1
|
Morales-Rivera MI, Alemón-Medina R, Martínez-Hernández A, Contreras-Cubas C, Altamirano-Bustamante NF, Gómez-Garduño J, Mendoza-Caamal EC, Nuñez-González JO, García-Álvarez R, Revilla-Monsalve C, Valcarcel-Gamiño JA, Villafan-Bernal JR, Centeno-Cruz F, García-Ortiz H, Barajas-Olmos F, Orozco L. Exome Sequence Data of Eight SLC Transporters Reveal That SLC22A1 and SLC22A3 Variants Alter Metformin Pharmacokinetics and Glycemic Control. Pharmaceuticals (Basel) 2024; 17:1385. [PMID: 39459024 PMCID: PMC11510168 DOI: 10.3390/ph17101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Type 2 diabetes (T2D) is one of the leading causes of mortality and is a public health challenge worldwide. Metformin is the first-choice treatment for T2D; its pharmacokinetics (PK) is facilitated by members of the solute carrier (SLC) superfamily of transporters, it is not metabolized, and it is excreted by the kidney. Although interindividual variability in metformin pharmacokinetics is documented in the Mexican population, its pharmacogenomics is still underexplored. We aimed to identify variants in metformin SLC transporter genes associated with metformin PK and response in Mexican patients. Methods: Using exome data from 2217 Mexican adults, we identified 86 biallelic SNVs in the eight known genes encoding SLC transporters, with a minor allele frequency ≥ 1%, which were analyzed in an inadequate glycemic control (IGC) association study in T2D metformin treated patients. Metformin PK was evaluated in a pediatric cohort and the effect of associated SNVs was correlated. Results: Functional annotation classified two SNVs as pathogenic. The association study revealed two blocks associated with IGC. These haplotypes comprise rs622591, rs4646272, rs4646273, and rs4646276 in SLC22A1; and rs1810126 and rs668871 in SLC22A3. PK profiles revealed that homozygotes of the SLC22A1 haplotype reached lower plasma metformin concentrations 2 h post administration than the other groups. Conclusions: Our findings highlight the potential of pharmacogenomics studies to enhance precision medicine, which may involve dosage adjustments or the exploration of alternative therapeutic options. These hold significant implications for public health, particularly in populations with a high susceptibility to develop metabolic diseases, such as Latin Americans.
Collapse
Affiliation(s)
- Monserrat I. Morales-Rivera
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
- Postdoctoral Researcher, Consejo Nacional de Humanidades Ciencias y Tecnologías, Mexico City 14610, Mexico
| | - Radamés Alemón-Medina
- Pharmacology Laboratory, Instituto Nacional de Pediatría, SSA, Mexico City 04530, Mexico; (R.A.-M.); (J.G.-G.); (R.G.-Á.)
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | | | - Josefina Gómez-Garduño
- Pharmacology Laboratory, Instituto Nacional de Pediatría, SSA, Mexico City 04530, Mexico; (R.A.-M.); (J.G.-G.); (R.G.-Á.)
| | - Elvia C. Mendoza-Caamal
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - J. Orlando Nuñez-González
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - Raquel García-Álvarez
- Pharmacology Laboratory, Instituto Nacional de Pediatría, SSA, Mexico City 04530, Mexico; (R.A.-M.); (J.G.-G.); (R.G.-Á.)
| | - Cristina Revilla-Monsalve
- Medical Research Unit in Metabolic Diseases, UMAE Hospital de Cardiología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City 06720, Mexico;
| | - José Antonio Valcarcel-Gamiño
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - José Rafael Villafan-Bernal
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (M.I.M.-R.); (A.M.-H.); (C.C.-C.); (E.C.M.-C.); (J.A.V.-G.); (J.R.V.-B.); (F.C.-C.); (H.G.-O.)
