1
|
Xie S, Liao P, Mi S, Song L, Chen X. Emerging patterns in nanoparticle-based therapeutic approaches for rheumatoid arthritis: A comprehensive bibliometric and visual analysis spanning two decades. Open Life Sci 2025; 20:20251071. [PMID: 40129468 PMCID: PMC11931663 DOI: 10.1515/biol-2025-1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
The aim of this study is to analyze scientific literature to investigate the current research status, focus areas, and developmental trends in nanoparticle systems for rheumatoid arthritis (RA) therapy. To do that, Research articles published from 2003 to 2023 were retrieved from the Web of Science database, and analysis included quantitative output, distribution by country/region, collaborative publishing data, influential authors, high-yield institutions, keywords, hotspots, and development trends. Visual knowledge maps were generated using VOSviewer and Citespace. Findings reveal a steady increase in publications related to nanoparticle systems for RA therapy, indicating growing global interest. China leads with 487 papers (37.433%), followed by the United States (233, 17.909%), India (179, 13.759%), South Korea (89, 6.841%), and Egypt (50, 3.843%). Active collaboration is observed, particularly between the United States and countries such as China, Germany, Saudi Arabia, India, England, and Pakistan. The Chinese Academy of Sciences ranks first in total articles published (55), with Liu Y from China being the most prolific author. The Journal of Controlled Release emerges as a primary outlet in this field. Primary keyword clusters include "Drug delivery systems," "Gold nanoparticles," "Transdermal delivery," "Angiogenesis," "Collagen-induced arthritis," "Rheumatoid arthritis," "Oxidant stress," "Dendritic cells," and "pH sensitive." Research hotspots with great development potential include "Immunopathological Mechanisms," "Novel drugs," and "Smart delivery system." In conclusion, research on nanoparticle systems for RA therapy has significantly expanded over the past two decades, with a focus on elucidating pathogenetic mechanisms and advancing novel drug delivery strategies anticipated to be prominent in the foreseeable future.
Collapse
Affiliation(s)
- Shenwei Xie
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, 418000, China
| | - Pan Liao
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, 418000, China
| | - Shuang Mi
- Department of Respiratory and Critical Care Medicine, Shenzhen Yantian District People’s Hospital, Shenzhen, 518000, China
| | - Liang Song
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, 418000, China
| | - Xiaoyuan Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen Yantian District People’s Hospital, Shenzhen, 518000, China
| |
Collapse
|
2
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
4
|
Zhou X, Tang B, Huang Q, Yang S, Jiang Y, Xu L, Chen W, Shan G, Liao X, Hou C, Yao Z, Zou C, Ou R, Xu Y, Li D. Engineered Mesenchymal Stem Cell-Derived Extracellular Vesicles Scavenge Self-Antigens for Psoriasis Therapy via Modulating Metabolic and Immunological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410067. [PMID: 39665264 PMCID: PMC11809393 DOI: 10.1002/advs.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Psoriasis is a chronic inflammatory dermatosis driven by excessive activation of the immune system. Recent studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) to psoriasis because of their immunomodulation functions. Yet, the outcome of MSC-EVs alone is still unsatisfactory and the underlying mechanisms are also unclear. Here, it is uncovered that arginase1 (Arg1)/polyamine is overexpressed in psoriasis patients and murine, inducing the in-situ accumulation of self-antigens. Engineered nor@MSC-EVs are fabricated by loading Arg1 inhibitor nor-NOHA into MSC-EVs for studying the therapeutic effect and mechanism of psoriasis. The nor@MSC-EVs exhibited profound suppression of the NF-κB signaling pathway by targeting Arg1/polyamine-mediated DCs/Th17 axis through scavenging self-antigens, resulting in superior mitigation of skin lesions and modulation of local and systemic metabolic and immunological disorders compared to the MSC-EVs and clinically used anti-IL17A both in vitro and in vivo. Together, the results highlight a novel perspective for psoriasis therapy by nor@MSC-EVs with broad clinical translational potential.
Collapse
Affiliation(s)
- Xin Zhou
- Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
- Department of DermatovenereologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Bo Tang
- Department of PathologyThe Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhou646000China
| | - Qing Huang
- Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Siyu Yang
- Department of DermatovenereologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Yang Jiang
- Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Lizhou Xu
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Wen Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Guangchang Shan
- Department of PathologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Xuankai Liao
- Department of PathologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Chongchao Hou
- Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
- Department of DermatovenereologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Zhihong Yao
- Shenzhen Wingor Biotechnology Co., ltdShenzhen518107China
| | - Chaowei Zou
- Department of Clinical MedicineZhongshan Medical SchoolSun Yat‐sen UniversityGuangzhou528478China
| | - Rongying Ou
- Department of Gynaecology and ObstetricsThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325000China
| | - Yunsheng Xu
- Department of DermatovenereologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Danyang Li
- Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| |
Collapse
|
5
|
Zhang Y, Wu H, Huilian C, Fu L. Detoxification Mechanism and the Impact of Transamidation-Modified Gliadin on Celiac-Based Gluten Sensitivity: The Potential of Unlocking Gluten Tolerance in Functional Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1682-1693. [PMID: 39996420 DOI: 10.1021/acs.jafc.4c10318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Transamidation of gliadin under reducing conditions has shown promise in mitigating celiac disease-related gluten toxicity. However, comprehensive evaluation in both in vitro and in vivo models is crucial. This study investigated the effects of transamidated gliadin (GM) on celiac toxicity using Caco-2 cell monolayers, bone marrow-derived dendritic cells (BMDCs), and a BALB/c mouse model. In cellular level, GM mitigated intestinal damage compared to unmodified gliadin and stimulated a less pronounced pro-inflammatory response, suggesting a reduced activation of the T-cell-mediated immune system. In vivo, the GM group displayed lower levels of pro-inflammatory factors and less pronounced Th1/Th2 imbalance compared to the unmodified gliadin group. Notably, the GM also improved the balance of the intestinal microbiome. In brief, GM exhibited significantly reduced celiac toxicity in both cellular and animal models that mimics the intestinal environment of celiac disease. These findings suggest that transamidation treatment holds potential as a safer alternative strategy to lower the toxicity of wheat gliadin/wheat flour, potentially paving the way for developing modified gluten-based foods with desirable texture or ingredients as a nutritional enhancer or structure improver, benefiting individuals with specific needs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, P. R. China
| | - Che Huilian
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
- Sichuan Advanced Agricultural & Industrial Institute, Chengdu, Sichuan 611400, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| |
Collapse
|
6
|
Zhao DZ, Yang RL, Wei HX, Yang K, Yang YB, Wang NX, Zhang Q, Chen F, Zhang T. Advances in the research of immunomodulatory mechanism of mesenchymal stromal/stem cells on periodontal tissue regeneration. Front Immunol 2025; 15:1449411. [PMID: 39830512 PMCID: PMC11739081 DOI: 10.3389/fimmu.2024.1449411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Periodontal disease is a highly prevalent disease worldwide that seriously affects people's oral health, including gingivitis and periodontitis. Although the current treatment of periodontal disease can achieve good control of inflammation, it is difficult to regenerate the periodontal supporting tissues to achieve a satisfactory therapeutic effect. In recent years, due to the good tissue regeneration ability, the research on Mesenchymal stromal/stem cells (MSCs) and MSC-derived exosomes has been gradually deepened, especially its ability to interact with the microenvironment of the body in the complex immunoregulatory network, which has led to many new perspectives on the therapeutic strategies for many diseases. This paper systematically reviews the immunomodulatory (including bone immunomodulation) properties of MSCs and their role in the periodontal inflammatory microenvironment, summarizes the pathways and mechanisms by which MSCs and MSC-EVs have promoted periodontal regeneration in recent years, lists potential areas for future research, and describes the issues that should be considered in future basic research and the direction of development of "cell-free therapies" for periodontal regeneration.
