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Spermatogonial stem cells (SSCs) sustain and modulate spermatogenesis through intricate signaling pathways and transcription factors. Promyelocytic leukemia zinc-finger (Plzf, also known as Zbtb16) has been identified as a critical transcription factor influencing various signaling and differentiation pathways. Plzf plays a pivotal role in regulating the differentiation properties of SSCs and is essential for the proper maintenance of spermatogenesis. However, the transcription patterns of Plzf along the seminiferous tubules and its interaction network with adjacent partners still need to be fully elucidated. This study employed immunostaining techniques coupled with Fluidigm quantitative real-time polymerase chain reaction (Fluidigm qPCR) to quantify Plzf expression in undifferentiated and differentiated spermatogonia. Furthermore, we utilized bioinformatics analyses to identify Plzf partners and their associations with other regulatory factors. Immunohistostaining (IMH) revealed a high expression of Plzf in cells near the basal membrane of seminiferous tubules and a lower expression in the middle regions in vivo. Immunocytochemistry (ICC) demonstrated that undifferentiated spermatogonia exhibited significant Plzf positivity, whereas differentiated spermatogonia showed reduced Plzf expression in vitro. Fluidigm qPCR confirmed a significant differential expression of Plzf between undifferentiated and differentiated spermatogonia. In silico differential expression analysis between undifferentiated spermatogonia and spermatids indicated that Plzf is closely associated with Mycn, Lin28a, Kras, Ccnd1, and Jak1, highlighting the importance of these partnerships during spermatogenesis. Our findings suggest that the network of Plzf-related partners and their associated proteins involves differentiation, localization, apoptosis, and signal transduction. This comprehensive approach advances our understanding of Plzf transcription patterns and sheds light on its interactions with other cellular factors, revealing previously obscure pathways and interactions. These insights could lead to more effective diagnostic strategies for reproductive system-related diseases and inform the development of improved therapeutic and clinical applications.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 49767, Amol 4615664616, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 49767, Amol 4615664616, Iran
| | - Seyedeh-Kiana Razavi-Amoli
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Li M, Zhao Q, Wang S, Song Y, Zhai L, Zhao J. Differential Impairment Mechanism of Sperm Production via Induction of miR-34c-Activated Apoptosis and Spermatogenesis Pathway in Diet-Induced Obesity and Resistant Mice and GC-1 Spg Cells. Int J Mol Sci 2024; 25:7451. [PMID: 39000558 PMCID: PMC11242685 DOI: 10.3390/ijms25137451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Male reproductive dysfunction is a clinical disease, with a large number of cases being idiopathic. Reproductive disorders have been found in obese (diet-induced obesity and diet-induced obesity-resistant) mice, but the mechanism behind the male reproductive dysfunction between them may be different. The purpose of this study was to explore the possible role and mechanism of miR-34c on sperm production in high-fat-diet-induced obesity-resistant (DIO-R) mice and GC-1 spg cells, which may differ from those in high-fat-diet-induced obesity (DIO) mice. In vivo and in vitro experiments were performed. C57BL/6J mice were fed a high-fat diet for 10 weeks to establish the DIO and DIO-R mouse model. GC-1 spg cells were used to verify the mechanism of miR-34c on sperm production. During in vivo experiments, sperm production damage was found in both DIO and DIO-R male mice. Compared to the control mice, significantly decreased levels of testosterone, LH, activities of acrosome enzyme (ACE), HAse, and activating transcription factor 1 (ATF1) were found in both DIO and DIO-R male mice (p < 0.05). Compared with the control group, the ratio of B-cell lymphoma-2 (Bcl-2)/bcl-2-associated X protein (Bax) in the DIO group was significantly decreased, and the expression level of cleaved caspase-3 was significantly increased (p < 0.05). Compared with the control group, the Bcl-2 protein expression level in the testes of the DIO-R group significantly decreased (p < 0.05). However, the Bax expression level increased. Thus, the Bcl-2/Bax ratio significantly decreased (p < 0.01); however, the factor-related apoptosis (Fas), Fas ligand (FasLG), cleaved caspase-8, caspase-8, cleaved caspase-3, and caspase-3 protein expression levels significantly increased (p < 0.05). Compared with the DIO group, in DIO-R mice, the activities of ACE, ATF1, Bcl-2, and Bcl-2/Bax's spermatogenesis protein expression decreased, while the apoptosis-promoting protein expression significantly increased (p < 0.05). During the in vitro experiment, the late and early apoptotic ratio in the miR-34c over-expression group increased. MiR-34c over-expression enhanced the expression of apoptosis-related proteins Fas/FasLG and Bax/Bcl-2 while inhibiting the expression of ATF1 and the sperm-associated protein in GC-1 spg cells. DIO and DIO-R could harm sperm production. DIO-R could impair sperm production by inducing the miR-34c-activated apoptosis and spermatogenesis pathway, which may be different from that of DIO.