| |
Collapse
|
2
|
Ortega-Ayala A, De Andrés F, Llerena A, Bartolo-Montiel CM, Molina-Guarneros JA. Impact of SLC22A1 variants rs622342 and rs72552763 on HbA1c and metformin plasmatic concentration levels in patients with type 2 diabetes mellitus. Biomed Rep 2024; 21:117. [PMID: 38938740 PMCID: PMC11209864 DOI: 10.3892/br.2024.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 06/29/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major global health problem. Response to first-line therapy is variable. This is partially due to interindividual variability across those genes codifying transport, metabolising, and drug activation proteins involved in first-line pharmacological treatment. Single nucleotide polymorphisms (SNPs) of genes SLC22A1, SLC22A2 and SLC22A3 affect metformin therapeutic response in patients with T2DM patients. The present study investigated allelic and genotypic frequencies of organic cation (OCT)1, OCT2, and OCT3 polymorphisms among metformin-treated patients with type 2 diabetes mellitus (T2DM). It also reports the association between clinical and genetic variables with glycated haemoglobin (HbA1c) control in 59 patients with T2DM. Patients were genotyped through real-time PCR (TaqMan assays). Metformin plasmatic levels were determined by mass spectrometry. Neither the analysis of HbA1c control by SNPs in SLC22A1, SLC22A2 and SLC22A3, nor the dominant genotypic model analysis yielded statistical significance between genotypes in polymorphisms rs72552763 (P=0.467), rs622342 (P=0.221), rs316019 (P=0.220) and rs2076828 (P=0.215). HbA1c levels were different in rs72552763 [GAT/GAT, 6.0 (5.7-6.6), GAT/del=6.5 (6.2-9.0), del/del=6.5 (6.4-6.8); P=0.022] and rs622342 [A/A=6.0 (5.8-6.5), A/C=6.4 (6.1-7.7), C/C=6.8 (6.4-9.3); P=0.009] genotypes. The dominant genotypic model found the lowest HbA1c levels in GAT/GAT (P=0.005) and A/A (P=0.010), in rs72552763 (GAT/GAT vs. GAT/del + del/del) and rs622342 (A/A vs. A/C + CC), respectively. There was a significant correlation between HbA1c levels and metformin dosage amongst del allele carriers in rs72552763 (β1=0.14, P<0.001, r2=0.387), as opposed to GAT/GAT in rs72552763. There were no differences between HbA1c values in the test set and those predicted by machine learning models employing a simple linear regression based on metformin dosage. Therefore, rs72552763 and rs622342 polymorphisms in SLC22A1 may affect metformin response determined by HbA1c levels in patients with T2DM. The del allele of SNP rs72552763 may serve as a metformin response biomarker.
Collapse
Affiliation(s)
- Adiel Ortega-Ayala
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Fernando De Andrés
- Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain
| | - Adrián Llerena
- University Institute for Bio-sanitary Research of Extremadura, 06002 Badajoz, Spain
| | - Carlos M. Bartolo-Montiel
- Directorate of Planification, Teaching, and Research, High-Speciality Regional Hospital of Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Juan Arcadio Molina-Guarneros
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Kumar AKH, Kadam A, Karunaianantham R, Tamizhselvan M, Padmapriyadarsini C, Mohan A, Jeyadeepa B, Radhakrishnan A, Singh UB, Bapat S, Mane A, Kumar P, Mamulwar M, Bhavani PK, Haribabu H, Rath N, Guleria R, Khan AM, Menon J. Effect of Metformin on Plasma Exposure of Rifampicin, Isoniazid, and Pyrazinamide in Patients on Treatment for Pulmonary Tuberculosis. Ther Drug Monit 2024; 46:370-375. [PMID: 38019456 PMCID: PMC11078288 DOI: 10.1097/ftd.0000000000001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/08/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND To evaluate the effect of metformin on the plasma levels of rifampicin, isoniazid, and pyrazinamide in patients with drug-sensitive pulmonary tuberculosis being treated with first-line antituberculosis treatment (ATT) and to assess the influence of gene polymorphisms on the metabolic pathway of metformin and plasma levels of antitubercular drugs. METHODS Nondiabetic adults aged 18-60 years with pulmonary tuberculosis were randomized to either the standard ATT (ATT group) or ATT plus metformin (METRIF group) groups in a phase IIB clinical trial. An intensive pharmacokinetic study with blood collection at 0 hour (predosing), followed by 1, 2, 4, 6, 8, and 12 hours after dosing was conducted during the first month of treatment in a subset of 60 study participants after a minimum of 14 doses. Plasma concentrations of rifampicin, isoniazid, pyrazinamide, and metformin were measured by high-performance liquid chromatography using validated methods, and pharmacokinetic parameters and OCT1 and MATE1 gene polymorphisms were compared between the groups. RESULTS Significant increases in the clearance of rifampicin, isoniazid, and pyrazinamide were observed in patients in the METRIF group (n = 29) compared with those in the ATT group (n = 31). The AA genotypes of the single-nucleotide polymorphism of rs2289669 ( MATE1 ) in the METRIF group showed a significantly decreased area under the concentration-time curve to the last observation point and increased clearance of rifampicin. CONCLUSIONS Metformin altered rifampicin and isoniazid plasma concentrations in patients receiving antituberculosis treatment for pulmonary tuberculosis with little effect on sputum conversion at the end of treatment. Studies with larger sample sizes are needed to understand host drug-drug interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Anant Mohan
- All India Institute of Medical Sciences, New Delhi
| | - B. Jeyadeepa
- ICMR-National Institute for Research in Tuberculosis, Chennai
| | | | | | | | - Aarti Mane
- ICMR-National AIDS Research Institute, Pune
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pradana AD, Kristin E, Nugrahaningsih DAA, Nugroho AK, Pinzon RT. Influence of Solute Carrier Family 22 Member 1 ( SLC22A1) Gene Polymorphism on Metformin Pharmacokinetics and HbA1c Levels: A Systematic Review. Curr Diabetes Rev 2024; 20:e070823219470. [PMID: 37550919 DOI: 10.2174/1573399820666230807145202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Solute Carrier Family 22 Member 1 (SLC22A1, also known as OCT1) protein has a vital role in the metabolism of metformin, a first-line anti-diabetes medication. Genetic poly-morphism in SLC22A1 influences individual response to metformin. OBJECTIVE This review aims to compile the current knowledge about the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c levels. METHODS We followed the PRISMA 2020 standards to conduct a systematic review. We searched the publications for all appropriate evidence on the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c from January 2002 to December 2022. RESULTS Initial database searches identified 7,171 relevant studies. We reviewed 155 titles and abstracts after deleting duplicates. After applying inclusion and exclusion criteria, 23 studies remained. CONCLUSION Three studies found that rs12208357, rs34059508, and G465R had a considerable impact (p < 0.05) on metformin pharmacokinetics, resulting in increased metformin plasma (Cmax), a higher active amount of drug in the blood (AUC), and lower volume of distribution (Vd) (p<0.05). SLC22A1 polymorphisms with effects on HbA1c include rs628031 (four of seven studies), rs622342 (four of six studies), rs594709 (one study), rs2297374, and rs1867351 (one of two studies), rs34130495 (one study), and rs11212617 (one study) (p < 0.05).