Collapse
Affiliation(s)
- De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Han-Xiao Wei
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kang Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi-Bing Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Nuo-Xin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Chen
- Department of Prosthetics, Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Harrell CR, Volarevic A, Arsenijevic A, Djonov V, Volarevic V. Targeted Therapy for Severe Sjogren's Syndrome: A Focus on Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:13712. [PMID: 39769474 PMCID: PMC11677171 DOI: 10.3390/ijms252413712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic inflammatory response, which results in immune cell-driven injury of the lungs, kidneys, liver, and brain. Therapeutic agents that are used for the treatment of severe pSS encounter various limitations and challenges that can impact their effectiveness. Accordingly, there is a need for targeted, personalized therapy that could address the underlying detrimental immune response while minimizing side effects. Results obtained in a large number of recently published studies have demonstrated the therapeutic efficacy of mesenchymal stem cells (MSCs) in the treatment of severe pSS. MSCs, in a juxtacrine and paracrine manner, suppressed the generation of inflammatory Th1 and Th17 lymphocytes, induced the expansion of immunosuppressive cells, impaired the cross-talk between auto-reactive T and B cells, and prevented the synthesis and secretion of auto-antibodies. Additionally, MSC-derived growth and trophic factors promoted survival and prevented apoptosis of injured cells in inflamed lacrimal and salivary glands, thereby enhancing their repair and regeneration. In this review article, we summarized current knowledge about the molecular mechanisms that are responsible for the beneficial effects of MSCs in the suppression of immune cell-driven injury of exocrine glands and vital organs, paving the way for a better understanding of their therapeutic potential in the targeted therapy of severe pSS.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Ana Volarevic
- Department of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
- Faculty of Pharmacy Novi Sad, Heroja Pinkija 4, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024; 20:2165-2193. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Zhang Y, Fan M, Zhang Y. Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds. Front Bioeng Biotechnol 2024; 12:1421674. [PMID: 39497791 PMCID: PMC11532096 DOI: 10.3389/fbioe.2024.1421674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Bone defects can arise from trauma or pathological factors, resulting in compromised bone integrity and the loss or absence of bone tissue. As we are all aware, repairing bone defects is a core problem in bone tissue engineering. While minor bone defects can self-repair if the periosteum remains intact and normal osteogenesis occurs, significant defects or conditions such as congenital osteogenesis imperfecta present substantial challenges to self-healing. As research on mesenchymal stem cell (MSC) advances, new fields of application have emerged; however, their application in orthopedics remains one of the most established and clinically valuable directions. This review aims to provide a comprehensive overview of the research progress regarding MSCs in the treatment of diverse bone defects. MSCs, as multipotent stem cells, offer significant advantages due to their immunomodulatory properties and ability to undergo osteogenic differentiation. The review will encompass the characteristics of MSCs within the osteogenic microenvironment and summarize the research progress of MSCs in different types of bone defects, ranging from their fundamental characteristics and animal studies to clinical applications.
Collapse
Affiliation(s)
- Yueyao Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Mengke Fan
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
10
|
Wang Z, Yang C, Yan S, Sun J, Zhang J, Qu Z, Sun W, Zang J, Xu D. Emerging Role and Mechanism of Mesenchymal Stem Cells-Derived Extracellular Vesicles in Rheumatic Disease. J Inflamm Res 2024; 17:6827-6846. [PMID: 39372581 PMCID: PMC11451471 DOI: 10.2147/jir.s488201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from mesoderm. Through cell-to-cell contact or paracrine effects, they carry out biological tasks like immunomodulatory, anti-inflammatory, regeneration, and repair. Extracellular vesicles (EVs) are the primary mechanism for the paracrine regulation of MSCs. They deliver proteins, nucleic acids, lipids, and other active compounds to various tissues and organs, thus facilitating intercellular communication. Rheumatic diseases may be treated using MSCs and MSC-derived EVs (MSC-EVs) due to their immunomodulatory capabilities, according to mounting data. Since MSC-EVs have low immunogenicity, high stability, and similar biological effects as to MSCs themselves, they are advantageous over cell therapy for potential therapeutic applications in rheumatoid arthritis, systemic erythematosus lupus, systemic sclerosis, Sjogren's syndrome, and other rheumatoid diseases. This review integrates recent advances in the characteristics, functions, and potential molecular mechanisms of MSC-EVs in rheumatic diseases and provides a new understanding of the pathogenesis of rheumatic diseases and MSC-EV-based treatment strategies.
Collapse
Affiliation(s)
- Zhangxue Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chunjuan Yang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jiamei Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Zhuojian Qu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Donghua Xu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
11
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
12
|
Hamidi SH, Etebar N, Rahimzadegan M, Zali A, Roodsari SR, Niknazar S. Mesenchymal stem cells and their derived exosomes in multiple sclerosis disease: from paper to practice. Mol Cell Biochem 2024; 479:1643-1671. [PMID: 38977625 DOI: 10.1007/s11010-024-05051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative, inflammatory, and demyelinating disease of the central nervous system (CNS). Current medicines are not sufficient to control the inflammation and progressive damage to the CNS that is known in MS. These drawbacks highlight the need for novel treatment options. Cell therapy can now be used to treat complex diseases when conventional therapies are ineffective. Mesenchymal stem cells (MSCs) are a diverse group of multipotential non-hematopoietic stromal cells which have immunomodulatory, neurogenesis, and remyelinating capacity. Their advantageous effects mainly rely on paracrine, cell-cell communication and differentiation properties which introduced them as excellent candidates for MS therapy. Exosomes, as one of the MSCs secretomes, have unique properties that make them highly promising candidates for innovative approach in regenerative medicine. This review discusses the therapeutic potential of MSCs and their derived exosomes as a novel treatment for MS, highlighting the differences between these two approaches.
