1
|
Mulholland M, Depuydt MAC, Jakobsson G, Ljungcrantz I, Grentzmann A, To F, Bengtsson E, Jaensson Gyllenbäck E, Grönberg C, Rattik S, Liberg D, Schiopu A, Björkbacka H, Kuiper J, Bot I, Slütter B, Engelbertsen D. Interleukin-1 receptor accessory protein blockade limits the development of atherosclerosis and reduces plaque inflammation. Cardiovasc Res 2024; 120:581-595. [PMID: 38563353 PMCID: PMC11074796 DOI: 10.1093/cvr/cvae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
AIMS The interleukin-1 receptor accessory protein (IL1RAP) is a co-receptor required for signalling through the IL-1, IL-33, and IL-36 receptors. Using a novel anti-IL1RAP-blocking antibody, we investigated the role of IL1RAP in atherosclerosis. METHODS AND RESULTS Single-cell RNA sequencing data from human atherosclerotic plaques revealed the expression of IL1RAP and several IL1RAP-related cytokines and receptors, including IL1B and IL33. Histological analysis showed the presence of IL1RAP in both the plaque and adventitia, and flow cytometry of murine atherosclerotic aortas revealed IL1RAP expression on plaque leucocytes, including neutrophils and macrophages. High-cholesterol diet fed apolipoprotein E-deficient (Apoe-/-) mice were treated with a novel non-depleting IL1RAP-blocking antibody or isotype control for the last 6 weeks of diet. IL1RAP blockade in mice resulted in a 20% reduction in subvalvular plaque size and limited the accumulation of neutrophils and monocytes/macrophages in plaques and of T cells in adventitia, compared with control mice. Indicative of reduced plaque inflammation, the expression of several genes related to leucocyte recruitment, including Cxcl1 and Cxcl2, was reduced in brachiocephalic arteries of anti-IL1RAP-treated mice, and the expression of these chemokines in human plaques was mainly restricted to CD68+ myeloid cells. Furthermore, in vitro studies demonstrated that IL-1, IL-33, and IL-36 induced CXCL1 release from both macrophages and fibroblasts, which could be mitigated by IL1RAP blockade. CONCLUSION Limiting IL1RAP-dependent cytokine signalling pathways in atherosclerotic mice reduces plaque burden and plaque inflammation, potentially by limiting plaque chemokine production.
Collapse
Affiliation(s)
- Megan Mulholland
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Gabriel Jakobsson
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Andrietta Grentzmann
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Fong To
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | | | - Sara Rattik
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
- Cantargia AB, Lund, Sweden
| | | | - Alexandru Schiopu
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences, Cardiovascular Research—Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Daniel Engelbertsen
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| |
Collapse
|
2
|
Chen J, Sun X, Liu Y, Zhang Y, Zhao M, Shao L. SENP3 attenuates foam cell formation by deSUMOylating NLRP3 in macrophages stimulated with ox-LDL. Cell Signal 2024; 117:111092. [PMID: 38331013 DOI: 10.1016/j.cellsig.2024.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
SUMO-specific protease 3 (SENP3) participates in the removal of SUMOylation and maintains the balance of the SUMO system, which ensures normal functioning of substrates and cellular activities. In the present study, we found that SENP3 expression was significantly reduced in ox-LDL-stimulated macrophages. SENP3 overexpression suppressed and SENP3 knockdown promoted macrophage foam cell formation. Moreover, SENP3 inhibited cholesterol uptake, CD36 expression, and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome activation in ox-LDL-stimulated macrophages. Ox-LDL-stimulated NLRP3 SUMOylation was reduced by SENP3. Blocking NLRP3 SUMOylation inhibited foam cell formation and NLRP3 inflammasome activation. Thus, this study revealed that SENP3 inhibits macrophage foam cell formation by deSUMOylating NLRP3 and regulating NLRP3 inflammasome activation, which may provide a potentially innovative approach to treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuze Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Min Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.
