1
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
2
|
Mazziotta C, Pellielo G, Tognon M, Martini F, Rotondo JC. Significantly Low Levels of IgG Antibodies Against Oncogenic Merkel Cell Polyomavirus in Sera From Females Affected by Spontaneous Abortion. Front Microbiol 2022; 12:789991. [PMID: 34970247 PMCID: PMC8712937 DOI: 10.3389/fmicb.2021.789991] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Pellielo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Circulating microRNA-197-3p as a potential biomarker for asbestos exposure. Sci Rep 2021; 11:23955. [PMID: 34907223 PMCID: PMC8671556 DOI: 10.1038/s41598-021-03189-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Asbestos is considered the main cause of diseases in workers exposed to this mineral in the workplace as well as an environmental pollutant. The association between asbestos and the onset of different diseases has been reported, but asbestos exposure specific biomarkers are not known. MicroRNAs (miRNAs) are small, single-strand, non-coding RNAs, with potential value as diagnostic, prognostic, and predictive markers in liquid biopsies. Sera collected from workers ex-exposed to asbestos (WEA) fibers were compared with sera from healthy subjects (HS) of similar age, as liquid biopsies. The expression of the circulating miRNA 197-3p was investigated employing two different highly analytical PCR methods, i.e. RT-qPCR and ddPCR. MiR-197-3p levels were tested in sera from WEA compared to HS. MiR-197-3p tested dysregulated in sera from WEA (n = 75) compared to HS (n = 62). Indeed, miR-197-3p was found to be 2.6 times down-regulated in WEA vs. HS (p = 0.0001***). In addition, an inverse correlation was detected between miR-197-3p expression level and cumulative asbestos exposure, being this miRNA down-regulated 2.1 times in WEA, with high cumulative asbestos exposure, compared to WEA with low exposure (p = 0.0303*). Circulating miR-197-3p, found to be down regulated in sera from WEA, is proposed as a new potential biomarker of asbestos exposure.
Collapse
|
4
|
Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol 2021; 184:750-759. [PMID: 34171259 DOI: 10.1016/j.ijbiomac.2021.06.132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
Pathogens pose a severe threat to food safety and human health. The traditional methods for pathogen detection can't meet the growing diagnosis and control need. Digital PCR (dPCR) attracts a considerable attention for its ability to absolutely quantify pathogens with features of high selectivity, simplicity, accuracy and rapidity. The dPCR technique that achieves absolute quantification based on end-point measurement without standard curve offers a guideline for further genetic analysis and molecular diagnosis. It could contribute to the quantification of low level of nucleic acid, early detection and timely prevention of pathogenic diseases. In this review, 1442 publications about dPCR were selected and the detections of various pathogens by dPCR were reviewed comprehensively, including viruses, bacteria, parasites and fungi. A number of examples are cited to illustrate that dPCR is a new powerful tool with desired accuracy, sensitivity, and reproducibility for quantification of different types of pathogens. Moreover, the benefits, challenges and future prospects of the dPCR were also highlighted in this review.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Mazziotta C, Lanzillotti C, Torreggiani E, Oton-Gonzalez L, Iaquinta MR, Mazzoni E, Gaboriaud P, Touzé A, Silvagni E, Govoni M, Martini F, Tognon M, Rotondo JC. Serum Antibodies Against the Oncogenic Merkel Cell Polyomavirus Detected by an Innovative Immunological Assay With Mimotopes in Healthy Subjects. Front Immunol 2021; 12:676627. [PMID: 34168646 PMCID: PMC8217635 DOI: 10.3389/fimmu.2021.676627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, has been detected in Merkel cell carcinoma (MCC) and in normal tissues. Since MCPyV infection occurs in both MCC-affected patients and healthy subjects (HS), innovative immunoassays for detecting antibodies (abs) against MCPyV are required. Herein, sera from HS were analyzed with a novel indirect ELISA using two synthetic peptides mimicking MCPyV capsid protein epitopes of VP1 and VP2. Synthetic peptides were designed to recognize IgGs against MCPyV VP mimotopes using a computer-assisted approach. The assay was set up evaluating its performance in detecting IgGs anti-MCPyV on MCPyV-positive (n=65) and -negative (n=67) control sera. Then, the ELISA was extended to sera (n=548) from HS aged 18-65 yrs old. Age-specific MCPyV-seroprevalence was investigated. Performance evaluation indicated that the assay showed 80% sensitivity, 91% specificity and 83.9% accuracy, with positive and negative predictive values of 94.3% and 71%, respectively. The ratio expected/obtained data agreement was 86%, with a Cohen's kappa of 0.72. Receiver-operating characteristic (ROC) curves analysis indicated that the areas under the curves (AUCs) for the two peptides were 0.82 and 0.74, respectively. Intra-/inter-run variations were below 9%. The overall prevalence of serum IgGs anti-MCPyV in HS was 62.9% (345/548). Age-specific MCPyV-seroprevalence was 63.1% (82/130), 56.7% (68/120), 64.5% (91/141), and 66.2% (104/157) in HS aged 18-30, 31-40, 41-50 and 51-65 yrs old, respectively (p>0.05). Performance evaluation suggests that our indirect ELISA is reliable in detecting IgGs anti-MCPyV. Our immunological data indicate that MCPyV infection occurs asymptomatically, at a relatively high prevalence, in humans.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pauline Gaboriaud