Collapse
Affiliation(s)
- Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences Bachelor of Pharmacy, Bangalore, India
| | - Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Rahmati Roodsari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Kanannejad Z, Arab S, Soleimanian S, Mazare A, Kheshtchin N. Exosomes in asthma: Underappreciated contributors to the pathogenesis and novel therapeutic tools. Immun Inflamm Dis 2024; 12:e1325. [PMID: 38934401 PMCID: PMC11209551 DOI: 10.1002/iid3.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Asthma, a chronic inflammatory disease with diverse pathomechanisms, presents challenges in developing personalized diagnostic and therapeutic approaches. This review aims to provide a comprehensive overview of the role of exosomes, small extracellular vesicles, in asthma pathophysiology and explores their potential as diagnostic biomarkers and therapeutic tools. METHODS A literature search was conducted to identify recent studies investigating the involvement of exosomes in asthma. The retrieved articles were analyzed to extract relevant information on the role of exosomes in maintaining lung microenvironment homeostasis, regulating inflammatory responses, and their diagnostic and therapeutic potential for asthma. RESULTS Exosomes secreted by various cell types, have emerged as crucial mediators of intercellular communication in healthy and diseased conditions. Evidence suggest that exosomes play a significant role in maintaining lung microenvironment homeostasis and contribute to asthma pathogenesis by regulating inflammatory responses. Differential exosomal content between healthy individuals and asthmatics holds promise for the development of novel asthma biomarkers. Furthermore, exosomes secreted by immune and nonimmune cells, as well as those detected in biofluids, demonstrate potential in promoting or regulating immune responses, making them attractive candidates for designing new treatment strategies for inflammatory conditions such as asthma. CONCLUSION Exosomes, with their ability to modulate immune responses and deliver therapeutic cargo, offer potential as targeted therapeutic tools in asthma management. Further research and clinical trials are required to fully understand the mechanisms underlying exosome-mediated effects and translate these findings into effective diagnostic and therapeutic strategies for asthma patients.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research CenterShiraz University of Medical SciencesShirazIran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Amirhossein Mazare
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasim Kheshtchin
- Allergy Research CenterShiraz University of Medical SciencesShirazIran
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
14
|
Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from research to clinic. AMERICAN JOURNAL OF STEM CELLS 2024; 13:37-58. [PMID: 38765802 PMCID: PMC11101986 DOI: 10.62347/jawm2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 05/22/2024]
Abstract
Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Dailin Yuan
- Zhejiang UniversityHangzhou 310058, Zhejiang, PR China
| | - Yufei Bao
- School of Biomedical Engineering, University of SydneyDarlington, NSW 2008, Australia
| | - Ahmed El-Hashash
- Texas A&M University, 3258 TAMU, College StationTX 77843-3258, USA
| |
Collapse
|
15
|
Ortmann W, Such A, Kolaczkowska E. Impact of microparticles released during murine systemic inflammation on macrophage activity and reactive nitrogen species regulation. Immunol Res 2024; 72:299-319. [PMID: 38008825 PMCID: PMC11031483 DOI: 10.1007/s12026-023-09436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Microparticles (MPs) packaged with numerous bioactive molecules are essential vehicles in cellular communication in various pathological conditions, including systemic inflammation, Whereas MPs are studied mostly upon isolation, their detection in vivo is limited. Impact of MPs might depend on target cell type and cargo they carry; thus herein, we aimed at verifying MPs' impact on macrophages. Unlike neutrophils, monocytes/macrophages are rather inactive during sepsis, and we hypothesized this might be at least partially controlled by MPs. For the above reasons, we focused on the detection of MPs with intravital microscopy (IVM) and report the presence of putative neutrophil-derived MPs in the vasculature of cremaster muscle of endotoxemic mice. Subsequently, we characterized MPs isolated not only from their blood but also from the peritoneal cavity and observed differences in their size, concentration, and cargo. Such MPs were then used to study their impact on RAW 264.7 macrophage cell line performance (cell viability/activity, cytokines, oxygen, and nitrogen reactive species). Addition of MPs to macrophages with or without co-stimulation with lipopolysaccharide did not affect respiratory burst, somewhat decreased mitochondrial activity but increased inducible nitric oxide synthase (iNOS) expression, and NO production especially in case of plasma-derived MPs. The latter MPs carried more iNOS-controlling ceruloplasmin than those discharged into the peritoneal cavity. We conclude that MPs can be detected in vivo with IVM and their cellular origin identified. They are heterogeneous in nature depending on the site of their release. Consequently, microparticles released during systemic inflammation to various body compartments differentially affect macrophages.
Collapse
Affiliation(s)
- Weronika Ortmann
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Anna Such
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Krakow, Poland.
| |
Collapse
|
16
|
Sadeghi M, Mohammadi M, Tavakol Afshari J, Iranparast S, Ansari B, Dehnavi S. Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation. Cell Immunol 2024; 397-398:104813. [PMID: 38364454 DOI: 10.1016/j.cellimm.2024.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Iranparast
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Turano E, Scambi I, Bonafede R, Dusi S, Angelini G, Lopez N, Marostica G, Rossi B, Furlan R, Constantin G, Mariotti R, Bonetti B. Extracellular vesicles from adipose mesenchymal stem cells target inflamed lymph nodes in experimental autoimmune encephalomyelitis. Cytotherapy 2024; 26:276-285. [PMID: 38231166 DOI: 10.1016/j.jcyt.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND AIMS Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. METHODS To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. RESULTS Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. CONCLUSIONS This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.
Collapse
Affiliation(s)
- Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Dusi
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriele Angelini
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Lopez
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Marostica
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Rossi
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriela Constantin
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| |
Collapse
|
18
|
Sun T, Zhou C, Lu F, Dong Z, Gao J, Li B. Adipose-derived stem cells in immune-related skin disease: a review of current research and underlying mechanisms. Stem Cell Res Ther 2024; 15:37. [PMID: 38331803 PMCID: PMC10854049 DOI: 10.1186/s13287-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.
Collapse
Affiliation(s)
- Tianyi Sun
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cheng Zhou
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jianhua Gao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Bin Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
19
|
Shi H, Yang Z, Cui J, Tao H, Ma R, Zhao Y. Mesenchymal stem cell-derived exosomes: a promising alternative in the therapy of preeclampsia. Stem Cell Res Ther 2024; 15:30. [PMID: 38317195 PMCID: PMC10845755 DOI: 10.1186/s13287-024-03652-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Preeclampsia (PE) is a common morbid complication during pregnancy, affecting 2%-8% of pregnancies globally and posing serous risks to the health of both mother and fetus. Currently, the only effective treatment for PE is timely termination of pregnancy, which comes with increased perinatal risks. However, there is no effective way to delay pathological progress and improve maternal and fetal outcomes. In light of this, it is of great significance to seek effective therapeutic strategies for PE. Exosomes which are nanoparticles carrying bioactive substances such as proteins, lipids, and nucleic acids, have emerged as a novel vehicle for intercellular communication. Mesenchymal stem cell-derived exosomes (MSC-Exos) participate in various important physiological processes, including immune regulation, cell proliferation and migration, and angiogenesis, and have shown promising potential in tissue repair and disease treatment. Recently, MSC-Exos therapy has gained popularity in the treatment of ischaemic diseases, immune dysfunction, inflammatory diseases, and other fields due to their minimal immunogenicity, characteristics similar to donor cells, ease of storage, and low risk of tumor formation. This review elaborates on the potential therapeutic mechanism of MSC-Exos in treating preeclampsia, considering the main pathogenic factors of the condition, including placental vascular dysplasia, immunological disorders, and oxidative stress, based on the biological function of MSC-Exos. Additionally, we discuss in depth the advantages and challenges of MSC-Exos as a novel acellular therapeutic agent in preeclampsia treatment.
Collapse
Affiliation(s)
- Haoran Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shen Zhen, 518000, China.
| |
Collapse
|
20
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
21
|
Ge X, Meng Q, Liu X, Shi S, Geng X, Wang E, Li M, Ma X, Lin F, Zhang Q, Li Y, Tang L, Zhou X. Extracellular vesicles from normal tissues orchestrate the homeostasis of macrophages and attenuate inflammatory injury of sepsis. Bioeng Transl Med 2024; 9:e10609. [PMID: 38193123 PMCID: PMC10771551 DOI: 10.1002/btm2.10609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Extracellular vesicles (EVs) exist throughout our bodies. We recently revealed the important role of intracardiac EVs induced by myocardial ischemia/reperfusion on cardiac injury and dysfunction. However, the role of EVs isolated from normal tissues remains unclear. Here we found that EVs, derived from murine heart, lung, liver and kidney have similar effects on macrophages and regulate the inflammation, chemotaxis, and phagocytosis of macrophages. Interestingly, EV-treated macrophages showed LPS resistance with reduced expressions of inflammatory cytokines and enhanced phagocytic activity. Furthermore, we demonstrated that the protein content in EVs contributed to the activation of inflammation, while the RNA component mainly limited the excessive inflammatory response of macrophages to LPS. The enrichment of miRNAs, including miR-148a-3p, miR-1a-3p and miR-143-3p was confirmed in tissue EVs. These EV-enriched miRNAs contributed to the inflammation remission in LPS induced macrophages through multiple pathways, including STAT3, P65 and SAPK/JNK. Moreover, administration of both EVs and EV-educated macrophages attenuated septic injury and cytokine storm in murine CLP models. Taken together, the present study disclosed that EVs from normal tissues can orchestrate the homeostasis of macrophages and attenuate inflammatory injury of sepsis. Therefore, tissue derived EVs or their derivatives may serve as potential therapeutic strategies in inflammatory diseases.