| | - Luyao Shao
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
3
|
Shao X, Zeng W, Wang Q, Liu S, Guo Q, Luo D, Luo Q, Wang D, Wang L, Zhang Y, Diao H, Piao S, Yan M, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) suppression of macrophage pyroptosis: Key to stabilizing rupture-prone plaques. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117705. [PMID: 38219878 DOI: 10.1016/j.jep.2024.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Research on the Chinese herbal formula Fufang Zhenzhu Tiaozhi (FTZ) has demonstrated its effectiveness in treating hyperlipidemia and glycolipid metabolic disorders. Additionally, FTZ has shown inhibitory effects on oxidative stress, regulation of lipid metabolism, and reduction of inflammation in these conditions. However, the precise mechanisms through which FTZ modulates macrophage function in atherosclerosis remain incompletely understood. Therefore, this study aims to investigate whether FTZ can effectively stabilize rupture-prone plaques by suppressing macrophage pyroptosis and impeding the development of M1 macrophage polarization in ApoE-/- mice. METHODS To assess the impact of FTZ on macrophage function and atherosclerosis in ApoE-/- mice, we orally administered FTZ at a dosage of 1.2 g/kg body weight daily for 14 weeks. Levels of interleukin-18 and interleukin-1β were quantified using ELISA kits to gauge FTZ's influence on inflammation. Total cholesterol content was measured with a Cholesterol Assay Kit to evaluate FTZ's effect on lipid metabolism. Aortic tissues were stained with Oil Red O, and immunohistochemistry techniques were applied to assess atherosclerotic lesions and plaque stability. To evaluate the effects of FTZ on macrophage pyroptosis and oxidative damage, immunofluorescence staining was utilized. Additionally, we conducted an analysis of protein and mRNA expression levels of NLRP3 inflammasome-related genes and macrophage polarization-related genes using RT-PCR and western blotting techniques. RESULTS This study illustrates the potential therapeutic effectiveness of FTZ in mitigating the severity of atherosclerosis and improving serum lipid profiles by inhibiting inflammation. The observed enhancements in atherosclerosis severity and inflammation can be attributed to the suppression of NLRP3 inflammasome activity and M1 polarization by FTZ. CONCLUSION The current findings indicate that FTZ provides protection against atherosclerosis, positioning it as a promising candidate for novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenru Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qing Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Suping Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qiaoling Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qingmao Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
4
|
Lu C, Zhou F, Xian H, Sun S, Yue J, Zhang Y, Zhao Q, Luo X, Li Y. Serum IL-38 Level Was Associated with Incidence of MACE in the STEMI Patients. Int J Gen Med 2023; 16:2987-2997. [PMID: 37465556 PMCID: PMC10350401 DOI: 10.2147/ijgm.s417471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Background The relationship between serum IL-38 and major adverse cardiovascular events (MACE) in patients with ST elevation myocardial infarction (STEMI) remains unclear. Methods In the present study, 589 STEMI patients were included, the serum level of IL-38 was measured. The median follow-up time was 720 days, the STEMI patients were divided into high IL-38 (IL-38>6.49ng/mL) and low IL-38 groups (IL-38≤6.49ng/mL) to compare the probability of MACE. Results Plasma IL-38 levels were significantly lower in STEMI patients than in SAP patients (4.0±2.2 vs 6.9±3.2 ng/mL, P < 0.001). Ninety-three STEMI patients met the defined MACE study endpoint. The incidence of MACE was significantly lower in patients with high IL-38 group than in patients with low IL-38 group (7.8% vs 23.7%, P < 0.001). Low plasma IL-38 levels were independently associated with the occurrence of MACE (OR = 0.90, P < 0.001). Conclusion We get a conclusion that low plasma levels of IL-38 are independently associated with the occurrence of MACE.