Collapse
Affiliation(s)
- Mujiao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Qing Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Siyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Yangyang Song
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Lingling Zhai
- Department of Maternal, Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China;
| | - Jian Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| |
Collapse
|
6
|
Tian H, Wang X, Li X, Song W, Mi J, Zou K. Regulation of spermatogonial stem cell differentiation by Sertoli cells-derived exosomes through paracrine and autocrine signaling. J Cell Physiol 2024; 239:e31202. [PMID: 38291718 DOI: 10.1002/jcp.31202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
In the orchestrated environment of the testicular niche, the equilibrium between self-renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC-derived exosomes (SC-EXOs) in the SSC-testicular niche. Our investigation hinged on the hypothesis that SC-EXOs, secreted by SCs from the testes of 5-day-old mice-a developmental juncture marking the onset of SSC differentiation-participate in the regulation of this process. We discovered that exposure to SC-EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC-SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC-EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR-493-5p within SC-EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression-an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC-EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hairui Tian
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Xingju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Weixiang Song
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Mi
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Wei R, Zhang X, Li X, Wen J, Liu H, Fu J, Li L, Zhang W, Liu Z, Yang Y, Zou K. A rapid and stable spontaneous reprogramming system of Spermatogonial stem cells to Pluripotent State. Cell Biosci 2023; 13:222. [PMID: 38041111 PMCID: PMC10693117 DOI: 10.1186/s13578-023-01150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The scarcity of pluripotent stem cells poses a major challenge to the clinical application, given ethical and biosafety considerations. While germline stem cells commit to gamete differentiation throughout life, studies demonstrated the spontaneous acquisition of pluripotency by spermatogonial stem cells (SSCs) from neonatal testes at a low frequency (1 in 1.5 × 107). Notably, this process occurs without exogenous oncogenes or chemical supplementation. However, while knockout of the p53 gene accelerates the transformation of SSCs, it also increases risk and hampers their clinical use. RESULTS We report a transformation system that efficiently and stably convert SSCs into pluripotent stem cells around 10 passages with the morphology similar to that of epiblast stem cells, which convert to embryonic stem (ES) cell-like colonies after change with ES medium. Epidermal growth factor (EGF), leukemia inhibitory factor (LIF) and fresh mouse embryonic fibroblast feeder (MEF) are essential for transformation, and addition of 2i (CHIR99021 and PD0325901) further enhanced the pluripotency. Transcriptome analysis revealed that EGF activated the RAS signaling pathway and inhibited p38 to initiate transformation, and synergically cooperated with LIF to promote the transformation. CONCLUSION This system established an efficient and safe resource of pluripotent cells from autologous germline, and provide new avenues for regenerative medicine and animal cloning.
