1
|
Rather HA, Almousa S, Craft S, Deep G. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in Alzheimer's disease and other aging-related disorders. Ageing Res Rev 2023; 92:102088. [PMID: 37827304 PMCID: PMC10842260 DOI: 10.1016/j.arr.2023.102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted by almost all cell types, primarily for intercellular communication and maintaining cellular homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple pathological conditions, and these vesicles are suggested to serve as 'liquid biopsies'. In addition to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been increasingly used as an attractive alternative to stem cell therapies and have been reported to promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source stem cells, and their physiological state. In this review, we briefly describe studies related to the promising effects of SC-EVs against various aging-related pathologies, and then we focus in-depth on the therapeutic benefits of SC-EVs against Alzheimer's disease, one of the most devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of Alzheimer's disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture studies have further identified the underlying molecular mechanisms through which SC-EVs reduce amyloid beta (Aβ) levels or shift microglia phenotype from pro-inflammatory to anti-inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these promises, several challenges related to quality control, scalability, and biodistribution remain, hindering the realization of the vast clinical promise of SC-EVs.
Collapse
Affiliation(s)
- Hilal Ahmad Rather
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Atirum Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
2
|
Wang Y, Long L, Zhuo L, Zhang H, Luo T, Deng J, Wang Y, Li Z, Wang Z, Peng X. Design, synthesis, and biological evaluation of 1-styrenyl isoquinoline derivatives for anti-hepatocellular carcinoma activity and effect on mitochondria. Eur J Med Chem 2023; 256:115420. [PMID: 37182331 DOI: 10.1016/j.ejmech.2023.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
In this study, 18 derivatives of 1-styrene-isoquinoline were designed and synthesized from resveratrol and isoquinoline. The IC50 of compound 1c against Huh7 and SK-Hep-1 cells were 2.52 μM and 4.20 μM, respectively. Mice were treated with 650 mg/kg compound 1c, and the survival status of mice was good. Further studies showed that compound 1c could inhibit cell proliferation by arresting the cell cycle in the G2/M phase, induce cell apoptosis, and inhibit cell migration and invasion by regulating epithelial-mesenchymal transition (EMT). It is worth noting that numbers of studies have pointed that resveratrol can trigger mitochondrial apoptosis to induce apoptosis of cancer cells. Therefore, we investigated the mechanism of compound 1c induced apoptosis of Huh7 and SK-Hep-1 cells. The results indicated that compound 1c could regulate the expression of proteins which are related to mitochondrial apoptosis pathway and inhibit the phosphorylation of PI3K/Akt/mTOR signaling pathway. In addition, compound 1c could inhibit the growth of Huh7-xenografts, and perform a tumor inhibitory rate of 41.44% when administered 30 mg/kg once a day. This work provides a potential anti-hepatocellular carcinoma compound that warrants further investigation.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jiedan Deng
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhao Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Liu Y, Gu S, Su Y, Wang S, Cheng Y, Sang X, Jin L, Liu Y, Li C, Liu W, Chen M, Wang X, Wang Z. Embryonic stem cell extracellular vesicles reverse the senescence of retinal pigment epithelial cells by the p38MAPK pathway. Exp Eye Res 2023; 227:109365. [PMID: 36577484 DOI: 10.1016/j.exer.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Retinal pigment epithelial (RPE) cellular senescence is regarded as an initiator for age-related macular degeneration (AMD). We previously demonstrated that by the coculture way, embryonic stem cells (ESCs) can reverse the senescence of RPE cells, but xenograft cells can cause a plethora of adverse effects. Extracellular vesicles (EVs) derived from ESCs can act as messengers to mediate nearby cell activities and have the same potential as ESCs to reverse RPE senescence. Furthermore, ESC-EVs have achieved preliminary efficacy while treating many age-related diseases. The present study aimed to test the effect of ESC-EVs on the replicative senescence model of RPE cells as well as its mechanism. The results showed that ESC-EVs enhanced the proliferative ability and cell cycle transition of senescent RPE cells, whereas reduced the senescence-associated galactosidase (SA-β-gal) staining rate, as well as the levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). Moreover, classical markers of cellular senescence p21WAF1/CIP1 (p21) and p16INK4a (p16) were downregulated. The bioinformatic analysis and further study showed that the inhibition of the p38MAPK pathway by ESC-EVs played a pivotal role in RPE cellular senescence-reversing effect, which was ameliorated or even abolished when dehydrocorydaline were administrated simultaneously, demonstrating that ESC-EVs can effectively reverse RPE cellular senesence by inhibiting the p38MAPK pathway, thus highlights the potential of ESC-derived EVs as biomaterials for preventative and protective therapy in AMD.
Collapse
Affiliation(s)
- Yurun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Simin Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Shoubi Wang
- The First Affiliated Hospital of Xiamen, 55 Zhenhai Road, Xiamen, China.
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Lin Jin
- The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, Shandong Province, China.
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Minghao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Monti P, Solazzo G, Ferrari L, Bollati V. Extracellular Vesicles: Footprints of environmental exposures in the aging process? Curr Environ Health Rep 2021; 8:309-322. [PMID: 34743313 DOI: 10.1007/s40572-021-00327-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF THE REVIEW Extracellular vesicles (EVs) are nano-sized lipid particles that participate in intercellular signaling through the trafficking of bioactive molecules from parental cells to recipient ones. This well-orchestrated communication system is crucial for the organism to respond to external cues in a coordinated manner; indeed, environmental and lifestyle exposures can modify both EV number and content, with consequences on cellular metabolism and homeostasis. In particular, a growing body of evidence suggests that exposome-induced changes in EV profile could regulate the aging process, both at the cellular and organismal levels. Here, we provide an overview of the role played by ambient-induced EVs on aging and age-related diseases. Among the several environmental factors that can affect the communication network operated by EVs, we focused on air pollution, ultraviolet light, diet, and physical exercise. Moreover, we performed a miRNA target analysis, to support the role of EV-miRNA emerging from the literature in the context of aging. RECENT FINDINGS The overall emerging picture strongly supports a key regulatory role for EVs at the interface between external stimuli and cellular/organismal aging, thus providing novel insights into the molecular mechanisms linking a "healthy exposome" to well-being in old age. In addition, this knowledge will pave the way for research aimed at developing innovative antiaging strategies based on EVs.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy. .,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|