Collapse
Affiliation(s)
- Chengbo Lu
- Department of Cardiology, 1st Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China
| | - Fanghui Zhou
- Department of Hematology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Huimin Xian
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Siyuan Sun
- Department of Cardiology, People’s Hospital of Taihe County, Taihe, Anhui, People’s Republic of China
| | - Jingkun Yue
- Department of Cardiology, People’s Hospital of Taihe County, Taihe, Anhui, People’s Republic of China
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, 1st Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China
| | - Qi Zhao
- Department of Cardiology, 1st Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yang Li
- Department of Cardiology, 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
5
|
González L, Rivera K, Andia ME, Martínez Rodriguez G. The IL-1 Family and Its Role in Atherosclerosis. Int J Mol Sci 2022; 24:17. [PMID: 36613465 PMCID: PMC9820551 DOI: 10.3390/ijms24010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Katherine Rivera
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| | - Marcelo E. Andia
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| |
Collapse
|
6
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|
7
|
Lai M, Peng H, Wu X, Chen X, Wang B, Su X. IL-38 in modulating hyperlipidemia and its related cardiovascular diseases. Int Immunopharmacol 2022; 108:108876. [PMID: 35623295 DOI: 10.1016/j.intimp.2022.108876] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
Abstract
Hyperlipidemia is confirmed to be associated with several health problems that include the combination of diabetes mellitus, obesity, and hypertension, ie, metabolic syndrome. Although the lipid-lowering therapy is an effective treatment in hyperlipidemia and its related cardiovascular diseases (CVDs), the persistence of high atherosclerotic risk is notable which could not be simply explained as a phenomenon of hyperlipidemia. Concerning on this notion, it is imperative to identify novel biomarkers which could monitor treatment and predict adverse cardiovascular events. It is demonstrated that the chronic inflammatory response caused by immune cells is a characteristic of hyperlipidemia and atherosclerosis. Notably, among several inflammatory related cytokines, interleukin 38 (IL-38), as a member of the IL-1 family, plays an important role in anti-inflammatory response by binding with its receptor which inhibits the downstream signaling pathways. In addition, IL-38 suppresses the expression of inflammatory factors mainly through the mitogen-activated protein kinase (MAPK). At the cellular level, IL-38 could inhibit the CD4 positive T lymphocyte into T-helper 17 (Th-17) lymphocyte which further enhances the immunosuppressive activity of the T-regulatory lymphocyte (T-reg) to inhibit the inflammatory response. Consistently, IL-38 is shown to be strongly correlated to development of hyperlipidemic related CVDs. In this review, the roles of IL-38 in the development of hyperlipidemia are fully summarized. Furthermore, a theoretical basis for further in-depth research of IL-38 for treatment of hyperlipidemia is also provided.
Collapse
Affiliation(s)
- Min Lai
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hua Peng
- Department of Cardiac Macrovascular Surgery, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xijie Wu
- Department of Cardiac Macrovascular Surgery, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
9
|
Duan F, Zeng C, Liu S, Gong J, Hu J, Li H, Tan H. α1-nAchR-Mediated Signaling Through Lipid Raft Is Required for Nicotine-Induced NLRP3 Inflammasome Activation and Nicotine-Accelerated Atherosclerosis. Front Cell Dev Biol 2021; 9:724699. [PMID: 34490270 PMCID: PMC8416509 DOI: 10.3389/fcell.2021.724699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Background Nicotine exerts direct effects on multiple cell types in the cardiovascular system by associating with its high-affinity nicotinic acetylcholine receptors (nAchRs). Lipid raft is a membrane microdomain that recruits various receptors and signaling molecules for coordinating cellular immune response and many others signaling processes. Here, we aim to identify the essential role of lipid raft in mediating nicotine-triggered inflammatory and nicotine-accelerated atherosclerosis, and to figure out the specific receptor of nicotine-induced Nod-like receptor protein 3 (NLRP3) inflammasome activation in macrophage. Methods and Results ApoE–/– mice were fed with a high-fat diet to build atherosclerosis model. Methyl-β-cyclodextrin was used to interrupt intact lipid raft. We confirmed that nicotine triggered NLRP3 inflammasome activation and induced macrophage migration into atherosclerotic plaque, thus accelerated atherosclerosis in apoE–/– mice fed with a high-fat diet. Mechanically, nicotine increased the expression of α1-nAChR and stimulated the accumulation of α1-nAChR in lipid raft, leading to NLRP3 inflammasome activation in macrophage. Conversely, silencing of α1-nAChR in macrophage sufficiently blocked the pro-inflammasome activation effect of nicotine, indicating that α1-nAChR was the specific receptor for nicotine in triggering NLRP3 inflammasome in macrophage. Furthermore, both the destruction of lipid raft by methyl-β-cyclodextrin and the interference of lipid raft clustering by silencing acid sphingomyelinase reversed nicotine-induced NLRP3 inflammasome activation by reducing the accumulation of α1-nAChR in lipid raft in macrophage, suggesting lipid raft–mediated accumulation of α1-nAChR was the key event in regulating the pro-inflammatory effects of nicotine in macrophage. Importantly, nicotine-induced NLRP3 inflammasome activation and macrophage migration into atherosclerotic plaque were reversed by methyl-β-cyclodextrin, making a significant improvement for atherosclerosis in apoE–/– mice fed with a high-fat diet. Conclusion α1-nAChR-mediated signaling through lipid raft is required for NLRP3 inflammasome activation and pro-atherosclerotic property of nicotine.
