1
|
Huang W, Hu W, Fang M, Zhang Q, Zhang Y, Wang H. Impacts of prenatal environmental exposures on fetal-placental-maternal bile acid homeostasis and long-term health in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116929. [PMID: 39213751 DOI: 10.1016/j.ecoenv.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
During pregnancy, the maternal body undergoes a series of adaptative physiological changes, leading to a slight increase in serum bile acid (BA) levels. Although the fetal liver can synthesize BAs since the first trimester through the alternative pathway, the BA metabolic system is immature in the fetus. Compared to adults, the fetus has a distinct composition of BA pool and limited expression of BA synthesis enzymes and transporters. Besides, the "enterohepatic circulation" of BAs is absent in fetus. Thus, fetal BAs need to be transported to the mother through the placenta for further metabolism and excretion, and maternal BAs can also be transported to the fetus. That is what we call the "fetal-placental-maternal BA circulation". Various BA transporters and nuclear receptors are essential for maintaining the balance of this BA circulation to ensure normal fetal development. However, prenatal adverse environments can alter fetal BA metabolism, resulting in intrauterine developmental abnormalities and susceptibility to a variety of adult chronic diseases. This review summarizes the current understanding of the fetal-placental-maternal BA circulation and discusses the effects of prenatal adverse environments on this particular BA circulation, aiming to provide a theoretical basis for exploring early prevention and treatment strategies for BA metabolism-associated adverse pregnancy outcomes and long-term impairments.
Collapse
Affiliation(s)
- Wen Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
2
|
Tu DZ, Liu PQ, Zhu GH, Zeng HR, Deng YY, Huang J, Niu XT, Liu YF, Hu J, Liang XM, Finel M, Wang P, Ge GB. Human UDP-glucuronosyltransferase 1As catalyze aristolochic acid D O-glucuronidation to form a lesser nephrotoxic glucuronide. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118116. [PMID: 38548118 DOI: 10.1016/j.jep.2024.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-β-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 μM, 9.05 μM, 3.87 μM, and 7.00 μM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.
Collapse
Affiliation(s)
- Dong-Zhu Tu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei-Qi Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai-Rong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Yan Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, 201203, China
| | - Xiao-Ting Niu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jing Hu
- Department of Nephrology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xin-Miao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Fan X, Li X, Yu T, Jiao R, Song W, Su A, Li M, Guo Q. Evaluation of alanine aminotransferase/aspartate aminotransferase ratio and high-density lipoprotein for predicting neonatal adverse outcomes associated with intrahepatic cholestasis of pregnancy. PeerJ 2024; 12:e17613. [PMID: 38938614 PMCID: PMC11210484 DOI: 10.7717/peerj.17613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background To determine the association between lipid metabolism and intrahepatic cholestasis of pregnancy (ICP), and explore the value of maternal alanine aminotransferase/aspartate aminotransferase (ALT/AST) and high-density lipoprotein (HDL) in predicting adverse neonatal outcomes in women with ICP. Methods A total of 147 pregnant women with ICP admitted to The Fourth Hospital of Shijiazhuang and 120 normal pregnant women in the same period were selected in this study. The Mann-Whitney U test and Chi-square tests were used to compare the differences in clinical data. Multivariate logistic regression was used to analyze the relationship between ALT/AST and the occurrence of adverse pregnancy outcomes in patients with ICP. The combined predictive value of ALT/AST and HDL was determined by receiver operating characteristic (ROC) curve analysis. Results Among 147 women with ICP, 122 women had total bile acid (TBA) levels of 10-39.9 µmol/L, and 25 had TBA ≥ 40 µmol/L. There was significantly lower gestational age in patients with severe ICP than in those with mild and control groups (all p < 0.05), and the weight of newborns in the maternal ICP group was significantly lower than in the control group (p < 0.05). Increasing TBA levels was associated with higher AST, ALT, ALT/AST, and lower HDL level (all p < 0.05). Meanwhile, higher levels of ALT/AST was positively associated with neonatal hyperbilirubinemia [adjusted odds ratio (AOR) = 4.019, 95% CI [1.757-9.194, p = 0.001] and cardiac injury [AOR = 3.500, 95% CI [1.535-7.987], p = 0.003]. HDL was a significant protective factor for neonatal hyperbilirubinemia and cardiac injury [AOR = 0.315, 95% CI [0.126-0.788], p = 0.014; AOR = 0.134 (0.039-0.461), p = 0.001]. The area under the ROC curve (AUC) for prediction of neonatal hyperbilirubinemia by ALT/AST combined with HDL was 0.668 [95% CI [56.3-77.3%], p = 0.002], and the sensitivity and specificity were 47.1% and 84.0%, respectively. To predict neonatal cardiac injury, the AUC value was 0.668 [95% CI [56.4-77.1%], p = 0.002], with sensitivity and specificity were 41.2% and 87.1%, respectively. Conclusions The levels of higher ALT/AST and lower HDL were significantly associated with the risk of ICP-related adverse neonatal outcomes. Moreover, ALT/AST combined with HDL has moderate clinical value in predicting the adverse outcomes of neonatal hyperbilirubinemia and cardiac injury.