Collapse
Affiliation(s)
- A D Pradana
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - E Kristin
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - D A A Nugrahaningsih
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - A K Nugroho
- Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| | - R T Pinzon
- Medical Faculty, Duta Wacana Christian University, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Ahmed A, Elsadek HM, Shalaby SM, Elnahas HM. Association of SLC22A1, SLC47A1, and KCNJ11 polymorphisms with efficacy and safety of metformin and sulfonylurea combination therapy in Egyptian patients with type 2 diabetes. Res Pharm Sci 2023; 18:614-625. [PMID: 39005567 PMCID: PMC11246114 DOI: 10.4103/1735-5362.389949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 09/12/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Multidrug and toxin extrusion transporter 1 (MATE1), encoded by the SLC47A1 gene and single nucleotide polymorphisms of organic cation transport 1, may impact metformin's responsiveness and side effects. Inward-rectifier potassium channel 6.2 (Kir 6.2) subunits encoded by KCNJ11 may affect the response to sulfonylurea. This study aimed to evaluate the association between SLC22A1 rs72552763 and rs628031, SLC47A1 rs2289669 and KCNJ11 rs5219 genetic variations with sulfonylurea and metformin combination therapy efficacy and safety in Egyptian type 2 diabetes mellitus patients. Experimental approach This study was conducted on 100 cases taking at least one year of sulfonylurea and metformin combination therapy. Patients were genotyped via the polymerase chain reaction-restriction fragment length polymorphism technique. Then, according to their glycated hemoglobin level, cases were subdivided into non-responders or responders. Depending on metformin-induced gastrointestinal tract side effects incidence, patients are classified as tolerant or intolerant. Findings/Results KCNJ11 rs5219 heterozygous and homozygous mutant genotypes, SLC47A1 rs2289669 heterozygous and homozygous mutant genotypes (AA and AG), and mutant alleles of both polymorphisms were significantly related with increased response to combined therapy. Individuals with the SLC22A1 (rs72552763) GAT/del genotype and the SLC22A1 (rs628031) AG and AA genotypes were at a higher risk for metformin-induced gastrointestinal tract adverse effects. Conclusion and implications The results implied a role for SLC47A1 rs2289669 and KCNJ11 rs5219 in the responsiveness to combined therapy. SLC22A1 (rs628031) and (rs72552763) polymorphisms may be associated with increased metformin adverse effects in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Aya Ahmed
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Egypt
| | - Hany M Elsadek
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Sally M Shalaby
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| | - Hanan M Elnahas
- Department of Pharmaceutical and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
6
|
Galiero R, Caturano A, Vetrano E, Monda M, Marfella R, Sardu C, Salvatore T, Rinaldi L, Sasso FC. Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations. Diabetes Metab Syndr Obes 2023; 16:3669-3689. [PMID: 38028995 PMCID: PMC10658811 DOI: 10.2147/dmso.s390752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread diseases in Western countries, and its incidence is constantly increasing. Epidemiological studies have shown that in the next 20 years. The number of subjects affected by T2DM will double. In recent years, owing to the development and improvement in methods for studying the genome, several authors have evaluated the association between monogenic or polygenic genetic alterations and the development of metabolic diseases and complications. In addition, sedentary lifestyle and socio-economic and pandemic factors have a great impact on the habits of the population and have significantly contributed to the increase in the incidence of metabolic disorders, obesity, T2DM, metabolic syndrome, and liver steatosis. Moreover, patients with type 2 diabetes appear to respond to antihyperglycemic drugs. Only a minority of patients could be considered true non-responders. Thus, it appears clear that the main aim of precision medicine in T2DM is to identify patients who can benefit most from a specific drug class more than from the others. Precision medicine is a discipline that evaluates the applicability of genetic, lifestyle, and environmental factors to disease development. In particular, it evaluated whether these factors could affect the development of diseases and their complications, response to diet, lifestyle, and use of drugs. Thus, the objective is to find prevention models aimed at reducing the incidence of pathology and mortality and therapeutic personalized approaches, to obtain a greater probability of response and efficacy. This review aims to evaluate the applicability of precision medicine for T2DM, a healthcare burden in many countries.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
