1
|
Liu Z, Lin Z, Chen Y, Lu M, Hong W, Yu B, Liu G. Lipoteichoic Acid Rescued Age-Related Bone Loss by Enhancing Neuroendocrine and Growth Hormone Secretion Through TLR2/COX2/PGE2 Signalling Pathway. J Cell Mol Med 2024; 28:e70247. [PMID: 39622781 PMCID: PMC11611525 DOI: 10.1111/jcmm.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
The phenomenon of brain-bone crosstalk pertains to the intricate interaction and communication pathways between the central nervous system and the skeletal system. Disruption in brain-bone crosstalk, particularly in disorders such as osteoporosis, can result in skeletal irregularities. Consequently, investigating and comprehending this communication network holds paramount importance in the realm of bone disease prevention and management. In this study, we found that Staphylococcus aureus lipoteichoic acid promoted the conversion of arachidonic acid to PGE2 by interacting with TLR2 receptors acting on the surface of microglial cells in the pituitary gland, leading to the upregulation of COX-2 expression. Subsequently, PGE2 bound to the EP4 receptor of growth hormone-secreting cells and activated the intracellular CREB signalling pathway, promoting GH secretion and ameliorating age-related bone loss.
Collapse
Affiliation(s)
- Zixian Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- The Second Hospital and Clinical Medical SchoolLanzhou UniversityLanzhouChina
| | - Zexin Lin
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yingqi Chen
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mincheng Lu
- Department of Orthopedic, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Weisheng Hong
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bin Yu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guanqiao Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Park J, Lim Y, Park C, Kum KY, Yun CH, Park OJ, Han SH. Heat-killed Lancefieldella Rimae Induces Bone Resorption by Promoting Osteoclast Differentiation. J Endod 2024; 50:1593-1601. [PMID: 39182718 DOI: 10.1016/j.joen.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Apical periodontitis, mainly caused by bacterial infection in the dental pulp, is often accompanied by abscess, periapical inflammation, and alveolar bone loss. Lancefieldella rimae has been detected in the root canals of patients with apical periodontitis. Here, we investigated whether L. rimae is associated with bone resorption. METHODS L. rimae was anaerobically cultured and heat-killed (HKLr). A mouse calvarial implantation model was used to determine the bone resorption in vivo. Committed osteoclasts prepared from C57BL/6 wild-type or Toll-like receptor 2 (TLR2)-deficient mice were differentiated into mature osteoclasts in the presence or absence of HKLr. The mRNA expression of tartrate-resistant acid phosphatase (TRAP), ATPase H+ transporting V0 subunit D2, cathepsin K, interleukin-6, tumor necrosis factor-α, and glyceraldehyde 3-phosphate dehydrogenase was quantified using real-time reverse transcription-polymerase chain reaction. The protein levels of c-Fos and NFATc1 were determined by Western blot analysis. RESULTS Implantation of HKLr onto the mouse calvaria induced the bone destruction with an increase of TRAP-positive areas. While HKLr enhanced the differentiation of osteoclasts, this effect was not observed in TLR2-deficient osteoclasts. HKLr dose-dependently increased the mRNA expression of genes associated with osteoclast differentiation including TRAP, ATPase H+ transporting V0 subunit D2, and cathepsin K. In addition, HKLr enhanced the expression of c-Fos and NFATc1, which are important transcription factors for osteoclast differentiation. Moreover, HKLr increased the expression of interleukin-6 and tumor necrosis factor-α. CONCLUSION L. rimae induces bone resorption by enhancing osteoclast differentiation through the TLR2 signaling pathway, implying that L. rimae is a causative agent responsible for the alveolar bone resorption accompanying apical periodontitis.
Collapse
Affiliation(s)
- Jinsung Park
- Department of Oral Microbiology and Immunology, and DRI, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yeonjin Lim
- Department of Oral Microbiology and Immunology, and DRI, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and DRI, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kee-Yeon Kum
- Department of Conservative Dentistry, DRI, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and DRI, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Hernández-Sandoval EM, Sánchez-Gutiérrez R, Torres-Monjarás AP, Alvarado-Hernández DL, Méndez-González V, Hernández-Castro B, Bernal-Silva S, Comas-García A, Martínez-Rider R, González-Amaro R, Vitales-Noyola M. α-IRAK-4 Suppresses the Activation of RANK/RANKL Pathway on Macrophages Exposed to Endodontic Microorganisms. Int J Mol Sci 2024; 25:8434. [PMID: 39126003 PMCID: PMC11313395 DOI: 10.3390/ijms25158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.
Collapse
Affiliation(s)
- Elsa Montserrat Hernández-Sandoval
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Raquel Sánchez-Gutiérrez
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
- Department of Molecular and Translational Medicine, School of Medicine, Texas Tech University Health Sciences, El Paso, TX 79905, USA
| | - Ana Patricia Torres-Monjarás
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Diana Lorena Alvarado-Hernández
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Verónica Méndez-González
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Berenice Hernández-Castro
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Sofía Bernal-Silva
- Department of Microbiology, Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (S.B.-S.); (A.C.-G.)
| | - Andreu Comas-García
- Department of Microbiology, Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (S.B.-S.); (A.C.-G.)
- School of Medicine, Cuauhtemoc University, Manuel Nava 3291, San Luis Potosi 78290, SLP, Mexico
| | - Ricardo Martínez-Rider
- Oral and Maxillofacial Surgery Specialty, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico;
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Marlen Vitales-Noyola
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| |
Collapse
|
4
|
Chang X, Deng J, Zhou F, Geng Z, Li X, Wang S. D-alanine suppressed osteoclastogenesis derived from bone marrow macrophages and downregulated ERK/p38 signalling pathways. Arch Oral Biol 2024; 161:105912. [PMID: 38382164 DOI: 10.1016/j.archoralbio.2024.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVES D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts. DESIGN Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA). RESULTS The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention. CONCLUSION D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.
Collapse
Affiliation(s)
- Xiaochi Chang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China; Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Deng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China
| | - Fengyi Zhou
- School of Stomatology of Qingdao University, Qingdao, China; Department of Stomatology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Zhihao Geng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China; Institute of Stomatological Research, Shenzhen University, Shenzhen, China.
| | - Shuai Wang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China.
| |
Collapse
|