Collapse
Affiliation(s)
- Xizhenzi Fan
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xia Li
- Department of Scientific Research and Education, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Tianxiao Yu
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Ruifen Jiao
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Wenhui Song
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Achou Su
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Mingwei Li
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Qing Guo
- Department of Obstetrics, Hebei Key Laboratory of Maternal and Fetal Medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
4
|
Ye N, Shi X, Gao J, Dong R, Wang G, Wang J, Luo L, Zhang T. Exosomes from Intrahepatic Cholestasis of Pregnancy Induce Cell Apoptosis Through the miRNA-6891-5p/YWHAE Pathway. Dig Dis Sci 2024; 69:1253-1262. [PMID: 38361148 DOI: 10.1007/s10620-023-08265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse pregnancy outcomes; however, the underlying mechanisms are not fully understood. AIMS This study aimed to determine the role of exosomal miR-6891-5p in placental trophoblast dysfunction in ICP and identify new biomarkers for ICP diagnosis. METHODS Serum samples were collected from ICP patients and healthy pregnant women, and serum exosomes were extracted and identified. Fluorescent dye labeling of exosomes and cell-verified cell phagocytosis were performed. In vitro experiments were conducted by adding taurocholic acid to simulate the ICP environment. Cell proliferation and apoptosis levels were detected using flow cytometry and the cell counting kit-8 assay. Mimics were constructed to overexpress miR-6891-5p in cells, and the binding site between miR-6891-5p and YWHAE was verified using luciferase reporter genes. RESULTS miR-6891-5p expression was significantly decreased in serum exosomes of ICP patients. Co-culturing with exosomes derived from ICP patients' serum (ICP-Exos) decreased HTR-8/SVeno cell proliferation and increased apoptosis levels. miR-6891-5p upregulation in HTR-8/SVeno cells significantly increased cell viability and reduced cell apoptosis levels, as determined by the cell counting kit-8 assay and flow cytometry. A double luciferase assay confirmed that miR-6891-5p affected the expression of the downstream YWHAE protein. CONCLUSIONS This study indicates that serum exosomes from ICP patients can impact the apoptosis of placental trophoblast HTR-8/SVeno cells through the miR-6891-5P/YWHAE pathway and can serve as specific molecular markers for ICP diagnosis.
Collapse
Affiliation(s)
- Ningzhen Ye
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Xinrui Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jianyi Gao
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Ruirui Dong
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Gaoying Wang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jing Wang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Liang Luo
- Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Jiangnan University, Wuxi, 214001, China
| | - Ting Zhang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
5
|
Wang M, Chen L, Li J, You Y, Qian Z, Liu J, Jiang Y, Zhou T, Gu Y, Zhang Y. An omics review and perspective of researches on intrahepatic cholestasis of pregnancy. Front Endocrinol (Lausanne) 2024; 14:1267195. [PMID: 38260124 PMCID: PMC10801044 DOI: 10.3389/fendo.2023.1267195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is one of the common pregnancy complications that may threaten the health of both pregnant women and their fetuses. Hence, it is of vital importance to identify key moleculars and the associated functional pathways of ICP, which will help us to better understand the pathological mechanisms as well as to develop precise clinical biomarkers. The emerging and developing of multiple omics approaches enable comprehensive studies of the genome, transcriptome, proteome and metabolome of clinical samples. The present review collected and summarized the omics based studies of ICP, aiming to provide an overview of the current progress, limitations and future directions. Briefly, these studies covered a broad range of research contents by the comparing of different experimental groups including ICP patients, ICP subtypes, ICP fetuses, ICP models and other complications. Correspondingly, the studied samples contain various types of clinical samples, in vitro cultured tissues, cell lines and the samples from animal models. According to the main research objectives, we further categorized these studies into two groups: pathogenesis and diagnosis analyses. The pathogenesis studies identified tens of functional pathways that may represent the key regulatory events for the occurrence, progression, treatment and fetal effects of ICP. On the other hand, the diagnosis studies tested more than 40 potential models for the early-prediction, diagnosis, grading, prognosis or differential diagnosis of ICP. Apart from these achievements, we also evaluated the limitations of current studies, and emphasized that many aspects of clinical characteristics, sample processing, and analytical method can greatly affect the reliability and repeatability of omics results. Finally, we also pointed out several new directions for the omics based analyses of ICP and other perinatal associated conditions in the future.