7
|
Peng A, Gong C, Xu Y, Liang X, Chen X, Hong W, Yan J. Association between organic cation transporter genetic polymorphisms and metformin response and intolerance in T2DM individuals: a systematic review and meta-analysis. Front Public Health 2023; 11:1183879. [PMID: 37546319 PMCID: PMC10400771 DOI: 10.3389/fpubh.2023.1183879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Background Variants in organic cation transporter (OCT) genes play a crucial role in metformin pharmacokinetics and are critical for diabetes treatment. However, studies investigating the effect of OCT genetic polymorphisms on metformin response have reported inconsistent results. This review and meta-analysis aimed to evaluate the associations between OCT genetic polymorphisms and metformin response and intolerance in individuals with type 2 diabetes mellitus (T2DM). Method A systematic search was conducted on PubMed, EMBASE, CNKI, WANFANG DATA, and VIP database for identifying potential studies up to 10 November 2022. The Q-Genie tool was used to evaluate the quality of included studies. Pooled odds ratios (OR) or standardized mean differences (SMD) and 95% confidence intervals (95% CI) were calculated to determine the associations between OCT genetic polymorphisms and metformin response and intolerance that were reflected by glycemic response indexes, such as glycated hemoglobin level (HbA1c%) or change in glycated hemoglobin level (ΔHbA1c%), fasting plasma level (FPG) or change in fasting plasma glucose level (ΔFPG), the effectiveness rate of metformin treatment, and the rate of metformin intolerance. A qualitative review was performed for the variants identified just in one study and those that could not undergo pooling analysis. Results A total of 30 related eligible studies about OCT genes (SLC22A1, SLC22A2, and SLC22A3) and metformin pharmacogenetics were identified, and 14, 3, and 6 single nucleotide polymorphisms (SNPs) in SLC22A1, SLC22A2, and SLC22A3, respectively, were investigated. Meta-analysis showed that the SLC22A1 rs622342 polymorphism was associated with a reduction in HbA1c level (AA vs. AC: SMD [95% CI] = -0.45 [-0.73--0.18]; p = 0.001). The GG genotype of the SLC22A1 rs628031 polymorphism was associated with a reduction in FPG level (GG vs. AA: SMD [95 %CI] = -0.60 [-1.04-0.16], p = 0.007; GG vs. AG: -0.45 [-0.67-0.20], p < 0.001). No statistical association was found between the remaining variants and metformin response and intolerance. Conclusion SLC22A1 rs622342 and rs628031 polymorphisms were potentially associated with glycemic response to metformin. This evidence may provide novel insight into gene-oriented personalized medicine for diabetes.
Collapse
Affiliation(s)
- Aiyu Peng
- Animal Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen, China
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China
| | - Chunmei Gong
- Animal Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yuanfei Xu
- Animal Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Xiongshun Liang
- Animal Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Xiaoping Chen
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wenxu Hong
- Animal Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China
| |
Collapse
|
8
|
Singh S, Shukla AK, Usman K, Banerjee M. Pharmacogenetic impact of SLC22A1 gene variant rs628031 (G/A) in newly diagnosed Indian type 2 diabetes patients undergoing metformin monotherapy. Pharmacogenet Genomics 2023; 33:51-58. [PMID: 36853844 DOI: 10.1097/fpc.0000000000000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
OBJECTIVES Type 2 diabetes (T2D) imposes an enormous burden all over the world in both developed and developing countries. Inter-individual differences are attributed to polymorphisms in candidate genes resulting in altered absorption, transportation, distribution, and metabolism of oral antidiabetic drugs (OADs). Hence, the present study was undertaken to evaluate the pharmacogenetic impact of SLC22A1 gene variant rs628031 (G/A) on metformin monotherapy in newly diagnosed untreated T2D patients. METHODS Newly diagnosed T2D patients ( n = 500) were enrolled according to inclusion/exclusion criteria. Initially, enrolled subjects were prescribed metformin monotherapy and followed up for at least 12 weeks. Response to metformin was evaluated in 478 patients who revisited for follow-up by measuring HbA1c. RESULT Out of 478 patients, 373 were responders to metformin monotherapy while 105 were non-responders. The pharmacogenetic impact was evaluated by genotype, haplotype, and pharmacogenetic analyses. 'GG' genotype and 'G' allele of SLC22A1 rs628031 G/A were observed in 48.8% and 67.7% of Met responders, respectively, while 20.9% and 49.1 % were in non-responders. Therefore, there was a 2.18-fold increase in the success rate of Met therapeutics. CONCLUSION Individuals carrying the 'GG' genotype or 'G' allele for SLC22A1 gene variant rs628031 G/A are better responders for Metformin monotherapy.