Collapse
Affiliation(s)
- Xinyu Ge
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of thoracic Surgery, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xuan Liu
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of thoracic Surgery, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Shanshan Shi
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Mimi Li
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xiaoxue Ma
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qianqian Zhang
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Internal Emergency Medicine and Critical Care, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yinzhen Li
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Respiratory Medicine, Shanghai East HospitalTongji University, School of MedicineShanghaiChina
| | - Lunxian Tang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Shanghai Heart Failure Research Center, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Naeem A, Waseem A, Siddiqui AJ, Ray B, Sinha R, Khan AQ, Haque R, Raza SS. Focusing on the cytokine storm in the battle against COVID-19: the rising role of mesenchymal-derived stem cells. Stem Cells 2024:191-207. [DOI: 10.1016/b978-0-323-95545-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Jiang Y, Zhao J, Wang M, Huang F, Li J, Liu R, Wan J, Hao S. Mesenchymal stem cell-derived exosomes can alleviate GVHD and preserve the GVL effect in allogeneic stem cell transplantation animal models. Front Immunol 2023; 14:1284936. [PMID: 38124750 PMCID: PMC10731297 DOI: 10.3389/fimmu.2023.1284936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) can alleviate graft-versus-host disease (GVHD) in hematopoietic stem cell transplantation (HSCT). MSCs-derived exosomes (MEXs) can mirror the biological function of their parent cells. Whether MEXs can alleviate GVHD like their parent cells or not is unclear. In this study, we investigate the effects of MEXs on GVHD and graft-versus-leukemia (GVL) effect in vitro and in HSCT animal models. Method MSCs were produced using bone marrow mononuclear cells (MNCs), and MEXs were separated from the supernatants of MSCs. Electron microscopy, western blot, and nanoparticle tracking analysis (NTA) were used to determine the characteristics of MEXs. The immunomodulatory function of MEXs and their effects on GVHD and GVL were examined in vitro and in vivo. Result Like other cell-type derived exosomes, our data revealed that MEXs were also disc-shaped vesicles with a diameter of 100-200 nm under electron microscopy and were positive for the exosomal hallmark proteins. MEXs can notably inhibit the expression of costimulatory molecules and functional cytokine secretion of dendritic cells (DCs). Meanwhile, MEXs can exert suppressive effects on T lymphocyte proliferation and activation. Moreover, MEXs can also encourage the polarization of macrophages toward the M2 type. In animal HSCT models, MEXs can promote the differentiation of Treg cells in spleens, decrease the GVHD score, increase the survival rate of mice, and preserve the cytotoxic antileukemia effects of CD8+ T lymphocytes from recipient mice. Conclusion These findings showed that MEXs exert their effects by inhibiting the immunomodulatory function of DCs, macrophages, and T lymphocytes. In the animal model, MEXs ameliorate the clinical symptoms of GVHD, while maintaining the antitumor effects of CD8+ T lymphocytes. Therefore, it can be inferred that MEXs can separate GVHD from GVL in HSCT. Our study suggests that MEXs have broad clinical application potential in the prevention and treatment of GVHD in HSCT in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siguo Hao
- *Correspondence: Siguo Hao, ; Jiangbo Wan,
| |
Collapse
|
24
|
Koo S, Sohn HS, Kim TH, Yang S, Jang SY, Ye S, Choi B, Kim SH, Park KS, Shin HM, Park OK, Kim C, Kang M, Soh M, Yoo J, Kim D, Lee N, Kim BS, Jung Y, Hyeon T. Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model. NATURE NANOTECHNOLOGY 2023; 18:1502-1514. [PMID: 37884660 DOI: 10.1038/s41565-023-01523-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/07/2023] [Indexed: 10/28/2023]
Abstract
Commencing with the breakdown of immune tolerance, multiple pathogenic factors, including synovial inflammation and harmful cytokines, are conjointly involved in the progression of rheumatoid arthritis. Intervening to mitigate some of these factors can bring a short-term therapeutic effect, but other unresolved factors will continue to aggravate the disease. Here we developed a ceria nanoparticle-immobilized mesenchymal stem cell nanovesicle hybrid system to address multiple factors in rheumatoid arthritis. Each component of this nanohybrid works individually and also synergistically, resulting in comprehensive treatment. Alleviation of inflammation and modulation of the tissue environment into an immunotolerant-favourable state are combined to recover the immune system by bridging innate and adaptive immunity. The therapy is shown to successfully treat and prevent rheumatoid arthritis by relieving the main symptoms and also by restoring the immune system through the induction of regulatory T cells in a mouse model of collagen-induced arthritis.
Collapse
Affiliation(s)
- Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Fusion Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Siyeon Yang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Animal Research Laboratory, Institute Pasteur Korea, Seongnam, Republic of Korea
| | - Se Youn Jang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seongryeol Ye
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Boomin Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Soo Hyeon Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Kyoung Sun Park
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Mikyung Kang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea.
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Zou J, Xia H, Jiang Q, Su Z, Wen S, Liang Z, Ouyang Y, Liu J, Zhang Z, Chen D, Yang L, Guo L. Exosomes derived from odontogenic stem cells: Its role in the dentin-pulp complex. Regen Ther 2023; 24:135-146. [PMID: 37415682 PMCID: PMC10320411 DOI: 10.1016/j.reth.2023.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
Odontogenic stem cells originate from cranial neural crest cells and offer unique advantages in the regeneration of dentin-pulp complex. There is increasing evidence that stem cells exert their biological functions mainly through exosome-based paracrine effects. Exosomes contain DNA, RNA, proteins, metabolites, etc., which can play a role in intercellular communication and have similar therapeutic potential to stem cells. In addition, compared with stem cells, exosomes also have the advantages of good biocompatibility, high drug carrying capacity, easy to obtain, and few side effects. Odontogenic stem cell-derived exosomes mainly affect the regeneration of the dentin-pulp complex by regulating processes such as dentintogenesis, angiogenesis, neuroprotection and immunomodulation. This review aimed to describe "cell-free therapies" based on odontogenic stem cell-derived exosomes, which aim to regenerate the dentin-pulp complex.