Collapse
Affiliation(s)
- Min Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Lingyan Chen
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jingyang Li
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yilan You
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jiayu Liu
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Jiang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tao Zhou
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Gu
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Xiong L, Tang M, Xing S, Yang X. The role of noncoding RNA and its diagnostic potential in intrahepatic cholestasis of pregnancy: a research update. Front Genet 2023; 14:1239693. [PMID: 37900174 PMCID: PMC10611463 DOI: 10.3389/fgene.2023.1239693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a common liver disorder that generally occurs during the second or third trimester of pregnancy. It rarely causes any harm to the mother; however, it can result in short- and long-term complications in the offspring. Therefore, it is crucial to diagnose and treat this condition to avoid poor pregnancy outcomes. The identification of novel markers with potential diagnostic, prognostic, and therapeutic utility in ICP has gained attention. Noncoding RNAs (ncRNAs), including microRNA, long noncoding RNA, and circular RNA, are a type of transcripts that are not translated into proteins. They possess vital biological functions, including transcriptional and translational regulation and DNA, RNA, and protein interactions. The pathogenesis of ICP is related to the aberrant expression of several circulating or placenta-related ncRNAs. In this review, we summarized all recent findings on ncRNAs and ICP and outlined the concepts that form the basis for the early diagnosis and targeted treatment of ICP.
Collapse
Affiliation(s)
- Liling Xiong
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Xing
- GCP Institution, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Necroptosis of macrophage is a key pathological feature in biliary atresia via GDCA/S1PR2/ZBP1/p-MLKL axis. Cell Death Dis 2023; 14:175. [PMID: 36859525 PMCID: PMC9977961 DOI: 10.1038/s41419-023-05615-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
Biliary atresia (BA) is a severe inflammatory and fibrosing neonatal cholangiopathy disease characterized by progressive obstruction of extrahepatic bile ducts, resulting in cholestasis and progressive hepatic failure. Cholestasis may play an important role in the inflammatory and fibrotic pathological processes, but its specific mechanism is still unclear. Necroptosis mediated by Z-DNA-binding protein 1 (ZBP1)/phosphorylated-mixed lineage kinase domain-like pseudokinase (p-MLKL) is a prominent pathogenic factor in inflammatory and fibrotic diseases, but its function in BA remains unclear. Here, we aim to determine the effect of macrophage necroptosis in the BA pathology, and to explore the specific molecular mechanism. We found that necroptosis existed in BA livers, which was occurred in liver macrophages. Furthermore, this process was mediated by ZBP1/p-MLKL, and the upregulated expression of ZBP1 in BA livers was correlated with liver fibrosis and prognosis. Similarly, in the bile duct ligation (BDL) induced mouse cholestatic liver injury model, macrophage necroptosis mediated by ZBP1/p-MLKL was also observed. In vitro, conjugated bile acid-glycodeoxycholate (GDCA) upregulated ZBP1 expression in mouse bone marrow-derived monocyte/macrophages (BMDMs) through sphingosine 1-phosphate receptor 2 (S1PR2), and the induction of ZBP1 was a prerequisite for the enhanced necroptosis. Finally, after selectively knocking down of macrophage S1pr2 in vivo, ZBP1/p-MLKL-mediated necroptosis was decreased, and further collagen deposition was markedly attenuated in BDL mice. Furthermore, macrophage Zbp1 or Mlkl specific knockdown also alleviated BDL-induced liver injury/fibrosis. In conclusion, GDCA/S1PR2/ZBP1/p-MLKL mediated macrophage necroptosis plays vital role in the pathogenesis of BA liver fibrosis, and targeting this process may represent a potential therapeutic strategy for BA.
Collapse
|