Collapse
Affiliation(s)
- Shalini Singh
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow
| | - Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow
| | - Kauser Usman
- Department of Medicine, King George's Medical University Lucknow, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow
| |
Collapse
|
9
|
Hong S, Li S, Meng X, Li P, Wang X, Su M, Liu X, Liu L. Bile duct ligation differently regulates protein expressions of organic cation transporters in intestine, liver and kidney of rats through activation of farnesoid X receptor by cholate and bilirubin. Acta Pharm Sin B 2023; 13:227-245. [PMID: 36815051 PMCID: PMC9939304 DOI: 10.1016/j.apsb.2022.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Body is equipped with organic cation transporters (OCTs). These OCTs mediate drug transport and are also involved in some disease process. We aimed to investigate whether liver failure alters intestinal, hepatic and renal Oct expressions using bile duct ligation (BDL) rats. Pharmacokinetic analysis demonstrates that BDL decreases plasma metformin exposure, associated with decreased intestinal absorption and increased urinary excretion. Western blot shows that BDL significantly downregulates intestinal Oct2 and hepatic Oct1 but upregulates renal and hepatic Oct2. In vitro cell experiments show that chenodeoxycholic acid (CDCA), bilirubin and farnesoid X receptor (FXR) agonist GW4064 increase OCT2/Oct2 but decrease OCT1/Oct1, which are remarkably attenuated by glycine-β-muricholic acid and silencing FXR. Significantly lowered intestinal CDCA and increased plasma bilirubin levels contribute to different Octs regulation by BDL, which are confirmed using CDCA-treated and bilirubin-treated rats. A disease-based physiologically based pharmacokinetic model characterizing intestinal, hepatic and renal Octs was successfully developed to predict metformin pharmacokinetics in rats. In conclusion, BDL remarkably downregulates expressions of intestinal Oct2 and hepatic Oct1 protein while upregulates expressions of renal and hepatic Oct2 protein in rats, finally, decreasing plasma exposure and impairing hypoglycemic effects of metformin. BDL differently regulates Oct expressions via Fxr activation by CDCA and bilirubin.
Collapse
Affiliation(s)
- Shijin Hong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Shuai Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaoyan Meng
- Tianjin Institutes of Pharmaceutical Research, Tianjin 300301, China
| | - Ping Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xun Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Mengxiang Su
- Departments of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| |
Collapse
|
10
|
Chen P, Cao Y, Chen S, Liu Z, Chen S, Guo Y. Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 Polymorphisms with Metformin Efficacy in Type 2 Diabetic Patients. Biomedicines 2022; 10:2546. [PMID: 36289808 PMCID: PMC9599747 DOI: 10.3390/biomedicines10102546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Response to metformin, first-line therapy for type 2 diabetes mellitus (T2DM), exists interindividual variation. Considering that transporters belonging to the solute carrier (SLC) superfamily are determinants of metformin pharmacokinetics, we evaluated the effects of promoter variants in organic cation transporter 1 (OCT1) (SLC22A1 rs628031), OCT2 (SLC22A2 rs316019), multidrug and toxin extrusion protein 1 (MATE1) (SLC47A1 rs2289669), and MATE2 (SLC47A2 rs12943590) on the variation in metformin response. The glucose-lowering effects and improvement of insulin resistance of metformin were assessed in newly diagnosed, treatment-naive type 2 diabetic patients of Han nationality in Chaoshan China (n = 93) receiving metformin. Fasting plasma glucose (FPG), fasting insulin (FINS), glycated hemoglobin A1 (HbA1C), homeostasis model assessment-insulin sensitivity (HOMA-IS), and homeostasis model assessment-insulin resistance (HOMA-IR) were the main metformin efficacy measurements. There were significant correlations between both SLC47A1 rs2289669 and SLC47A2 rs12943590 and the efficacy of metformin in individuals with T2DM. In normal weight T2DM patients, significant associations between the AA and GG genotypes of the rs2289669 variant of SLC47A1 and a greater reduction in FINS and HOMA-IR were detected. A significant correlation was observed between the AG genotype of the rs12943590 polymorphism of SLC47A2 and a greater reduction in HOMA-IR. Gene-environment interaction analysis showed that in the FINS interaction model, the second-order of dose30_g-SLC47A2 rs12943590 was statistically significant. The variants of SLC47A1 rs2289669 and SLC47A2 rs12943590 could be predictors of insulin resistance in type 2 diabetic patients treated with metformin. The second-order interaction of dose30_g-SLC47A2 rs12943590 may have a significant effect on FINS in patients with T2DM on metformin treatment. These findings suggest that promoter variants of SLC47A1 and SLC47A2 are important determinants of metformin transport and response in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Peixian Chen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Yumin Cao
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Shenren Chen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Zhike Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Shiyi Chen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Yali Guo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| |
Collapse
|
11
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
12
|
Pharmacogenetics of Metformin Transporters Suggests No Association with Therapeutic Inefficacy among Diabetes Type 2 Mexican Patients. Pharmaceuticals (Basel) 2022; 15:ph15070774. [PMID: 35890074 PMCID: PMC9318506 DOI: 10.3390/ph15070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Mexico has been under official epidemiological alert due to diabetes since 2016. This study presents new information on the frequency and variants of metformin transporters OCT1, OCT2, OCT3, ABCB1, and CYP2C9 variants as well. It also reports the association with HbA1c control on 103 DMT2 patients. They were genotyped through real-time PCR (TaqMan assays) and grouped according to treatment: metformin and metformin + glibenclamide. Metformin plasmatic levels were determined through mass spectrometry. The analysis of HbA1c showed statistical significance across genotypes in polymorphisms rs72552763 (p = 0.022), rs622342 (p = 0.009), rs1128503 (p = 0.021), and rs2032582 (p = 0.009) within the monotherapy group. Bivariate analysis found no association between any polymorphism and HbA1c control. Two logistic regression models accounted for two diplotypes in OCT1 and ABCB1, including statistically significant covariates. The first model yielded significance in age (p = 0.026), treatment period [p = 0.001], BMI ≥ 25 kg/m2 (p = 0.043), and combined therapy (p < 0.001). There was no association with GAT/GAT of rs72552763 or A/A rs622342 in OCT1. The second model yielded significance in age (p = 0.017), treatment period (p = 0.001), BMI ≥ 25 kg/m2 (p = 0.042), and combined therapy (p < 0.001), finding no association with C/C of rs1128503 or G/G of rs2032582 in ABCB1. Our multinomial logistic regression results may benefit future predictive analyses in diabetic populations.