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Antoine Touzé
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Ettore Silvagni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
6
|
Oton-Gonzalez L, Rotondo JC, Cerritelli L, Malagutti N, Lanzillotti C, Bononi I, Ciorba A, Bianchini C, Mazziotta C, De Mattei M, Pelucchi S, Tognon M, Martini F. Association between oncogenic human papillomavirus type 16 and Killian polyp. Infect Agent Cancer 2021; 16:3. [PMID: 33413530 PMCID: PMC7792173 DOI: 10.1186/s13027-020-00342-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Killian polyp (KP) is a benign lesion that arises from the maxillary sinus. The etiology of KP is unknown. The aim of this study was to investigate the potential involvement of human papilloma- (HPV) and polyoma-viruses (HPyV) infections in the onset of KP. METHODS DNA from antral (n = 14) and nasal (n = 14) KP fractions were analyzed for HPV and HPyV sequences, genotypes, viral DNA load and physical status along with expression of viral proteins and p16 cellular protein. RESULTS The oncogenic HPV16 was detected in 3/14 (21.4%) antral KPs, whilst nasal KPs tested HPV-negative (0/14). The mean HPV16 DNA load was 4.65 ± 2.64 copy/104 cell. The whole HPV16 episomal genome was detected in one KP sample, whereas HPV16 DNA integration in two KPs. P16 mRNA level was lower in the KP sample carrying HPV16 episome than in KPs carrying integrated HPV16 and HPV- negative KPs (p< 0.001). None of the antral and nasal KP samples tested positive for HPyV DNA (0/28). CONCLUSIONS A fraction of KP tested positive for the oncogenic HPV16. HPV16 detection in the KP antral portion may be consistent with HPV16 infection derived from the maxillary sinus. HPV16 DNA integration represents a novel finding. Altogether, these data improve our knowledge on the association between KP and HPV infection, whereas it indicates that the KP onset is heterogeneous.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Luca Cerritelli
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Nicola Malagutti
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Ilaria Bononi
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Andrea Ciorba
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Bianchini
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - Fernanda Martini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
7
|
Rotondo JC, Oton-Gonzalez L, Mazziotta C, Lanzillotti C, Iaquinta MR, Tognon M, Martini F. Simultaneous Detection and Viral DNA Load Quantification of Different Human Papillomavirus Types in Clinical Specimens by the High Analytical Droplet Digital PCR Method. Front Microbiol 2020; 11:591452. [PMID: 33329471 PMCID: PMC7710522 DOI: 10.3389/fmicb.2020.591452] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA tumor viruses that mainly infect mucosal epithelia of anogenital and upper respiratory tracts. There has been progressive demand for more analytical assays for HPV DNA quantification. A novel droplet digital PCR (ddPCR) method was developed to simultaneously detect and quantify HPV DNA from different HPV types. DdPCR was initially tested for assay sensitivity, accuracy, specificity as well as intra- and inter-run assay variation employing four recombinant plasmids containing HPV16, HPV18, HPV11, and HPV45 DNAs. The assay was extended to investigate/quantify HPV DNA in Cervical Intraepithelial Neoplasia (CIN, n = 45) specimens and human cell lines (n = 4). DdPCR and qPCR data from clinical samples were compared. The assay showed high accuracy, sensitivity and specificity, with low intra-/inter- run variations, in detecting/quantifying HPV16/18/11/45 DNAs. HPV DNA was detected in 51.1% (23/45) CIN DNA samples by ddPCR, whereas 40% (18/45) CIN tested HPV-positive by qPCR. Five CIN, tested positive by ddPCR, were found to be negative by qPCR. In CIN specimens, the mean HPV DNA loads determined by ddPCR were 3.81 copy/cell (range 0.002-51.02 copy/cell), whereas 8.04 copy/cell (range 0.003-78.73 copy/cell) by qPCR. DdPCR and qPCR concordantly detected HPV DNA in SiHa, CaSki and Hela cells, whereas HaCaT tested HPV-negative. The correlation between HPV DNA loads simultaneously detected by ddPCR/qPCR in CINs/cell lines was good (R 2 = 0.9706, p < 0.0001). Our data indicate that ddPCR is a valuable technique in quantifying HPV DNA load in CIN specimens and human cell lines, thereby improving clinical applications, such as patient management after primary diagnosis of HPV-related lesions with HPV-type specific assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Rotondo JC, Oton-Gonzalez L, Selvatici R, Rizzo P, Pavasini R, Campo GC, Lanzillotti C, Mazziotta C, De Mattei M, Tognon M, Martini F. SERPINA1 Gene Promoter Is Differentially Methylated in Peripheral Blood Mononuclear Cells of Pregnant Women. Front Cell Dev Biol 2020; 8:550543. [PMID: 33015055 PMCID: PMC7494783 DOI: 10.3389/fcell.2020.550543] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