Collapse
Affiliation(s)
- Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Sijun Liu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Gong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia Hu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Laboratory Animal Center, Sun Yat-sen University, Guangzhou, China.,The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Gong K, Chen Y, Liu W, Wang Z. Global research trends of Apolipoprotein E in central nervous system: A scientometric analysis. Int Immunopharmacol 2021; 98:107919. [PMID: 34217139 DOI: 10.1016/j.intimp.2021.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Apolipoprotein E (apoE, protein; APOE, gene) involves in cholesterol recycling and redistribution by mediating lipoprotein pathways unique to central nervous system (CNS), which is a potential therapeutic target for diseases. We visually analyzed the research hotspots of APOE related to CNS in this work, by scientometric analysis from the Web of Science Core Collection (WOSCC) database over the past two decades. A total of 25,719 references of "APOE" and 836 references of "APOE in CNS" were retrieved from the WOSCC on October 26, 2020, and then VOSviewer 1.6.15, Citespace 5.7.R2 were used for visual analysis. Over the last two decades, the research on the field of APOE in CNS is not faddish. Although many funds, organizations, and scholars were affiliated in this field, organizations and scholars, especially the top teams in this field, still lacked close cooperation with other teams around the world. Few articles with high citations had been published in the last decade, but recent studies still lacked scale and breakthrough, and the keywords associated with APOE appeared more outdated. However, the current researches have not fully elucidated the crosstalk between APOE and neuroinflammation in CNS, some new ideas may rekindle the research enthusiasm of scholars. Although the field of APOE in CNS appeared more outdated. Based on keyword analysis, we hypothesized new ideas for further investigation of neuroinflammation would light the interest of APOE in CNS for the scholars. The crosstalk between ApoE and inflammasome may be the focus of future researches. How APOE modulates the time course or intensity of the inflammasome activation, inflammatory response (proinflammatory or anti-inflammatory), and pathological process of CNS disease deserves future attention in both basic and clinical studies. More apoE/APOE-targeted pharmacological interventions will be available for preclinical experiments and clinical trials and bring hope for patients with CNS diseases.
Collapse
Affiliation(s)
- Kai Gong
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Yuhua Chen
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Wei Liu
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| | - Zhanxiang Wang
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| |
Collapse
|
11
|
Potential of Forsythoside I as a therapeutic approach for acute lung injury: Involvement of TXNIP/NLRP3 inflammasome. Mol Immunol 2021; 134:192-201. [PMID: 33812251 DOI: 10.1016/j.molimm.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To explore the role of Forsythoside I (FI) in acute lung injury (ALI) mouse and its underling mechanism. METHODS The cell models of ALI are constructed by LPS induction. After pretreatment with different concentrations of FI, the lung injury is assessed by pathological changes of lung tissues and cell apoptosis. The cell viability, levels of pro-inflammatory cytokines, and the activation of TXNIP/NLRP3 pathway are inspected to investigate whether the effect of FI on inflammatory response is exerted by regulating the TXNIP/NLRP3 pathway. RESULTS LPS induces inflammatory cell infiltration, tissue necrosis and pulmonary interstitial edema of mouse tissues, and LPS increases the protein concentration and levels of pro-inflammatory factors in mouse BALF. Additionally, enhanced cell apoptotic level, increased W/D ratio and MPO activity, as well as suppressed SOD activity are observed in LPS-induced mouse models. Those inflammation response, oxidative stress and lung injury can be attenuated by FI (12.5 mg/kg, 25 mg/kg, 50 mg/kg) in a dose-dependent manner. Meanwhile, both in vitro and in vivo studies reveal that FI can lead to suppressed TXNIP expression and inactivated NLRP3 inflammasomes. TXNIP is an upstream target of NLRP3, and FI mitigates ALI by decreasing TXNIP to block NLRP3 inflammasomes. CONCLUSION FI protects against ALI through the mediation of TXNIP/NLRP3 inflammasome axis and therefore has a certain potential for ALI treatment.