Collapse
Affiliation(s)
- Jiyuan Zou
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Han Xia
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Qianzhou Jiang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Siyi Wen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Li Yang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Waseem A, Saudamini, Haque R, Janowski M, Raza SS. Mesenchymal stem cell-derived exosomes: Shaping the next era of stroke treatment. NEUROPROTECTION 2023; 1:99-116. [PMID: 38283953 PMCID: PMC10811806 DOI: 10.1002/nep3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
Exosome-based treatments are gaining traction as a viable approach to addressing the various issues faced by an ischemic stroke. These extracellular vesicles, mainly produced by Mesenchymal Stem Cells (MSCs), exhibit many properties with substantial therapeutic potential. Exosomes are particularly appealing for stroke therapy because of their low immunogenicity, effective cargo transport, and ability to cross the blood-brain barrier. Their diverse effects include neuroprotection, angiogenesis stimulation, inflammatory response modulation, and cell death pathway attenuation, synergistically promoting neuronal survival, tissue regeneration, and functional recovery. Exosomes also show potential as diagnostic indicators for early stroke identification and customized treatment options. Despite these promising qualities, current exosome-based therapeutics have some limitations. The heterogeneity of exosome release among cell types, difficulty in standardization and isolation techniques, and complications linked to dosage and targeted administration necessitates extensive investigation. It is critical to thoroughly understand exosomal processes and their complicated interactions within the cellular milieu. To improve the practicality and efficacy of exosome-based medicines, research efforts must focus on improving production processes, developing robust evaluation criteria, and developing large-scale isolation techniques. Altogether, exosomes' multifunctional properties offer a new route for transforming stroke treatment and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| | - Saudamini
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Rizwanul Haque
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - Syed S. Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| |
Collapse
|
27
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
Wu J, Huang QM, Liu Y, Zhou J, Tang WR, Wang XY, Wang LF, Zhang ZH, Tan HL, Guan XH, Deng KY, Xin HB. Long-term hypoxic hUCMSCs-derived extracellular vesicles alleviates allergic rhinitis through triggering immunotolerance of their VEGF-mediated inhibition of dendritic cells maturation. Int Immunopharmacol 2023; 124:110875. [PMID: 37742368 DOI: 10.1016/j.intimp.2023.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Extensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. OBJECTIVE We aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). METHODS Proliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. RESULTS Long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. CONCLUSION Our results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.
Collapse
Affiliation(s)
- Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Juan Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Wen-Rong Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Lin-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
29
|
Dehnavi S, Sadeghi M, Tavakol Afshari J, Mohammadi M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunol 2023; 393-394:104771. [PMID: 37783061 DOI: 10.1016/j.cellimm.2023.104771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Rheumatoid arthritis (RA) is considered to be a degenerative and progressive autoimmune disorder. Although several medicinal regimens are used to treat RA, potential adverse events such as metabolic disorders and increased risk of infection, as well as drug resistance in some patients, make it essential to find an effective and safe therapeutic approach. Mesenchymal stromal/stem cells (MSCs) are a group of non-hematopoietic stromal cells with immunomodulatory and inhibitory potential. These cells exert their regulatory properties through direct cell-to-cell interactions and paracrine effects on various immune and non-immune cells. As conventional therapeutic approaches for RA are limited due to their side effects, and some patients became refractory to the treatment, MSCs are considered as a promising alternative treatment for RA. In this review, we introduced various experimental and clinical studies conducted to evaluate the therapeutic effects of MSCs on animal models of arthritis and RA patients. Then, possible modulatory and suppressive effects of MSCs on different innate and adaptive immune cells, including dendritic cells, neutrophils, macrophages, natural killer cells, B lymphocytes, and various subtypes of T cells, were categorized and summarized. Finally, limitations and future considerations for the efficient application of MSCs as a therapeutic approach in RA patients were presented.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
31
|
Peng YQ, Deng XH, Xu ZB, Wu ZC, Fu QL. Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: From immunomodulation to therapy. Eur J Immunol 2023; 53:e2149510. [PMID: 37572379 DOI: 10.1002/eji.202149510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.
Collapse
Affiliation(s)
- Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Zhong Y, Zhang Y, Yu A, Zhang Z, Deng Z, Xiong K, Wang Q, Zhang J. Therapeutic role of exosomes and conditioned medium in keloid and hypertrophic scar and possible mechanisms. Front Physiol 2023; 14:1247734. [PMID: 37781228 PMCID: PMC10536244 DOI: 10.3389/fphys.2023.1247734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Exosomes, ranging from 40 to 160 nm in diameter, are extracellular lipid bilayer microvesicles that regulate the body's physiological and pathological processes and are secreted by cells that contain proteins, nucleic acids, amino acids and other metabolites. Previous studies suggested that mesenchymal stem cell (MSC)-derived exosomes could either suppress or support keloid and hypertrophic scar progression. Although previous research has identified the potential value of MSC-exosomes in keloid and hypertrophic scar, a comprehensive analysis of different sources of MSC-exosome in keloid and hypertrophic scar is still lacking. This review mainly discusses different insights regarding the roles of MSC-exosomes in keloid and hypertrophic scar treatment and summarizes possible underlying mechanisms.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aijiao Yu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwen Zhang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Kaifen Xiong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Wang Y, Huang Y, Cheng C, Xue Q, Chang J, Wang X, Duan Q, Miao C. Dysregulation of circRNAs in rheumatoid arthritis, with special emphasis on circRNAs secreted by exosomes and the crosstalk between circRNAs and RNA methylations. Int Immunopharmacol 2023; 122:110549. [PMID: 37421778 DOI: 10.1016/j.intimp.2023.110549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease caused by a variety of unknown factors. It mainly occurs in the small joints of hands and feet, leading to cartilage destruction and bone erosion. Various pathologic mechanisms such as exosomes and RNA methylations are involved in the pathogenesis of RA. METHODS This work searches PubMed, Web of Science (SCIE) and Science Direct Online (SDOL) databases, it role of abnormally expressed circulating RNAs (circRNAs) in the pathogenesis of RA was summarized. And the relationship between circRNAs and exosomes and methylations. RESULTS Both the abnormal expression of circRNAs and the sponge effect of circRNAs on microRNAs (miRNAs) affect the pathogenesis of RA by regulating target genes. CircRNAs affect the proliferation, migration and inflammatory reaction of RA-fibroblast-like synovial cells (FLSs), circRNAs in peripheral blood mononuclear cells (PBMCs) and macrophages also participate in the pathological mechanism of RA (Fig. 1). CircRNAs in exosomes are closely related to the pathogenesis of RA. In addition, exosomal circRNAs and the relationship between circRNAs and RNA methylations are closely related to the pathogenesis of RA. CONCLUSION CircRNAs play an important role in the pathogenesis of RA and have the potential to be a new target for the diagnosis and treatment of RA. However, the development of mature circRNAs for clinical application is not a small challenge.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiangjun Duan
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
34
|