SERine Protein INhibitor-A1 (SERPINA1) is an inducible blood cell gene coding for alpha1-antitrypsin (AAT), a plasma protease inhibitor whose circulating levels are raised during inflammation, infection and advanced pregnancy. DNA methylation has been suggested to play a role in SERPINA1 gene expression regulation in peripheral blood mononuclear cells (PBMCs). The methylation status of SERPINA1 in PBMCs is unknown. The aim of this study was to evaluate the methylation profile of the SERPINA1 promoter in PBMC. To this purpose PBMCs and serum were collected from healthy subjects (HS) (n = 75), including blood donors (BD) (n = 25), pregnant women at early pregnancy (EP) (n = 25), i.e., within the first trimester, and pregnant women at late pregnancy (LP) (n = 25), i.e., at the third trimester. DNA from PBMCs was treated with sodium bisulfite and PCR amplified for SERPINA1 gene promoter, followed by sequencing analyses. AAT serum levels were determined by ELISA test. SERPINA1 was found hypermethylated in 58.7% of HS. The prevalence of SERPINA1 hypermethylation was significantly higher in BD (68%) and EP (88%) than in LP (20%) (p < 0.01). The median serum AAT concentration was 1.07, 0.63, and 3.15 mg/ml in BD, EP, and LP, respectively (p < 0.05, BD and EP vs LP). This study indicates, for the first time, that SERPINA1 gene promoter is differentially methylated in PBMCs from HS. Likely, modulation of the methylation may be a novel epigenetic regulator mechanism of AAT expression in the PBMC of HS. Therefore, SERPINA1 gene promoter methylation may represent an epigenetic biomarker of PBMCs in healthy subjects.
Collapse
Affiliation(s)
| | | | - Rita Selvatici
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rita Pavasini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Cardiology Unit, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Gianluca Calogero Campo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Cardiology Unit, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | | | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Tognon M, Tagliapietra A, Magagnoli F, Mazziotta C, Oton-Gonzalez L, Lanzillotti C, Vesce F, Contini C, Rotondo JC, Martini F. Investigation on Spontaneous Abortion and Human Papillomavirus Infection. Vaccines (Basel) 2020; 8:E473. [PMID: 32854278 PMCID: PMC7563606 DOI: 10.3390/vaccines8030473] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Viral infections are considered to be risk factors for spontaneous abortion (SA). Conflicting results have been reported on the association between Human Papillomavirus (HPV) and SA. HPV DNA was investigated in matched chorionic villi tissues and peripheral blood mononuclear cells (PBMCs) from women who experienced SA (n = 80, cases) and women who underwent a voluntary interruption of pregnancy (VI; n = 80, controls) by qualitative PCR and quantitative droplet digital PCR (ddPCR). Viral genotyping was performed using real-time PCR in HPV-positive samples. Specific IgG antibodies against HPV16 were investigated in sera from SA (n = 80) and VI (n = 80) females using indirect ELISA assays. None of the DNA samples from SA subjects was HPV-positive (0/80), whilst HPV DNA was detected in 2.5% of VI women (p > 0.05), with a mean viral DNA load of 7.12 copy/cell. VI samples (n = 2) were found to be positive for the HPV45 genotype. The ddPCR assay revealed a higher number of HPV-positive samples. HPV DNA was detected in 3.7% and 5% of SA and VI chorionic tissues, respectively, with mean viral DNA loads of 0.13 copy/cell in SA and 1.79 copy/cell in VI (p >0.05) samples. All DNA samples from the PBMCs of SA and VI females tested HPV-negative by both PCR and ddPCR. The overall prevalence of serum anti-HPV16 IgG antibodies was 37.5% in SA and 30% in VI (p > 0.05) women. For the first time, HPV DNA was detected and quantitatively analyzed using ddPCR in chorionic villi tissues and PBMCs from SA and VI women. Circulating IgG antibodies against HPV16 were detected in sera from SA and VI females. Our results suggest that HPV infection in chorionic villi may be a rare event. Accordingly, it is likely that HPV has no significant role in SA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Fossato di Mortara street, 64, 44121 Ferrara, Italy; (M.T.); (A.T.); (F.M.); (C.M.); (L.O.-G.); (C.L.); (F.V.); (C.C.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Fossato di Mortara street, 64, 44121 Ferrara, Italy; (M.T.); (A.T.); (F.M.); (C.M.); (L.O.-G.); (C.L.); (F.V.); (C.C.)