Collapse
Affiliation(s)
- Rui Wei
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyang Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Li Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Cao Y, Wang J, Li X, Liu B, Li C, Sun Y, Zou K. Gastrodin protects porcine sertoli cells from zearalenone-induced abnormal secretion of glial cell line-derived neurotrophic factor through the NOTCH signaling pathway. Reprod Biol 2023; 23:100781. [PMID: 37285694 DOI: 10.1016/j.repbio.2023.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin found in moldy diets and is associated with reproductive dysfunction. However, the molecular underpinning of ZEA in impairment of spermatogenesis remains largely unknown. To unveil the toxic mechanism of ZEA, we established a co-culture model using porcine Sertoli cells and porcine spermatogonial stem cells (pSSCs) to investigate the impact of ZEA on these cell types and their associated signaling pathways. Our findings showed that low concentration of ZEA inhibited cell apoptosis, while high concentration induced cell apoptosis. Furthermore, the expression levels of Wilms' tumor 1 (WT1), proliferating cell nuclear antigen (PCNA) and glial cell line-derived neurotrophic factor (GDNF) were significantly decreased in ZEA treatment group, while concurrently upregulating the transcriptional levels of the NOTCH signaling pathway target genes HES1 and HEY1. The addition of the NOTCH signaling pathway inhibitor DAPT (GSI-IX) alleviated the damage to porcine Sertoli cells caused by ZEA. Gastrodin (GAS) significantly increased the expression levels of WT1, PCNA and GDNF, and inhibited the transcription of HES1 and HEY1. GAS also efficiently restored the decreased expression levels of DDX4, PCNA and PGP9.5 in co-cultured pSSCs suggesting its potential in ameliorating the damage caused by ZEA to Sertoli cells and pSSCs. In conclusion, the present study demonstrates that ZEA disrupts pSSCs self-renewal by affecting the function of porcine Sertoli cell, and highlights the protective mechanism of GAS through the regulation of the NOTCH signaling pathway. These findings may offer a novel strategy for alleviating ZEA-induced male reproductive dysfunction in animal production.
Collapse
Affiliation(s)
- Yulu Cao
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Biyun Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongjun Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yijin Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Ran L, Gao Z, Chen Q, Ran Y, Duan N, Hu G, Lu X, Xia R, Li Q, Cui F, Liu X, Xue B. Improving effects of telmisartan on spermatogenic disorder induced by fractionated low-dose irradiation in mice. Int Urol Nephrol 2023; 55:1427-1439. [PMID: 37093439 DOI: 10.1007/s11255-023-03601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Male infertility is a hot problem worldwide, but there are few treatments, especially male infertility caused by irradiation is difficult to treat. The aim of this study was to investigate and evaluate novel drugs for the treatment of male infertility caused by irradiation. METHODS we randomly divided 18 male BALB/c mice into 3 groups: control, irradiated, and telmisartan. Both irradiated and telmisartan group completed whole-body 0.5 Gy five times irradiation, and the telmisartan group received intraperitoneal injection of telmisartan (1.2 mg/kg) daily on the next day after irradiation, and all groups were sampled on day 25 after irradiation. RESULTS Sperm motility results show that total sperm motility of irradiated group was significantly lower compared with control group, and testicular HE results showed that testis in irradiated group were severely damaged. Compared with irradiated group, the total sperm motility, sperm concentration, testicular index, Johnsen score, and the seminiferous tubule layer numbers were higher in telmisartan group (P < 0.05). The immunohistochemical staining showed γ-H2AX expression is higher in telmisartan group compared with irradiated group. And the relative mRNA expression of PLZF, GFRA1, STRA8, DMRT1, SPO11, SYCP2, OVOL2, CCNA1, TJP3, RUNX2, TXNDC2 TNP1, and PRM3 in telmisartan group was all significantly higher than irradiated group (P < 0.05). CONCLUSION In conclusion, in vivo experiments confirmed that telmisartan ameliorated the spermatogenic disorder in mice caused by fractionated low-dose irradiation via promoting spermatogenesis.