Han X, Wei Q, Xu RX, Wang S, Liu XY, Guo C, Gao Q, Zhou X, Chen LP, Li ZF. Minocycline induces tolerance to dendritic cell production probably by targeting the SOCS1/ TLR4/NF-κB signaling pathway. Transpl Immunol 2023; 79:101856. [PMID: 37196867 DOI: 10.1016/j.trim.2023.101856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in maintaining peripheral immune tolerance. The use of tolerogenic DCs (tolDCs), i.e., semi-mature DCs that express co-stimulatory molecules but not pro-inflammatory cytokines, has been proposed. However, the mechanism of tolDCs induced by minocycline is still unclear. Our previous bioinformatics analyses based on multiple databases suggested that the suppressor of cytokine signaling 1/Toll-like receptor 4/NF-κB (SOCS1/TLR4/NF-κB) signal pathway was associated with DCs maturation. Thus, we studied whether minocycline could induce DC tolerance through this pathway. METHODS A search for potential targets was carried out through public databases, and pathway analysis was performed on these potential targets to obtain pathways relevant to the experiment. Flow cytometry was used to detect the expression of DC surface markers CD11c, CD86, and CD80, and major histocompatibility complex II. The secretion of interleukin (IL)-12p70, tumor necrosis factor alpha (TNF- α), and IL-10 in the DC supernatant was detected by enzyme-linked immunoassay. The ability of three groups (Ctrl-DCs, Mino-DCs, and LPS-DCs) of DCs to stimulate allogeneic CD4+ T cells was analyzed using a mixed lymphocyte reaction assay. Western blotting was used to detect the expression of TLR4, NF-κB-p65, NF-κB-p-p65, IκB-α, and SOCS1 proteins. RESULTS The hub gene plays a vital role in biological processes; in related pathways, the regulation of other genes is often affected by it. The SOCS1/TLR4/NF-κB signaling pathway was further validated by searching for potential targets through public databases to obtain relevant pathways. The minocycline-induced tolDCs showed characteristics of semi-mature DCs. Moreover, the IL-12p70 and TNF-α levels in the minocycline-stimulated DC group (Mino-DC group) were lower than those in the lipopolysaccharide (LPS)-DC group, and the IL-10 levels were higher in the Mino-DC group than in the LPS-DC and control DC groups. In addition, the Mino-DC group had decreased protein expression levels of TLR4 and NF-κB-p65 and upregulated protein levels of NF-κB-p-p65, IκB-α, and SOCS1 compared with the other groups. CONCLUSION The results of this study indicate that minocycline could improve the tolerance of DCs probably by blocking the SOCS1/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xu Han
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qiao Wei
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Rui-Xue Xu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Shi Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xue-Yu Liu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Cong Guo
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qian Gao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xuan Zhou
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Li-Ping Chen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Zhen-Fei Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| |
Collapse
|
35
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
36
|
Liu XQ, Peng YQ, Huang LX, Li CG, Kuang PP, Chen DH, Wu ZC, He BX, Zhou ZR, Fu QL. Dendritic cells mediated by small extracellular vesicles derived from MSCs attenuated the ILC2 activity via PGE2 in patients with allergic rhinitis. Stem Cell Res Ther 2023; 14:180. [PMID: 37488601 PMCID: PMC10367306 DOI: 10.1186/s13287-023-03408-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells-derived small extracellular vesicles (MSC-sEVs) have recently attracted considerable attention because of their therapeutic potential in various immune diseases. We previously reported that MSC-sEVs could exert immunomodulatory roles in allergic airway inflammation by regulating group 2 innate lymphoid cell (ILC2) and dendritic cell (DC) functions. Therefore, this study aimed to investigate the indirect effects of MSC-sEVs on ILC2s from patients with allergic rhinitis (AR) via DCs. METHODS Here, we isolated sEVs from induced pluripotent stem cells-MSCs using anion-exchange chromatography and mature DCs (mDCs) were treated with MSC-sEVs. sEV-mDCs were co-cultured with peripheral blood mononuclear cells from patients with AR or purified ILC2s. The levels of IL-13 and GATA3 in ILC2s were examined by flow cytometry. Bulk RNA sequence for mDCs and sEV-mDCs was employed to further probe the potential mechanisms, which were then validated in the co-culture systems. RESULTS sEV-mDCs showed impaired capacity in priming the levels of IL-13 and GATA3 in ILC2s when compared with mDCs. Furthermore, there was higher PGE2 and IL-10 production from sEV-mDCs, and the blockade of them especially the former one reversed the inhibitory effects of sEV-mDCs. CONCLUSIONS We demonstrated that MSC-sEVs were able to dampen the activating effects of mDCs on ILC2s in patients with AR. Mechanismly, the PGE2-EP2/4 axis played an essential role in the immunomodulatory effects of sEV-mDCs on ILC2s. Herein, we provided new insights into the mechanism underlying the therapeutic effects of MSC-sEVs in allergic airway inflammation.
Collapse
Affiliation(s)
- Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ya-Qi Peng
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Long-Xin Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chan-Gu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peng-Peng Kuang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - De-Hua Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Rou Zhou
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
37
|
Zhao K, Kong C, Shi N, Jiang J, Li P. Potential angiogenic, immunomodulatory, and antifibrotic effects of mesenchymal stem cell-derived extracellular vesicles in systemic sclerosis. Front Immunol 2023; 14:1125257. [PMID: 37251412 PMCID: PMC10213547 DOI: 10.3389/fimmu.2023.1125257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Systemic sclerosis (SSc) is an intricate systemic autoimmune disease with pathological features such as vascular injury, immune dysregulation, and extensive fibrosis of the skin and multiple organs. Treatment options are limited; however, recently, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been acknowledged in preclinical and clinical trials as being useful in treating autoimmune diseases and are likely superior to MSCs alone. Recent research has also shown that MSC-EVs can ameliorate SSc and the pathological changes in vasculopathy, immune dysfunction, and fibrosis. This review summarizes the therapeutic effects of MSC-EVs on SSc and the mechanisms that have been discovered to provide a theoretical basis for future studies on the role of MSC-EVs in treating SSc.
Collapse
Affiliation(s)
- Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
38
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Williams T, Salmanian G, Burns M, Maldonado V, Smith E, Porter RM, Song YH, Samsonraj RM. Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications. Biochimie 2023; 207:33-48. [PMID: 36427681 DOI: 10.1016/j.biochi.2022.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent somatic cells that have been widely explored in the field of regenerative medicine. MSCs possess the ability to secrete soluble factors as well as lipid bound extracellular vesicles (EVs). MSCs have gained increased interest and attention as a result of their therapeutic properties, which are thought to be attributed to their secretome. However, while the use of MSCs as whole cells pose heterogeneity concerns and survival issues post-transplantation, such limitations are absent in cell-free EV-based treatments. EVs derived from MSCs are promising therapeutic agents for a range of clinical conditions and disorders owing to their immunomodulatory, pro-regenerative, anti-inflammatory, and antifibrotic activity. Recent successes with preclinical studies using EVs for repair and regeneration of damaged tissues such as cardiac tissue, lung, liver, pancreas, bone, skin, cornea, and blood diseases are discussed in this review. We also discuss delivery strategies of EVs using biomaterials as delivery vehicles through systemic or local administration. Despite its effectiveness in preclinical investigations, the application of MSC-EV in clinical settings will necessitate careful consideration surrounding issues such as: i) scalability and isolation, ii) biodistribution, iii) targeting specific tissues, iv) quantification and characterization, and v) safety and efficacy of dosage. The future of EVs in regenerative medicine is promising yet still needs further investigation on enhancing the efficacy, scalability, and potency for clinical applications.
Collapse
Affiliation(s)
- Taylor Williams
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Ghazaleh Salmanian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Morgan Burns
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Vitali Maldonado
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Emma Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Ryan M Porter
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah Margaret Samsonraj
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
40
|
Lyamina S, Baranovskii D, Kozhevnikova E, Ivanova T, Kalish S, Sadekov T, Klabukov I, Maev I, Govorun V. Mesenchymal Stromal Cells as a Driver of Inflammaging. Int J Mol Sci 2023; 24:ijms24076372. [PMID: 37047346 PMCID: PMC10094085 DOI: 10.3390/ijms24076372] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of ‘key-driver’ in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases.
