1
|
Shi JX, Zhang KZ. Advancements in Autologous Stem Cell Transplantation for Parkinson's Disease. Curr Stem Cell Res Ther 2024; 19:1321-1327. [PMID: 37691194 DOI: 10.2174/1574888x19666230907112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease marked by comparatively focal dopaminergic neuron degeneration in the substantia nigra of the midbrain and dopamine loss in the striatum, which causes motor and non-motor symptoms. Currently, pharmacological therapy and deep brain stimulation (DBS) are the primary treatment modalities for PD in clinical practice. While these approaches offer temporary symptom control, they do not address the underlying neurodegenerative process, and complications often arise. Stem cell replacement therapy is anticipated to prevent further progression of the disease due to its regenerative capacity, and considering the cost of immunosuppression and the potential immune dysfunctions, autologous stem cell transplantation holds promise as a significant method against allogeneic one to treat Parkinson's disease. In this review, the safety concerns surrounding tumorigenicity and complications associated with transplantation are discussed, along with methods utilized to evaluate the efficacy of such procedures. Subsequently, we summarize the preclinical and clinical studies involving autologous stem cell transplantation for PD, and finally talk about the benefits of autologous stem cell transplantation against allogeneic transplants.
Collapse
Affiliation(s)
- Jia-Xin Shi
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023; 16:1173433. [PMID: 37602192 PMCID: PMC10435272 DOI: 10.3389/fnmol.2023.1173433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.
Collapse
Affiliation(s)
- Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Current Treatments and New, Tentative Therapies for Parkinson’s Disease. Pharmaceutics 2023; 15:pharmaceutics15030770. [PMID: 36986631 PMCID: PMC10051786 DOI: 10.3390/pharmaceutics15030770] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative pathology, the origin of which is associated with the death of neuronal cells involved in the production of dopamine. The prevalence of PD has increased exponentially. The aim of this review was to describe the novel treatments for PD that are currently under investigation and study and the possible therapeutic targets. The pathophysiology of this disease is based on the formation of alpha-synuclein folds that generate Lewy bodies, which are cytotoxic and reduce dopamine levels. Most pharmacological treatments for PD target alpha-synuclein to reduce the symptoms. These include treatments aimed at reducing the accumulation of alpha-synuclein (epigallocatechin), reducing its clearance via immunotherapy, inhibiting LRRK2, and upregulating cerebrosidase (ambroxol). Parkinson’s disease continues to be a pathology of unknown origin that generates a significant social cost for the patients who suffer from it. Although there is still no definitive cure for this disease at present, there are numerous treatments available aimed at reducing the symptomatology of PD in addition to other therapeutic alternatives that are still under investigation. However, the therapeutic approach to this pathology should include a combination of pharmacological and non-pharmacological strategies to maximise outcomes and improve symptomatological control in these patients. It is therefore necessary to delve deeper into the pathophysiology of the disease in order to improve these treatments and therefore the quality of life of the patients.
Collapse
|
4
|
Helm J, Schöls L, Hauser S. Towards Personalized Allele-Specific Antisense Oligonucleotide Therapies for Toxic Gain-of-Function Neurodegenerative Diseases. Pharmaceutics 2022; 14:pharmaceutics14081708. [PMID: 36015334 PMCID: PMC9416334 DOI: 10.3390/pharmaceutics14081708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are single-stranded nucleic acid strings that can be used to selectively modify protein synthesis by binding complementary (pre-)mRNA sequences. By specific arrangements of DNA and RNA into a chain of nucleic acids and additional modifications of the backbone, sugar, and base, the specificity and functionality of the designed ASOs can be adjusted. Thereby cellular uptake, toxicity, and nuclease resistance, as well as binding affinity and specificity to its target (pre-)mRNA, can be modified. Several neurodegenerative diseases are caused by autosomal dominant toxic gain-of-function mutations, which lead to toxic protein products driving disease progression. ASOs targeting such mutations—or even more comprehensively, associated variants, such as single nucleotide polymorphisms (SNPs)—promise a selective degradation of the mutant (pre-)mRNA while sparing the wild type allele. By this approach, protein expression from the wild type strand is preserved, and side effects from an unselective knockdown of both alleles can be prevented. This makes allele-specific targeting strategies a focus for future personalized therapies. Here, we provide an overview of current strategies to develop personalized, allele-specific ASO therapies for the treatment of neurodegenerative diseases, such Huntington’s disease (HD) and spinocerebellar ataxia type 3 (SCA3/MJD).