Collapse
Affiliation(s)
- Lingxiang Ran
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Zhixiang Gao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qiu Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yuanshuai Ran
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Nengliang Duan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Guangmo Hu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xingyu Lu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Renlan Xia
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qiaoqiao Li
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Fengmei Cui
- School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaolong Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
10
|
Han L, Wang J, Zhang L, Jing J, Zhang W, Liu Z, Gao A. The role of N 6-methyladenosine modification in benzene-induced testicular damage and the protective effect of melatonin. CHEMOSPHERE 2023; 319:138035. [PMID: 36736484 DOI: 10.1016/j.chemosphere.2023.138035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Benzene is a universal ambient pollutant. Population-based studies have shown that benzene exposure affects male fertility. However, the mechanism of benzene-induced reproductive toxicity is unknown. Here, we established a dynamic inhalation model and exposed C57BL/6J mice to 0, 10, and 50 ppm benzene (6 h/day, 6 days/week, 7 weeks). Our study revealed that benzene exposure caused testicular injury, including structural damage to spermatogenic tubules, reduced semen quality, and decreased testosterone levels. In addition, the decrease in the global level of N6-Methyladenosine (m6A) and the change of m6A important regulatory enzymes in mice testes suggested that m6A was involved in the benzene-induced testicular injury. Further genome-wide m6A methylation analysis showed that 1469 differential m6A peaks were present in the testes of control and benzene groups, indicating that benzene exposure modulated m6A methylation in testes. Furthermore, the comprehensive analysis of m6A-sequencing and transcriptome revealed that hypermethylated Rara and its consequent reduced expression impaired the sperm production process. In particular, melatonin alleviated benzene-induced testicular injury by modulating m6A-related genes. Overall, our research provides a new idea and fundamental knowledge into the possible mechanisms of m6A modifications in benzene-induced testicular impairment, as well as a new experimental basis for benzene-induced male fertility therapy.
Collapse
Affiliation(s)
- Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
11
|
Qin Z, Zhang G, Jiang S, Ning F, Zhao Z, Huang M, Jin J. Integration of metabolomics and transcriptomics to reveal ferroptosis is involved in Tripterygium wilfordii polyglycoside tablet-induced testicular injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116055. [PMID: 36539070 DOI: 10.1016/j.jep.2022.116055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii polyglycoside tablet (TWP), a traditional Chinese medicine preparation, has multiple pharmacological properties, including anti-inflammatory, immune-modulatory and anti-proliferative activities. However, the reproductive toxicity of TWP greatly limits its clinical application and the mechanism of TWP-induced reproductive toxicity is not fully understood yet. AIM OF THE STUDY This study was designed to explore the mechanism of TWP-induced testis injury in male rats. MATERIALS AND METHODS The mechanism underlying TWP-induced rat testicular injury was firstly investigated by integration of metabolomics and transcriptomics. Meanwhile, histopathological analysis, Western blot and RT-qPCR were performed to confirm the damaging effects and mechanisms of TWP on rat testis. RESULTS Histopathological analysis revealed that TWP had significant testicular damage, which severely reduced the testis's tubular diameter and epithelium height. Further, TWP caused the protein level of ZO-1, CLDN11, PLZF, and OCT4 significantly downregulate, suggesting the blood-testis barrier function and spermatogenesis were damaged. Differentially expressed genes (DEGs), including 4952 upregulated and 2626 downregulated, were found in TWP-exposed testis compared to the normal group. Moreover, 77 changed metabolites were identified from testis samples. With integrated analysis of DEGs and changed metabolites, we found that glutathione metabolism and ferroptosis played an essential role in testicular injury. Additionally, the levels of ferroptosis-related protein GPX4, SLC7A11, and NRF2 were significantly downregulated, and the protein level of 4-HNE, a leading product of lipid peroxidation and oxidative stress, was upregulated. The changes in ferroptosis-related genes indicated that TWP might promote ferroptosis in rat testis. CONCLUSION These results suggested that ferroptosis was involved in the testicular damage caused by TWP, which might provide a new strategy to alleviate TWP- induced testicular injury.
Collapse
Affiliation(s)
- Zhiyan Qin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gengyi Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shiqin Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fangqing Ning
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Developmental toxicity window of fetal testicular injury in offspring mice induced by prenatal amoxicillin exposure at different time, doses and courses. Toxicol Lett 2023; 374:85-95. [PMID: 36529298 DOI: 10.1016/j.toxlet.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Amoxicillin is widely used in the clinical treatment of syphilis, gonorrhea and other infectious diseases during pregnancy, but the effects of prenatal amoxicillin exposure (PAmE) on fetal testicular development have not been reported. Based on the characteristics of clinical medication, Kunming mice were orally gavaged with amoxicillin during pregnancy at different time (mid- or late-pregnancy), doses (75, 150 or 300 mg/kg·d) or courses (single- or multi-course). The results showed that compared with the control group, PAmE resulted in fetal testicular abnormal morphological development, cell proliferation inhibition and apoptosis enhancement, Leydig cell steroid synthase system (SF1, StAR, P450scc, CYP17a1) expression inhibition, and fetal blood testosterone levels decreased. Among them, the late-pregnancy and high-dose amoxicillin groups had severe damage, while the damage in different course groups was basically the same. Meanwhile, PAmE could damage the number and function of germ cells at all time, doses and courses, but had no obvious effect on Sertoli cells. It was further found that PAmE inhibited fetal testis AKT and ERK signaling pathways in late pregnancy and high dose, while the damage in different course groups was basically the same. In summary, this study proposed the developmental toxicity window of fetal testicular injury induced by PAmE in late-pregnancy and high-dose and its related mechanism of AKT and ERK signaling pathway, which provided a theoretical and experimental basis for guiding rational drug use during pregnancy and effectively evaluating the risk of fetal testicular developmental toxicity.