Collapse
Affiliation(s)
- Svetlana Lyamina
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| | - Denis Baranovskii
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
- Correspondence:
| | - Ekaterina Kozhevnikova
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Tatiana Ivanova
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Sergey Kalish
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| | - Timur Sadekov
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Ilya Klabukov
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Igor Maev
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Vadim Govorun
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| |
Collapse
|
41
|
Shan XQ, Luo YY, Chang J, Song JJ, Hao N, Zhao L. Immunomodulation: The next target of mesenchymal stem cell-derived exosomes in the context of ischemic stroke. World J Stem Cells 2023; 15:52-70. [PMID: 37007453 PMCID: PMC10052343 DOI: 10.4252/wjsc.v15.i3.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Ischemic stroke (IS) is the most prevalent form of brain disease, characterized by high morbidity, disability, and mortality. However, there is still a lack of ideal prevention and treatment measures in clinical practice. Notably, the transplantation therapy of mesenchymal stem cells (MSCs) has been a hot research topic in stroke. Nevertheless, there are risks associated with this cell therapy, including tumor formation, coagulation dysfunction, and vascular occlusion. Also, a growing number of studies suggest that the therapeutic effect after transplantation of MSCs is mainly attributed to MSC-derived exosomes (MSC-Exos). And this cell-free mediated therapy appears to circumvent many risks and difficulties when compared to cell therapy, and it may be the most promising new strategy for treating stroke as stem cell replacement therapy. Studies suggest that suppressing inflammation via modulation of the immune response is an additional treatment option for IS. Intriguingly, MSC-Exos mediates the inflammatory immune response following IS by modulating the central nervous system, the peripheral immune system, and immunomodulatory molecules, thereby promoting neurofunctional recovery after stroke. Thus, this paper reviews the role, potential mechanisms, and therapeutic potential of MSC-Exos in post-IS inflammation in order to identify new research targets.
Collapse
Affiliation(s)
- Xiao-Qian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yong-Yin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jing-Jing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
42
|
Huang Y, Xue Q, Cheng C, Wang Y, Wang X, Chang J, Miao C. Circular RNA in autoimmune diseases: special emphasis on regulation mechanism in RA and SLE. J Pharm Pharmacol 2023; 75:370-384. [PMID: 36583516 DOI: 10.1093/jpp/rgac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autoimmune diseases are diseases caused by tissue damage caused by the body's immune response to autoantibodies. Circular RNAs (CircRNAs) are a kind of special endogenous non-coding RNA that play a biological role by regulating gene transcription. METHODS In this work, we searched the PubMed, Web of Science (SCIE), National Science and Technology Library (NSTL), and ScienceDirect Online (SDOL) databases to summarize the impact of circRNAs on autoimmune diseases, especially the results of circRNAs in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS The study on the function of circRNAs and autoimmune diseases further deepened our understanding of the development and pathogenesis of autoimmune diseases. CircRNAs may act as miRNA sponges to regulate biological processes and affect the occurrence and development of autoimmune diseases. CircRNAs are closely related to the pathogenesis of RA and SLE and may become potential biomarkers for the diagnosis and treatment of RA and SLE. CONCLUSION CircRNAs play an important role in the pathogenesis of RA, SLE and other autoimmune diseases, and are expected to provide new biomarkers for the diagnosis and treatment of autoimmune diseases. However, the function and mechanism of circRNAs in autoimmune diseases need more comprehensive research.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China.,Anhui Public Health Clinical Center, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
43
|
Ahmed AA, Monir M, Sabry D, Mostafa A. In vitro study to evaluate the effect of granulocyte colony stimulating factor on colorectal adenocarcinoma and on mesenchymal stem cells trans differentiation into cancer stem cells by cancer cells derived exosomes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
Abstract
Background
Colorectal cancer (CRC) is a common and lethal malignancies with poor prognosis. CRC cells release extracellular vesicles called exosomes to facilitate tumor progression by passing bioactive molecules such as proteins and nucleic acids between cells of the tumor and their microenvironment. Granulocyte colony stimulating factor (G-CSF) is a hematopoietic growth factor which mainly affects the lineage of neutrophil and exerts direct anti-tumor effects on various tumor types. The purpose of our study is to investigate the effect of G-CSF on CRC cells and to evaluate its capability to attenuate the potentiality of CRC cells derived exosomes to induce bone marrow-derived mesenchymal stem cells (BM-MSCs) malignant transformation into cancer stem cells (CSCs).
Results
The level of both lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1) (p = 0.014) & β-catenin (p = 0.01) was significantly decreased, whereas programmed cell death 4 (PDCD4) (p = 0.018) was increased in CRC exosomes pre-treated with G-CSF compared to untreated CRC exosomes. Additionally, there was a significant decrease in the cell proliferation in CRC cells pre-treated with G-CSF compared to untreated CRC cells (p = 0.008). Flow cytometric analysis of BM-MSCs showed that G-CSF could attenuate their transformation into CSCs.
Conclusion
G-CSF can be a promising therapeutic agent for CRC treatment.
Collapse
|
44
|
Immune response modulation by allergen loaded into mesenchymal stem cell-derived exosomes as an effective carrier through sublingual immunotherapy. Immunobiology 2023; 228:152361. [PMID: 36870143 DOI: 10.1016/j.imbio.2023.152361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Allergen-specific sublingual immunotherapy (SLIT) was considered an interesting needle-free alternative for subcutaneous immunotherapy (SCIT). Mesenchymal stem cell (MSC)-derived exosomes were introduced as potent nanoscale delivery systems with immunomodulatory potentials. The current study investigated the therapeutic efficacy of SLIT using ovalbumin (OVA)-enriched MSC-derived exosomes formulation in a murine model of allergic asthma. MATERIAL AND METHODS MSCs were harvested from mice adipose tissues. Then, exosomes were isolated, and OVA-loaded exosomes were prepared. Following sensitization, Balb/c mice received therapeutic formulation (10 μg/dose OVA-containing MSC-derived exosomes) twice a week for two months. Serum OVA-specific IgE levels as well as IFN-γ, IL-4, and TGF-β secretions by cultured splenocytes were measured by ELISA. Also, lung tissue underwent histopathologic analysis, and the numbers of inflammatory cells and eosinophils in nasopharyngeal lavage fluid (NALF) were examined. RESULTS SLIT using OVA-enriched exosomes significantly reduced IgE levels and IL-4 production, while the secretion of IFN-γ and TGF-β were significantly elevated. Also, a decrease was observed in the numbers of total cells and eosinophils in the NALF, and lower levels of perivascular and peribronchiolar inflammation and cellular infiltrations were observed in the lung tissue. CONCLUSION SLIT using OVA-loaded exosomes improved immunomodulatory responses and efficiently alleviated allergic inflammation.