Collapse
Affiliation(s)
- Jacob Helm
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research and Department of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research and Department of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research and Department of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
5
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Köse S, Aerts-Kaya F, Uçkan Çetinkaya D, Korkusuz P. Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:135-162. [PMID: 33977438 DOI: 10.1007/5584_2021_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Hematology, Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
7
|
Ahani-Nahayati M, Shariati A, Mahmoodi M, Olegovna Zekiy A, Javidi K, Shamlou S, Mousakhani A, Zamani M, Hassanzadeh A. Stem cell in neurodegenerative disorders; an emerging strategy. Int J Dev Neurosci 2021; 81:291-311. [PMID: 33650716 DOI: 10.1002/jdn.10101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 01/28/2023] Open
Abstract
Neurodegenerative disorders are a diversity of disorders, surrounding Alzheimer's (AD), Parkinson's (PD), Huntington's diseases (HD), and amyotrophic lateral sclerosis (ALS) accompanied by some other less common diseases generally characterized by either developed deterioration of central or peripheral nervous system structurally or functionally. Today, with the viewpoint of an increasingly aging society, the number of patients with neurodegenerative diseases and sociomedical burdens will spread intensely. During the last decade, stem cell technology has attracted great attention for treating neurodegenerative diseases worldwide because of its unique attributes. As acknowledged, there are several categories of stem cells being able to proliferate and differentiate into various cellular lineages, highlighting their significance in the context of regenerative medicine. In preclinical models, stem cell therapy using mesenchymal stem/stromal cells (MSCs), hematopoietic stem cells (HSCs), and neural progenitor or stem cells (NPCs or NSCs) along with pluripotent stem cells (PSCs)-derived neuronal cells could elicit desired therapeutic effects, enabling functional deficit rescue partially. Regardless of the noteworthy progress in our scientific awareness and understanding of stem cell biology, there still exist various challenges to defeat. In the present review, we provide a summary of the therapeutic potential of stem cells and discuss the current status and prospect of stem cell strategy in neurodegenerative diseases, in particular, AD, PD, ALS, and HD.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ali Shariati
- Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Mahmoodi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Neurosciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol 2021; 17:381-392. [PMID: 33658662 PMCID: PMC7928200 DOI: 10.1038/s41582-021-00465-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) were first generated in 2007, but the full translational potential of this valuable tool has yet to be realized. The potential applications of hiPSCs are especially relevant to neurology, as brain cells from patients are rarely available for research. hiPSCs from individuals with neuropsychiatric or neurodegenerative diseases have facilitated biological and multi-omics studies as well as large-scale screening of chemical libraries. However, researchers are struggling to improve the scalability, reproducibility and quality of this descriptive disease modelling. Addressing these limitations will be the first step towards a new era in hiPSC research - that of predictive disease modelling - involving the correlation and integration of in vitro experimental data with longitudinal clinical data. This approach is a key element of the emerging precision medicine paradigm, in which hiPSCs could become a powerful diagnostic and prognostic tool. Here, we consider the steps necessary to achieve predictive modelling of neurodegenerative disease with hiPSCs, using Huntington disease as an example.
Collapse
|
9
|
Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, Zamani M, Hassanzadeh A. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur J Cell Biol 2020; 99:151097. [PMID: 32800276 DOI: 10.1016/j.ejcb.2020.151097] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a variety of diseases including Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) along with some other less common diseases generally described by the advanced deterioration of central or peripheral nervous system, structurally or functionally. In the last two decades, mesenchymal stromal cells (MSCs) due to their unique assets encompassing self-renewal, multipotency and accessibility in association with low ethical concern open new frontiers in the context of neurodegenerative diseases therapy. Interestingly, MSCs can be differentiated into endodermal and ectodermal lineages (e.g., neurons, oligodendrocyte, and astrocyte), and thus could be employed to advance cell-based therapeutic strategy. Additionally, as inflammation ordinarily ensues as a local response provoked by microglia in the neurodegenerative diseases, MSCs therapy because of their pronounced immunomodulatory properties is noticed as a rational approach for their treatment. Recently, varied types of studies have been mostly carried out in vitro and rodent models using MSCs upon their procurement from various sources and expansion. The promising results of the studies in rodent models have motivated researchers to design and perform several clinical trials, with a speedily rising number. In the current review, we aim to deliver a brief overview of MSCs sources, expansion strategies, and their immunosuppressive characteristics and discuss credible functional mechanisms exerted by MSCs to treat neurodegenerative disorders, covering AD, PD, ALS, MS, and HD.
Collapse
Affiliation(s)
- Ali Shariati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Nemati
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Yasin Sadeghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Baghbani
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|