Collapse
|
13
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
14
|
Lee SJ, Kim KH, Lee DJ, Kim P, Park J, Kim SJ, Jung HS. MAST4 controls cell cycle in spermatogonial stem cells. Cell Prolif 2023; 56:e13390. [PMID: 36592615 PMCID: PMC10068930 DOI: 10.1111/cpr.13390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
Spermatogonial stem cell (SSC) self-renewal is regulated by reciprocal interactions between Sertoli cells and SSCs in the testis. In a previous study, microtubule-associated serine/threonine kinase 4 (MAST4) has been studied in Sertoli cells as a regulator of SSC self-renewal. The present study focused on the mechanism by which MAST4 in Sertoli cells transmits the signal and regulates SSCs, especially cell cycle regulation. The expression of PLZF, CDK2 and PLZF target genes was examined in WT and Mast4 KO testes by Immunohistochemistry, RT-qPCR and western blot. In addition, IdU and BrdU were injected into WT and Mast4 KO mice and cell cycle of SSCs was analysed. Finally, the testis tissues were cultured in vitro to examine the regulation of cell cycle by MAST4 pathway. Mast4 KO mice showed infertility with Sertoli cell-only syndrome and reduced sperm count. Furthermore, Mast4 deletion led to decreased PLZF expression and cell cycle progression in the testes. MAST4 also induced cyclin-dependent kinase 2 (CDK2) to phosphorylate PLZF and activated PLZF suppressed the transcriptional levels of genes related to cell cycle arrest, leading SSCs to remain stem cell state. MAST4 is essential for maintaining cell cycle in SSCs via the CDK2-PLZF interaction. These results demonstrate the pivotal role of MAST4 regulating cell cycle of SSCs and the significance of spermatogenesis.
Collapse
Affiliation(s)
- Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ka-Hwa Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Pyunggang Kim
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea
| | - Jinah Park
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea
| | - Seong-Jin Kim
- Department of MAST Research, Division in GILO Research Institute, GILO Foundation, Seoul, South Korea.,Division in Research Institute, Laboratory of Musculoskeletal Research, Medpacto Inc., Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
15
|
Liu R, Peng Y, Du W, Wu Y, Zhang W, Hu C, Liu M, Liu X, Wu J, Sun J, Zhao X. BMI1 fine-tunes gene repression and activation to safeguard undifferentiated spermatogonia fate. Front Cell Dev Biol 2023; 11:1146849. [PMID: 37169021 PMCID: PMC10164956 DOI: 10.3389/fcell.2023.1146849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive. Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor. Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression. Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfei Du
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Zhang
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Congxia Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- Department of Integrative Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| |
Collapse
|
16
|
Song W, Zhang D, Mi J, Du W, Yang Y, Chen R, Tian C, Zhao X, Zou K. E-cadherin maintains the undifferentiated state of mouse spermatogonial progenitor cells via β-catenin. Cell Biosci 2022; 12:141. [PMID: 36050783 PMCID: PMC9434974 DOI: 10.1186/s13578-022-00880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cadherins play a pivotal role in facilitating intercellular interactions between spermatogonial progenitor cells (SPCs) and their surrounding microenvironment. Specifically, E-cadherin serves as a cellular marker of SPCs in many species. Depletion of E-cadherin in mouse SPCs showed no obvious effect on SPCs homing and spermatogenesis. Results Here, we investigated the regulatory role of E-cadherin in regulating SPCs fate. Specific deletion of E-cadherin in germ cells was shown to promote SPCs differentiation, evidencing by reduced PLZF+ population and increased c-Kit+ population in mouse testes. E-cadherin loss down-regulated the expression level of β-catenin, leading to the reduced β-catenin in nuclear localization for transcriptional activity. Remarkably, increasing expression level of Cadherin-22 (CDH22) appeared specifically after E-cadherin deletion, indicating CDH22 played a synergistic effect with E-cadherin in SPCs. By searching for the binding partners of β-catenin, Lymphoid enhancer-binding factor 1 (LEF1), T-cell factor (TCF3), histone deacetylase 4 (HDAC4) and signal transducer and activator 3 (STAT3) were identified as suppressors of SPCs differentiation by regulating acetylation of differentiation genes with PLZF. Conclusions Two surface markers of SPCs, E-cadherin and Cadherin-22, synergically maintain the undifferentiation of SPCs via the pivotal intermediate molecule β-catenin. LEF1, TCF3, STAT3 and HDAC4 were identified as co-regulatory factors of β-catenin in regulation of SPC fate. These observations revealed a novel regulatory pattern of cadherins on SPCs fate. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00880-w.