| |
Collapse
|
10
|
Malagutti N, Rotondo JC, Cerritelli L, Melchiorri C, De Mattei M, Selvatici R, Oton-Gonzalez L, Stomeo F, Mazzoli M, Borin M, Mores B, Ciorba A, Tognon M, Pelucchi S, Martini F. High Human Papillomavirus DNA loads in Inflammatory Middle Ear Diseases. Pathogens 2020; 9:224. [PMID: 32197385 PMCID: PMC7157545 DOI: 10.3390/pathogens9030224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 01/19/2023] Open
Abstract
Background. Previous studies reported human papillomaviruses (HPVs) in middle ear tumors, whereas these viruses have been poorly investigated in chronic inflammatory middle ear diseases. We investigated HPVs in non-tumor middle ear diseases, including chronic otitis media (COM). Methods. COM specimens (n = 52), including chronic suppurative otitis media (CSOM) (n =38) and cholesteatoma (COMC) (n = 14), as well as normal middle ear (NME) specimens (n = 56) were analyzed. HPV sequences and DNA loads were analyzed by quantitative-PCR. HPV genotyping was performed by direct sequencing. Results. HPV DNA was detected in 23% (12/52) of COM and in 30.4% (17/56) of NME (p > 0.05). Specifically, HPV DNA sequences were found in 26.3% (10/38) of CSOM and in 14.3% (2/14) of COMC (p > 0.05). Interestingly, the HPV DNA load was higher in COMC (mean 7.47 copy/cell) than in CSOM (mean 1.02 copy/cell) and NME (mean 1.18 copy/cell) (P = 0.03 and P = 0.017 versus CSOM and NME, respectively). HPV16 and HPV18 were the main genotypes detected in COMC, CSOM and NME. Conclusions. These data suggest that HPV may infect the middle ear mucosa, whereas HPV-positive COMCs are associated with higher viral DNA loads as compared to NME.
Collapse
Affiliation(s)
- Nicola Malagutti
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Luca Cerritelli
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Claudio Melchiorri
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Rita Selvatici
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Lucia Oton-Gonzalez
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Francesco Stomeo
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Manuela Mazzoli
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Michela Borin
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Beatrice Mores
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Andrea Ciorba
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Stefano Pelucchi
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| |
Collapse
|
11
|
Mazzoni E, Pellegrinelli E, Mazziotta C, Lanzillotti C, Rotondo JC, Bononi I, Iaquinta MR, Manfrini M, Vesce F, Tognon M, Martini F. Mother-to-child transmission of oncogenic polyomaviruses BKPyV, JCPyV and SV40. J Infect 2020; 80:563-570. [PMID: 32097686 DOI: 10.1016/j.jinf.2020.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Polyomavirus (PyV) infections have been associated with different diseases. BK (BKPyV), JC (JCPyV) and simian virus 40 (SV40) are the three main PyVs whose primary infection occurs early in life. Their vertical transmission was investigated in this study. METHODS PyV sequences were analyzed by the digital droplet PCR in blood, serum, placenta, amniotic fluid, vaginal smear from two independent cohorts of pregnant females and umbilical cord blood (UCB) samples. IgG antibodies against the three PyVs were investigated by indirect E.L.I.S.As with viral mimotopes. RESULTS DNAs from blood, vaginal smear and placenta tested BKPyV-, JCPyV- and SV40-positive with a distinct prevalence, while amniotic fluids were all PyVs-negative. A prevalence of 3%, 7%, and 3% for BKPyV, JCPyV and SV40 DNA sequences, respectively, was obtained in UCBs. Serum IgG antibodies from pregnant females reached an overall prevalence of 62%, 42% and 17% for BKPyV, JCPyV and SV40, respectively. Sera from newborns (UCB) tested IgG-positive with a prevalence of 10% for BKPyV/JCPyV and 3% for SV40. CONCLUSIONS In this investigation, PyV vertical transmission was revealed by detecting PyV DNA sequences and IgG antibodies in samples from females and their offspring suggesting a potential risk of diseases in newborns.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Elena Pellegrinelli
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Maria Rosa Iaquinta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Marco Manfrini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy; Biostatistic Unit, GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Fortunato Vesce
- Section of Gynecology and Obstetrics, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| |
Collapse
|