Collapse
|
13
|
Zepeda-Carrillo EA, Ramos-Lopez O, Martínez-López E, Barrón-Cabrera E, Bernal-Pérez JA, Velasco-González LE, Rangel-Rios E, Bustamante Martínez JF, Torres-Valadez R. Effect of Metformin on Glycemic Control Regarding Carriers of the SLC22A1/OCT1 (rs628031) Polymorphism and Its Interactions with Dietary Micronutrients in Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:1771-1784. [PMID: 35711690 PMCID: PMC9196279 DOI: 10.2147/dmso.s354579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/08/2022] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Differences in metformin effect on glycemic control in type 2 Diabetes (T2D) have been associated with diet, obesity, years since T2D diagnosis and genetic factors, such as the Met408Val (rs628031) SLC22A1/OCT1 gene polymorphism. This study aimed to analyze the effect of metformin and diet on glycemic control and its association with the Met408Val polymorphism in patients with T2D from western Mexico. PATIENTS AND METHODS A total of 240 T2D adult patients were enrolled in this cross-sectional study. Anti-hyperglycemic therapy, dietary intake, body composition and glycemic profile were recorded and the determination of genotypes of SLC22A1/OCT1 gene (rs628031) was performed using an allelic discrimination assay. RESULTS The type of metformin therapy was 47% monotherapy, 45% dual therapy (metformin+glibenclamide or metformin+insulin) and 8% triple therapy (metformin+glibenclamide+insulin). Individuals with metformin monotherapy had a higher glycemic control frequency (%HbA1c <7.0) compared with the dual and triple treatment schemes (77% vs 35% and 15%, respectively; p<0.001). Interestingly, a high potassium intake was documented in the three anti-hyperglycemic therapies and a lower intake of micronutrients, including calcium, magnesium, and zinc. An interaction was found between calcium intake and carriers of the risk allele A (408Val) with %HbA1c (P interaction=0.028), and potassium intake with the TyG index (P interaction=0.027). In addition, there was a positive correlation between calcium intake and %HbA1c (r=0.682; p=0.010), and potassium intake vs TyG index (r=0.593; p=0.033) in risk allele A (408Val) carriers with metformin monotherapy. Genotype frequencies were GG homozygotes (76.6%), GA heterozygotes (21.5%) and AA homozygotes (1.9%). The allele frequency was 87.4% for the ancestral allele G and 12.6% for the risk allele A. CONCLUSION These findings suggest a differing effect of metformin on glycemic control regarding calcium and potassium intake and the Met408Val SLC22A1/OCT1 gene polymorphism in T2D patients.