Collapse
|
45
|
Liu X, Wei Q, Lu L, Cui S, Ma K, Zhang W, Ma F, Li H, Fu X, Zhang C. Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells. Front Immunol 2023; 14:1094685. [PMID: 36860847 PMCID: PMC9968735 DOI: 10.3389/fimmu.2023.1094685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Various intractable inflammatory diseases caused by disorders of immune systems have pressed heavily on public health. Innate and adaptive immune cells as well as secreted cytokines and chemokines are commanders to mediate our immune systems. Therefore, restoring normal immunomodulatory responses of immune cells is crucial for the treatment of inflammatory diseases. Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are nano-sized double-membraned vesicles acting as paracrine effectors of MSCs. MSC-EVs, containing a variety of therapeutic agents, have shown great potential in immune modulation. Herein, we discuss the novel regulatory functions of MSC-EVs from different sources in the activities of innate and adaptive immune cells like macrophages, granulocytes, mast cells, natural killer (NK) cells, dendritic cells (DCs) and lymphocytes. Then, we summarize the latest clinical trials of MSC-EVs in inflammatory diseases. Furthermore, we prospect the research trend of MSC-EVs in the field of immune modulation. Despite the fact that the research on the role of MSC-EVs in regulating immune cells is in infancy, this cell-free therapy based on MSC-EVs still offers a promising solution for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lu Lu
- Institute of NBC Defence, PLA Army, Beijing, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Yang X, Xia H, Liu C, Wu Y, Liu X, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Jia R. The novel delivery-exosome application for diagnosis and treatment of rheumatoid arthritis. Pathol Res Pract 2023; 242:154332. [PMID: 36696804 DOI: 10.1016/j.prp.2023.154332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic degenerative disease characterized by persistent systemic synovitis, with a high risk of stiffness, pain, and swelling. It may affect the other extra-articular tissues. There is no ideal treatment for this disease at present, and it can only be controlled by medication to alleviate the prognosis. Exosomes are small vesicles secreted by various cells in the organism under normal or pathological conditions, and play a role in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and so on. Due to the adverse effects of conventional drugs and treatments in the treatment of RA, exosomes, as a nanocarrier with many advantages, can have a great impact on the loading of drugs for the treatment of RA. This article reviews the role of exosomes in the pathogenesis of RA and the progress of exosome-based therapy for RA.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, People's Republic of China; School of Life Science, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| |
Collapse
|
47
|
Cheng P, Jian Q, Fu Z, Deng R, Ma Y. Inhibition of DAI refrains dendritic cells from maturation and prolongs murine islet and skin allograft survival. Front Immunol 2023; 14:1182851. [PMID: 37197662 PMCID: PMC10183602 DOI: 10.3389/fimmu.2023.1182851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Central to allograft rejection is the T cell-mediated adaptive immune response initiated by activated dendritic cells (DCs). Previous studies have shown that the DNA-dependent activator of IFN regulatory factors (DAI) is involved in the maturation and activation of DCs. Therefore, we hypothesized that inhibition of DAI could prevent DCs from maturation and prolong murine allograft survival. Methods Donor mouse bone marrow-derived dendritic cells (BMDCs) were transduced with the recombinant adenovirus vector (AdV-DAI-RNAi-GFP) to inhibit DAI expression (DC-DAI-RNAi), and the immune cell phenotype and function of DC-DAI-RNAi upon lipopolysaccharide (LPS) stimulation were evaluated. Then DC-DAI-RNAi was injected into recipient mice before islet transplantation and skin transplantation. The survival times of islet and skin allograft were recorded and the proportions of T cell subsets in spleen and secretion levels of cytokines in serum were measured. Results We identified that DC-DAI-RNAi inhibited the expression of main co-stimulatory molecules and MHC-II, exhibited strong phagocytic ability, and secreted high levels of immunosuppressive cytokines and low levels of immunostimulating cytokines. Recipient mice treated with DC-DAI-RNAi had longer islet and skin allograft survival times. In the murine islet transplantation model, we observed an increase in Treg cells proportion, a reduction in Th1 and Th17 cells proportions in spleen, and similar trends in their secreted cytokines in serum in the DC-DAI-RNAi group. Conclusion Inhibition of DAI by adenovirus transduction inhibits the maturation and activation of DCs, affects the differentiation of T cell subsets as well as their secreted cytokines, and prolongs allograft survival.
Collapse
Affiliation(s)
- Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Jian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongli Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ronghai Deng, ; Yi Ma,
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ronghai Deng, ; Yi Ma,
| |
Collapse
|
48
|
Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18:100772. [PMID: 36896446 PMCID: PMC9989662 DOI: 10.1016/j.ajps.2022.100772] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In the inflammatory microenvironment, there are numerous exosomes secreted by immune cells (Macrophages, neutrophils, dendritic cells), mesenchymal stem cells (MSCs) and platelets as intercellular communicators, which participate in the regulation of inflammation by modulating gene expression and releasing anti-inflammatory factors. Due to their good biocompatibility, accurate targeting, low toxicity and immunogenicity, these exosomes are able to selectively deliver therapeutic drugs to the site of inflammation through interactions between their surface-antibody or modified ligand with cell surface receptors. Therefore, the role of exosome-based biomimetic delivery strategies in inflammatory diseases has attracted increasing attention. Here we review current knowledge and techniques for exosome identification, isolation, modification and drug loading. More importantly, we highlight progress in using exosomes to treat chronic inflammatory diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), atherosclerosis (AS), and inflammatory bowel disease (IBD). Finally, we also discuss their potential and challenges as anti-inflammatory drug carriers.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
49
|
Promising Therapeutic Functions of Bone Marrow Mesenchymal Stem Cells Derived-Exosome in Asthma. Can Respir J 2022; 2022:1485719. [PMID: 36582191 PMCID: PMC9794440 DOI: 10.1155/2022/1485719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Asthma is a chronic inflammatory disturbance of the airways in which many cells and cellular elements are involved. Wheezing, breathlessness, chest tightness, and coughing, especially at night or in the early morning, are typical symptoms of asthma. At present, inhaled corticosteroid (ICS) and long-acting β-agonists (LABAs) are standard treatments for regular management. Oral corticosteroids (OCSs) were recommended for controlling asthma exacerbation but only for a short-term treatment because of the side effects on organs. Biologic therapies have achieved exciting and notable effects in clinical treatment but are not applicable for all phenotypes of asthma. At present, some new approaches are under exploration to lessen side effects and improve curative effects. Studies have revealed that bone marrow mesenchymal stem cells (BMMSCs) hold various curative effects in asthma and may benefit in the long term with high safety. Extracellular vesicles (EVs) enriched in body fluid were characterized as subcomponents of extracellular vesicles and delivered carriers combined with genetic messages in vivo. The therapeutic potential of exosomes has become a research hotspot in many diseases. BMMSC-derived exosomes were considered as the dominant part of BMMSCs in cell-to-cell communications and playing curative effects. Points also hold that BMMSC-Exo could interfere with airway inflammation and airway remolding in asthma via modulating the immune response, regulating gene expression, adjusting the phenotype of macrophage, etc. However, BMMSC-Exo still lacked more clinical trials for evaluating the effects on asthma, and the technology of extraction and purification still needs to be improved for wide use. This review aims to draw the relationship among asthma, BMMSC, and exosome, which may provide innovate ideas for treatment of asthma, and arouse attention about the curative potential of BMMSC-Exo.
Collapse
|
50
|
Fujii S, Miura Y. Immunomodulatory and Regenerative Effects of MSC-Derived Extracellular Vesicles to Treat Acute GVHD. Stem Cells 2022; 40:977-990. [PMID: 35930478 DOI: 10.1093/stmcls/sxac057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
The development of human mesenchymal stromal/stem cell (MSC)-based therapy has focused on exploring biological nanoparticles secreted from MSCs. There is emerging evidence that the immunomodulatory and regenerative effects of MSCs can be recapitulated by extracellular vesicles released from MSCs (MSC-EVs). Off-the-shelf allogeneic human MSC products are clinically available to treat acute graft-versus-host disease (GVHD), but real-world data have revealed the limitations of these products as well as their feasibility, safety, and efficacy. MSC-EVs may have advantages over parental MSCs as drugs because of their distinguished biodistribution and importantly dose-dependent therapeutic effects. Recent research has shed light on the role of microRNAs in the mode-of-action of MSC-EVs. A group of specific microRNAs alone or in combination with membrane proteins, membrane lipids, and soluble factors present in MSC-EVs play key roles in the regulation of GVHD. In this concise review, we review the regulation of T-cell-mediated adaptive immunity and antigen-presenting cell-mediated innate immunity by MSC-EVs and the direct regenerative effects on damaged cells in association with the immunopathology of GVHD.
Collapse
Affiliation(s)
- Sumie Fujii
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| | - Yasuo Miura
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|