Collapse
|
17
|
Lai PP, Jing YT, Guo L, Qin TZ, Xue YZ, Zhang ZW, Wang X, Miao X, Zhang W, Ding GR. Abscopal effects of thoracic X-ray radiation on spermatogenesis in mice. Front Physiol 2022; 13:984429. [PMID: 36091371 PMCID: PMC9458860 DOI: 10.3389/fphys.2022.984429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
The study aimed to elucidate abscopal effects of thoracic X-ray irradiation on spermatogenesis in mice. Male C57BL/6 mice were randomly divided into sham group and radiation group, and subjected to thorax fractionated X-ray irradiation or sham irradiation with the total dose of 5 Gy/day for each animal for four consecutive days. After irradiation, sperm morphology was observed, and sperm number was counted under microscope, and sperm apoptosis was detected by flow cytometry. Meanwhile, testis index was calculated, testicular morphology was observed using haematoxylin-eosin (HE) staining, and testicular ultrastructure was observed under transmission electron microscopy. The permeability of blood-testis barrier (BTB) was detected by Evans Blue fluorescence colorimetry. The protein levels of Bcl-2 associated X protein (Bax), B-cell leukemia-lymphoma-2 (Bcl-2) and Cleaved caspase 3, promyelocytic leukaemia zinc finger (PLZF) and c-kit proto-oncogene (c-kit) in testes were determined by western blotting (WB). The location of apoptotic cells was confirmed by terminal deoxynucleotidyl transferase (TdT) enzymaticated dUTP nick end labelling (TUNEL) assay. The levels of tumor necrosis factor alpha (TNF-α), transforming growth factor-β1 (TGF-β1), interleukin 10 (IL-10) were measured by enzyme-linked immunosorbent assay (ELISA). The levels of Total superoxide dismutase (T-SOD) and malondialdehyde (MDA) were measured by the biochemical assay kit. Compared with sham group, the sperm quality of mice in radiation group showed decreased number and survival rate, along with increased abnormality and total apoptosis rate. The testis index of irradiated mice was lower, the testicular apoptosis was increased, and their testicular histology and ultrastructure was severely damaged. The permeability of BTB was increased, the level of PLZF in testis was decreased, and the level of c-kit was increased by irradiation. After irradiation, the levels of TNF-α, TGF-β1, IL-10, T-SOD and MDA in testes were significantly changed. Taken together, abscopal effects of thoracic X-ray irradiation on spermatogenesis were obvious, which could decrease sperm quality and damage testicular morphology and increase the permeability of BTB, and a series of inflammation and oxidative stress factors were involved in the process. These findings provide novel insights into prevention and treatment for male reproductive damage induced by clinical thoracic irradiation.
