1
|
Jacob S, Abuarja T, Shaath R, Hasan W, Balayya S, Abdelrahman D, Almana K, Afreen H, Hani A, Nomikos M, Fakhro K, Elrayess MA, Da'as SI. Deciphering metabolomics and lipidomics landscape in zebrafish hypertrophic cardiomyopathy model. Sci Rep 2024; 14:21902. [PMID: 39300306 DOI: 10.1038/s41598-024-72863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
To elucidate the lipidomic and metabolomic alterations associated with hypertrophic cardiomyopathy (HCM) pathogenesis, we utilized cmybpc3-/- zebrafish model. Fatty acid profiling revealed variability of 10 fatty acids profiles, with heterozygous (HT) and homozygous (HM) groups exhibiting distinct patterns. Hierarchical cluster analysis and multivariate analyses demonstrated a clear separation of HM from HT and control (CO) groups related to cardiac remodeling. Lipidomic profiling identified 257 annotated lipids, with two significantly dysregulated between CO and HT, and 59 between HM and CO. Acylcarnitines and phosphatidylcholines were identified as key contributors to group differentiation, suggesting a shift in energy source. Untargeted metabolomics revealed 110 and 53 significantly dysregulated metabolites. Pathway enrichment analysis highlighted perturbations in multiple metabolic pathways in the HM group, including nicotinate, nicotinamide, purine, glyoxylate, dicarboxylate, glycerophospholipid, pyrimidine, and amino acid metabolism. Our study provides comprehensive insights into the lipidomic and metabolomic unique signatures associated with cmybpc3-/- induced HCM in zebrafish. The identified biomarkers and dysregulated pathways shed light on the metabolic perturbations underlying HCM pathology, offering potential targets for further investigation and potential new therapeutic interventions.
Collapse
Affiliation(s)
- Shana Jacob
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Tala Abuarja
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Rulan Shaath
- Research Department, Sidra Medicine, Doha, 26999, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Waseem Hasan
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | | | | | - Khalid Almana
- Department of Biochemistry, Swansea University, SA1 8EN, Swansea, UK
| | - Hajira Afreen
- Department of Biological Sciences, Qatar University, Doha, 2713, Qatar
| | - Ahmad Hani
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Khalid Fakhro
- Research Department, Sidra Medicine, Doha, 26999, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
- Weill Cornell Medical College, Doha, 24144, Qatar
| | - Mohamed A Elrayess
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Sahar Isa Da'as
- Research Department, Sidra Medicine, Doha, 26999, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar.
| |
Collapse
|
2
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Matsubara S, Osugi T, Shiraishi A, Wada A, Satake H. Comparative analysis of transcriptomic profiles among ascidians, zebrafish, and mice: Insights from tissue-specific gene expression. PLoS One 2021; 16:e0254308. [PMID: 34559810 PMCID: PMC8462739 DOI: 10.1371/journal.pone.0254308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
Tissue/organ-specific genes (TSGs) are important not only for understanding organ development and function, but also for investigating the evolutionary lineages of organs in animals. Here, we investigate the TSGs of 9 adult tissues of an ascidian, Ciona intestinalis Type A (Ciona robusta), which lies in the important position of being the sister group of vertebrates. RNA-seq and qRT-PCR identified the Ciona TSGs in each tissue, and BLAST searches identified their homologs in zebrafish and mice. Tissue distributions of the vertebrate homologs were analyzed and clustered using public RNA-seq data for 12 zebrafish and 30 mouse tissues. Among the vertebrate homologs of the Ciona TSGs in the neural complex, 48% and 63% showed high expression in the zebrafish and mouse brain, respectively, suggesting that the central nervous system is evolutionarily conserved in chordates. In contrast, vertebrate homologs of Ciona TSGs in the ovary, pharynx, and intestine were not consistently highly expressed in the corresponding tissues of vertebrates, suggesting that these organs have evolved in Ciona-specific lineages. Intriguingly, more TSG homologs of the Ciona stomach were highly expressed in the vertebrate liver (17-29%) and intestine (22-33%) than in the mouse stomach (5%). Expression profiles for these genes suggest that the biological roles of the Ciona stomach are distinct from those of their vertebrate counterparts. Collectively, Ciona tissues were categorized into 3 groups: i) high similarity to the corresponding vertebrate tissues (neural complex and heart), ii) low similarity to the corresponding vertebrate tissues (ovary, pharynx, and intestine), and iii) low similarity to the corresponding vertebrate tissues, but high similarity to other vertebrate tissues (stomach, endostyle, and siphons). The present study provides transcriptomic catalogs of adult ascidian tissues and significant insights into the evolutionary lineages of the brain, heart, and digestive tract of chordates.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- * E-mail:
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Azumi Wada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
5
|
Pagnamenta AT, Kaiyrzhanov R, Zou Y, Da'as SI, Maroofian R, Donkervoort S, Dominik N, Lauffer M, Ferla MP, Orioli A, Giess A, Tucci A, Beetz C, Sedghi M, Ansari B, Barresi R, Basiri K, Cortese A, Elgar G, Fernandez-Garcia MA, Yip J, Foley AR, Gutowski N, Jungbluth H, Lassche S, Lavin T, Marcelis C, Marks P, Marini-Bettolo C, Medne L, Moslemi AR, Sarkozy A, Reilly MM, Muntoni F, Millan F, Muraresku CC, Need AC, Nemeth AH, Neuhaus SB, Norwood F, O'Donnell M, O'Driscoll M, Rankin J, Yum SW, Zolkipli-Cunningham Z, Brusius I, Wunderlich G, Karakaya M, Wirth B, Fakhro KA, Tajsharghi H, Bönnemann CG, Taylor JC, Houlden H. An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy. Brain 2021; 144:584-600. [PMID: 33559681 PMCID: PMC8263055 DOI: 10.1093/brain/awaa420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 01/26/2023] Open
Abstract
The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Natalia Dominik
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Marlen Lauffer
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Matteo P Ferla
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrea Orioli
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Adam Giess
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | | | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rita Barresi
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Keivan Basiri
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Andrea Cortese
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Greg Elgar
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Janice Yip
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Gutowski
- Department of Neurology, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Randall Division of Cell and Molecular Biophysics Muscle Signalling Section, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Saskia Lassche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lavin
- Department of Neurology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Carlo Marcelis
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter Marks
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Livija Medne
- Divisions of Neurology and Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | | | - Colleen C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
| | - Anna C Need
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Norwood
- Department of Neurology, King's College Hospital, London, UK
| | - Marie O'Donnell
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Julia Rankin
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Sabrina W Yum
- Division of Pediatric Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabell Brusius
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Homa Tajsharghi
- School of Health Science, Division Biomedicine and Translational Medicine, University of Skovde, Sweden
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Jenny C Taylor
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|