Collapse
Affiliation(s)
- Eloy A Zepeda-Carrillo
- Specialized Unit in Research, Development and Innovation in Genomic Medicine, Nayarit Center for Innovation and Technology Transfer, Autonomous University of Nayarit, Tepic, Nayarit, Mexico
- Civil Hospital “Dr. Antonio González Guevara”, Health Services in Nayarit, Tepic, Nayarit, Mexico
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, B.C, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular and Genomic Biology, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Elisa Barrón-Cabrera
- Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - J Antonio Bernal-Pérez
- Family Medicine Unit No. 24 “Ignacio García Téllez”, Mexican Social Security Institute, Tepic, Nayarit, Mexico
| | - Luisa E Velasco-González
- Family Medicine Unit No. 24 “Ignacio García Téllez”, Mexican Social Security Institute, Tepic, Nayarit, Mexico
| | - Ernesto Rangel-Rios
- Family Medicine Unit No. 24 “Ignacio García Téllez”, Mexican Social Security Institute, Tepic, Nayarit, Mexico
| | | | - Rafael Torres-Valadez
- Specialized Unit in Research, Development and Innovation in Genomic Medicine, Nayarit Center for Innovation and Technology Transfer, Autonomous University of Nayarit, Tepic, Nayarit, Mexico
- Integral Health Academic Unit, Autonomous University of Nayarit, Tepic, Nayarit, Mexico
- Correspondence: Rafael Torres-Valadez, Nayarit Center for Innovation and Technology Transfer, Autonomous University of Nayarit, Tepic, Nayarit, Mexico, Tel +52-3312523644, Email
| |
Collapse
|
14
|
Cahua-Pablo JÁ, Gómez-Zamudio JH, Reséndiz-Abarca CA, Tello-Flores VA, Eulogio-Metodio Y, Ramírez-Vargas MA, Cruz M, Del Carmen Alarcón-Romero L, Matia-García I, Marino-Ortega LA, Zubillaga-Guerrero MI, Flores-Alfaro E. Genetic variants in SLC22A1 are related to serum lipid levels in Mexican women. Lipids 2021; 57:105-114. [PMID: 34927264 DOI: 10.1002/lipd.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/07/2022]
Abstract
Dyslipidemia is the main risk factor for coronary artery disease and is characterized by alterations in concentrations of lipids, including low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and triacylglycerols. The participation of several genes in the development of dyslipidemia has been evidenced. Genetic variants in SLC22A1 have been associated with elevated cholesterol and LDL-c levels. The aim of this study was to evaluate the association between single-nucleotide polymorphisms (SNPs) in the SLC22A1 gene with atherogenic risk lipid levels in Mexican women. Anthropometric and biochemical measurements were performed, and four SNPs in SLC22A1 were genotyped by real-time polymerase chain reaction. The Hardy-Weinberg equilibrium was verified, and haplotype frequencies were calculated. We found significant differences between the allele frequencies of the SNPs analyzed with those reported in Mexico and in the world, which could be due to differences in the historical admixture of the women studied. Generalized linear models were evaluated to determine the association between genotypes and haplotypes with lipids levels. We identified a significant increase in total cholesterol and LDL-c levels in women who were carriers of the GA and AG genotypes of the polymorphisms rs628031 and rs594709, respectively, significant effect that is also shown in a dominant inheritance model. Interestingly, we identified an important relationship of the AGC-GAT haplotype with the elevation in LDL-c levels and AGA-GAT haplotype with the elevation in HDL-c levels. On the other hand, we found a strong linkage disequilibrium between the polymorphisms studied. Our results show that variants in the SLC22A1 gene influence serum levels of atherogenic risk lipids, suggesting that these variants probably affect the function of organic cation transporter-1 and therefore, on the regulation of lipid metabolism.
Collapse
Affiliation(s)
- José Ángel Cahua-Pablo
- Laboratorio en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Jaime Héctor Gómez-Zamudio
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades "Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos Alberto Reséndiz-Abarca
- Laboratorio en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Vianet Argelia Tello-Flores
- Laboratorio en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Yesica Eulogio-Metodio
- Laboratorio en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Marco Antonio Ramírez-Vargas
- Laboratorio en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades "Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio en Citopatología e Histoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Inés Matia-García
- Laboratorio en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Linda Anahí Marino-Ortega
- Laboratorio en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Ma Isabel Zubillaga-Guerrero
- Laboratorio en Citopatología e Histoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| |
Collapse
|
15
|
Venkatachalapathy P, Padhilahouse S, Sellappan M, Subramanian T, Kurian SJ, Miraj SS, Rao M, Raut AA, Kanwar RK, Singh J, Khadanga S, Mondithoka S, Munisamy M. Pharmacogenomics and Personalized Medicine in Type 2 Diabetes Mellitus: Potential Implications for Clinical Practice. Pharmgenomics Pers Med 2021; 14:1441-1455. [PMID: 34803393 PMCID: PMC8598203 DOI: 10.2147/pgpm.s329787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes, and is rising in incidence with widespread prevalence. Multiple gene variants are associated with glucose homeostasis, complex T2DM pathogenesis, and its complications. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Pharmacogenomics has made precision medicine possible by allowing for individualized drug therapy based on a patient's genetic and genomic information. T2DM is treated with various classes of oral hypoglycemic agents, such as biguanides, sulfonylureas, thiazolidinediones, meglitinides, DPP4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, and GLP1 analogues, which exhibit various pharmacogenetic variants. Although genomic interventions in monogenic diabetes have been implemented in clinical practice, they are still in the early stages for complex polygenic disorders, such as T2DM. Precision DM medicine has the potential to be effective in personalized therapy for those suffering from various forms of DM, such as T2DM. With recent developments in genetic techniques, the application of candidate-gene studies, large-scale genotyping investigations, genome-wide association studies, and "multiomics" studies has begun to produce results that may lead to changes in clinical practice. Enhanced knowledge of the genetic architecture of T2DM presents a bigger translational potential. This review summarizes the genetics and pathophysiology of T2DM, candidate-gene approaches, genome-wide association studies, personalized medicine, clinical relevance of pharmacogenetic variants associated with oral hypoglycemic agents, and paths toward personalized diabetology.