Collapse
|
12
|
Gáll T, Pethő D, Nagy A, Balla G, Balla J. Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H 2S) in Hemolytic and Hemorrhagic Vascular Disorders-Interaction between the Heme Oxygenase and H 2S-Producing Systems. Int J Mol Sci 2020; 22:ijms22010047. [PMID: 33374506 PMCID: PMC7793096 DOI: 10.3390/ijms22010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past decades, substantial work has established that hemoglobin oxidation and heme release play a pivotal role in hemolytic/hemorrhagic disorders. Recent reports have shown that oxidized hemoglobins, globin-derived peptides, and heme trigger diverse biological responses, such as toll-like receptor 4 activation with inflammatory response, reprogramming of cellular metabolism, differentiation, stress, and even death. Here, we discuss these cellular responses with particular focus on their mechanisms that are linked to the pathological consequences of hemorrhage and hemolysis. In recent years, endogenous gasotransmitters, such as carbon monoxide (CO) and hydrogen sulfide (H2S), have gained a lot of interest in connection with various human pathologies. Thus, many CO and H2S-releasing molecules have been developed and applied in various human disorders, including hemolytic and hemorrhagic diseases. Here, we discuss our current understanding of oxidized hemoglobin and heme-induced cell and tissue damage with particular focus on inflammation, cellular metabolism and differentiation, and endoplasmic reticulum stress in hemolytic/hemorrhagic human diseases, and the potential beneficial role of CO and H2S in these pathologies. More detailed mechanistic insights into the complex pathology of hemolytic/hemorrhagic diseases through heme oxygenase-1/CO as well as H2S pathways would reveal new therapeutic approaches that can be exploited for clinical benefit.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - Dávid Pethő
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Faculty of Medicine, University of Debrecen, Kálmán Laki Doctoral School, 4032 Debrecen, Hungary
| | - Annamária Nagy
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Faculty of Medicine, University of Debrecen, Kálmán Laki Doctoral School, 4032 Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Correspondence: ; Tel.: +36-52-255-500/55004
| |
Collapse
|
13
|
Diao Y. Clematichinenoside AR Alleviates Foam Cell Formation and the Inflammatory Response in Ox-LDL-Induced RAW264.7 Cells by Activating Autophagy. Inflammation 2020; 44:758-768. [PMID: 33151398 DOI: 10.1007/s10753-020-01375-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Foam cell formation and inflammation in macrophages contribute to the development of atherosclerosis (AS). Clematichinenoside AR (AR) is a major active ingredient extracted from the traditional Chinese herb Clematis chinensis and has potent pharmacological effects on various diseases, including AS. However, little is known about the exact role and mechanism of AR in AS. RAW264.7 macrophages were exposed to oxidized low-density lipoprotein (ox-LDL) to induce AS in vitro. Cell viability was assessed by the CCK-8 assay. Foam cell formation was detected by Oil Red staining. Cholesterol levels were determined by corresponding commercial kits. The expression of inflammatory cytokines was detected by ELISA. Western blot and immunofluorescence assays were employed to detect the expression of corresponding genes. The results indicated that AR treatment inhibited the formation of foam cells and cholesterol accumulation but promoted cholesterol efflux by upregulating ABCA1/ABCG1 in ox-LDL-induced RAW264.7 macrophages. In addition, AR decreased the production of inflammatory cytokines by blunting the activation of the NLRP3 inflammasome and inducing autophagy. However, these effects of AR were weakened by the autophagy inhibitor bafilomycin A1 but were similar to those produced by the autophagy activator rapamycin. Collectively, our study provides novel insights into the beneficial effects of AR on promoting cholesterol efflux as well as inhibiting foam cell formation and inflammation by regulating autophagy, thus identifying AR as a promising therapeutic agent for the treatment of AS.
Collapse
Affiliation(s)
- Yajing Diao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| |
Collapse
|