Collapse
Affiliation(s)
- Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xia Miao
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Wei Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
- *Correspondence: Gui-Rong Ding,
| |
Collapse
|
18
|
Yun D, Zhou L, Shi J, Li X, Wu X, Sun F. G3BP2, a stress granule assembly factor, is dispensable for spermatogenesis in mice. PeerJ 2022; 10:e13532. [PMID: 35782098 PMCID: PMC9248785 DOI: 10.7717/peerj.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023] Open
Abstract
Background Spermatogenesis is a complex process that includes mitosis, meiosis, and spermiogenesis. During spermatogenesis, genetic factors play a vital role inthe formation of properly functioning sperm. GTPase-activating protein (SH3 domain)-binding protein 2 (G3BP2) is known to take part in immune responses, mRNA transport, and stress-granule assembly. However, its role in male fertility is unclear. Here, we generated a G3bp2 conditional knockout (cKO) mouse model to explore the function of G3BP2 in male fertility. Methods Polymerase chain reaction (PCR) and western blotting (WB) were used to confirm testis-specific G3bp2 knockout. Hematoxylin-eosin (HE) staining to observe testicular morphology and epididymal structure. Computer-aided sperm analysis (CASA) to detect sperm concentration and motility. Terminal deoxynucleotidyl transferase-dUTP nick-end labeling (TUNEL) assay was used to detect apoptotic cells. Results We found that cKO male mice are fertile with the normal morphology of the testis and sperm. Additionally, CASA of the semen from cKO mice showed that they all had a similar sperm concentration and motility. In addition, sperm from these mice exhibited a similar morphology. But the tunnel assay revealed increased apoptosis in their testes relative to the level in the wild type (WT). Conclusion Together, our data demonstrate that G3BP2 is dispensable for spermatogenesis and male fertility in mice albeit with the increased germ-cell apoptosis.
Collapse
|
19
|
Novel Gene Regulation in Normal and Abnormal Spermatogenesis. Cells 2021; 10:cells10030666. [PMID: 33802813 PMCID: PMC8002376 DOI: 10.3390/cells10030666] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Spermatogenesis is a complex and dynamic process which is precisely controlledby genetic and epigenetic factors. With the development of new technologies (e.g., single-cell RNA sequencing), increasingly more regulatory genes related to spermatogenesis have been identified. In this review, we address the roles and mechanisms of novel genes in regulating the normal and abnormal spermatogenesis. Specifically, we discussed the functions and signaling pathways of key new genes in mediating the proliferation, differentiation, and apoptosis of rodent and human spermatogonial stem cells (SSCs), as well as in controlling the meiosis of spermatocytes and other germ cells. Additionally, we summarized the gene regulation in the abnormal testicular microenvironment or the niche by Sertoli cells, peritubular myoid cells, and Leydig cells. Finally, we pointed out the future directions for investigating the molecular mechanisms underlying human spermatogenesis. This review could offer novel insights into genetic regulation in the normal and abnormal spermatogenesis, and it provides new molecular targets for gene therapy of male infertility.
Collapse
|
20
|
Wei Y, Yang D, Du X, Yu X, Zhang M, Tang F, Ma F, Li N, Bai C, Li G, Hua J. Interaction between DMRT1 and PLZF protein regulates self-renewal and proliferation in male germline stem cells. Mol Cell Biochem 2020; 476:1123-1134. [PMID: 33200378 DOI: 10.1007/s11010-020-03977-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/06/2020] [Indexed: 01/04/2023]
Abstract
Double sex and mab-3 related transcription factor 1 (DMRT1) encodes a double sex/mab-3 (DM) domain, which is the most conserved structure that involved in sex determination both in vertebrates and invertebrates. This study revealed important roles of DMRT1 in maintaining self-renewal of male germline stem cells (mGSCs). Our results showed that insufficient expression of DMRT1 in mice testes resulted in decreased number of spermatogonial cells and collapse of testicular niche in vivo. Self-renewal and proliferation of mGSCs were inhibited. Based on the bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) assay, it was finally revealed that the interaction between DMRT1 and promyelocytic leukemia zinc finger (PLZF) protein was essential for maintaining self-renewal of mGSCs. Moreover, BTB domain of PLZF, DM and DMRT1 domain of DMRT1 were indispensable in mGSC, which were responsible for preserving the quantity of germ cells. Our research provided a new scientific basis for studying the mechanism of self-renewal and spermatogenesis in goat mGSCs.
Collapse
Affiliation(s)
- Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Fanglin Ma
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|