Collapse
Affiliation(s)
| | - Sruthi Padhilahouse
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, Tamilnadu, India
| | - Mohan Sellappan
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, Tamilnadu, India
| | | | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwin Ashok Raut
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rupinder Kaur Kanwar
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Jitendra Singh
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sagar Khadanga
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sukumar Mondithoka
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Murali Munisamy
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
16
|
Zeng Z, Huang SY, Sun T. Pharmacogenomic Studies of Current Antidiabetic Agents and Potential New Drug Targets for Precision Medicine of Diabetes. Diabetes Ther 2020; 11:2521-2538. [PMID: 32930968 PMCID: PMC7548012 DOI: 10.1007/s13300-020-00922-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes is a major threat to people's health and has become a burden worldwide. Current drugs for diabetes have limitations, such as different drug responses among individuals, failure to achieve glycemic control, and adverse effects. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Currently pharmacogenomics has provided potential for individualized drug therapy based on genetic and genomic information of patients, and has made precision medicine possible. Responses and adverse effects to antidiabetic drugs are significantly associated with gene polymorphisms in patients. Many new targets for diabetes also have been discovered and developed, and even entered clinical trial phases. This review summarizes pharmacogenomic evidence of some current antidiabetic agents applied in clinical settings, and highlights potential drugs with new targets for diabetes, which represent a more effective treatment in the future.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Shi-Ying Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
17
|
Abstract
OBJECTIVE To assess the association between dietary patterns and glycaemic control among Qatari adults with type 2 diabetes (T2DM). DESIGN Cross-sectional analysis using data from the Qatar Biobank Study. Poor glycaemic control was defined as HbA1c ≥7·0 %. Dietary patterns were constructed using factor analysis based on habitual food intake assessed by a FFQ. Medication use was based on self-report. Multivariable logistic regression was used to assess the association. SETTING Qatar. PARTICIPANTS Adults aged ≥18 years (n 1000) with known diabetes. RESULT The mean age of the participants was 52·3 (sd 11·5) years. Overall, the prevalence of poor glycaemic control was 57·6 %, and 27·7 % of the participants were insulin users. Three dietary patterns were identified. The modern dietary pattern (high intake of fast food, croissants, white bread and cheese) was inversely associated with poor glycaemic control. The sd increments of the modern pattern had OR for poor glycaemic control of 0·86 (95 % CI 0·68, 1·08) in men and 0·76 (95 % CI 0·61, 0·95) in women. There was a significant interaction between the modern pattern and diabetes medication in men but not in women. In men without diabetes medication, the modern pattern was positively associated with poor glycaemic control with an OR of 2·35 (95 % CI 1·13, 4·87). CONCLUSIONS Male diabetes patients took medication to control diabetes but ate more unhealthy food. In men who were not taking diabetes medication, modern dietary pattern was associated with poor glycaemic control. Promoting healthy eating should be encouraged especially among those under diabetes medication.
Collapse
|
18
|
rs622342 in SLC22A1, CYP2C9*2 and CYP2C9*3 and Glycemic Response in Individuals with Type 2 Diabetes Mellitus Receiving Metformin/Sulfonylurea Combination Therapy: 6-Month Follow-Up Study. J Pers Med 2020; 10:jpm10020053. [PMID: 32575674 PMCID: PMC7354490 DOI: 10.3390/jpm10020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Objective: Since the treatment outcome with oral anti-diabetics differs between individuals, the objective of this study is to evaluate the significance of rs622342 in SLC22A1, CYP2C9*2 (rs1799853) and CYP2C9*3 (rs1057910) with regard to the efficacy of metformin/sulfonylurea combination therapy in individuals with type 2 diabetes mellitus (T2DM). Methods: Eighty-eight Lebanese individuals with T2DM received metformin/sulfonylurea combination therapy over 3 and 6 months. The clinical and biochemical characteristics were collected. Genotyping of rs622342 in SLC22A1, CYP2C9*2 and CYP2C9*3 was performed using hybridization probes on real-time polymerase chain reaction (PCR) instrument. Statistical analysis was performed using SPSS 22.0. Results: The levels of fasting blood sugar (FBS) and glycated hemoglobin (HbA1c) showed a statistically significant reduction over 3 and 6 months of follow-up (p < 0.001). An interaction between rs622342 in SLC22A1, CYP2C9*2 and CYP2C9*3 (p = 0.035) was found associated with reduced levels of HbA1c levels after 3 and 6 months. A significant difference between the means of HbA1c was observed among the different groups after 3 and 6 months (p = 0.004 and p < 0.001, respectively). The most beneficial group was; AA and AC, *1*3, whereas the individuals that benefited the least were CC, *1*3 at 3 and 6 months. In contrast to HbA1c, no interaction was found between the three polymorphisms to affect FBS (p = 0.581). Conclusion: The combination of metformin/sulfonylurea therapy led to the maximum glycemic control in individuals with T2DM carrying AA or AC genotypes in SLC22A1 and *1*3 in CYP2C9.
Collapse
|