1
|
Nahid NA, McDonough CW, Wei YJJ, Cicali EJ, Gong Y, Fillingim RB, Johnson JA. Use of CYP2D6 Inhibitors with CYP2D6 Opioids: Association with Emergency Department Visits for Pain. Clin Pharmacol Ther 2024; 116:1005-1012. [PMID: 38797987 PMCID: PMC11452273 DOI: 10.1002/cpt.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Hydrocodone, tramadol, codeine, and oxycodone are commonly prescribed opioids that rely on activation by cytochrome P450 2D6 (CYP2D6). CYP2D6 inhibitors can significantly decrease CYP2D6 activity, leading to reduced generation of active metabolites, and impairing pain control. To understand this impact, we assessed emergency department (ED) visits in patients initiating these CYP2D6-dependent opioids while on CYP2D6-inhibitor antidepressants vs. antidepressants that do not inhibit CYP2D6. This retrospective cohort study included adult patients prescribed CYP2D6-dependent opioids utilizing electronic health records data from the University of Florida Health (2015-2021). The association between ED visits and inhibitor exposure was tested using multivariable logistic regression. The primary analysis had 12,118 patients (72% female; mean (SD) age, 55 (13.4)) in the hydrocodone/tramadol/codeine cohort and 5,547 patients (64% female; mean (SD) age, 53.6 (14.2)) in the oxycodone cohort. Hydrocodone/tramadol/codeine-treated patients exposed to CYP2D6-inhibitor antidepressants (n = 7,043) had a higher crude rate of pain-related ED visits than those taking other antidepressants (n = 5,075) (3.28% vs. 1.87%), with an adjusted odds ratio (aOR) of 1.75 (95% CI: 1.36 to 2.24). Similarly, in the oxycodone cohort, CYP2D6-inhibitor antidepressant-exposed individuals (n = 3,206) had a higher crude rate of ED visits than individuals exposed to other antidepressants (n = 2,341) (5.02% vs. 3.37%), with aOR of 1.70 (95% CI: 1.27-2.27). Similar findings were observed in secondary and sensitivity analyses. Our findings suggest patients with concomitant use of hydrocodone/tramadol/codeine or oxycodone and CYP2D6 inhibitors have more frequent ED visits for pain, which may be due to inadequate pain control.
Collapse
Affiliation(s)
- Noor Ahmed Nahid
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Yu-Jung Jenny Wei
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Emily J. Cicali
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Roger B. Fillingim
- Department of Community Dentistry and Behavioral Science and Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
- Division of Cardiovascular Medicine, University of Florida College of Medicine, FL, USA
| |
Collapse
|
2
|
Feick D, Rüdesheim S, Marok FZ, Selzer D, Loer HLH, Teutonico D, Frechen S, van der Lee M, Moes DJAR, Swen JJ, Schwab M, Lehr T. Physiologically-based pharmacokinetic modeling of quinidine to establish a CYP3A4, P-gp, and CYP2D6 drug-drug-gene interaction network. CPT Pharmacometrics Syst Pharmacol 2023; 12:1143-1156. [PMID: 37165978 PMCID: PMC10431052 DOI: 10.1002/psp4.12981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023] Open
Abstract
The antiarrhythmic agent quinidine is a potent inhibitor of cytochrome P450 (CYP) 2D6 and P-glycoprotein (P-gp) and is therefore recommended for use in clinical drug-drug interaction (DDI) studies. However, as quinidine is also a substrate of CYP3A4 and P-gp, it is susceptible to DDIs involving these proteins. Physiologically-based pharmacokinetic (PBPK) modeling can help to mechanistically assess the absorption, distribution, metabolism, and excretion processes of a drug and has proven its usefulness in predicting even complex interaction scenarios. The objectives of the presented work were to develop a PBPK model of quinidine and to integrate the model into a comprehensive drug-drug(-gene) interaction (DD(G)I) network with a diverse set of CYP3A4 and P-gp perpetrators as well as CYP2D6 and P-gp victims. The quinidine parent-metabolite model including 3-hydroxyquinidine was developed using pharmacokinetic profiles from clinical studies after intravenous and oral administration covering a broad dosing range (0.1-600 mg). The model covers efflux transport via P-gp and metabolic transformation to either 3-hydroxyquinidine or unspecified metabolites via CYP3A4. The 3-hydroxyquinidine model includes further metabolism by CYP3A4 as well as an unspecific hepatic clearance. Model performance was assessed graphically and quantitatively with greater than 90% of predicted pharmacokinetic parameters within two-fold of corresponding observed values. The model was successfully used to simulate various DD(G)I scenarios with greater than 90% of predicted DD(G)I pharmacokinetic parameter ratios within two-fold prediction success limits. The presented network will be provided to the research community and can be extended to include further perpetrators, victims, and targets, to support investigations of DD(G)Is.
Collapse
Affiliation(s)
- Denise Feick
- Clinical PharmacySaarland UniversitySaarbrückenGermany
| | - Simeon Rüdesheim
- Clinical PharmacySaarland UniversitySaarbrückenGermany
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgartGermany
| | | | | | | | - Donato Teutonico
- Translational Medicine & Early DevelopmentSanofi‐Aventis R&DChilly‐MazarinFrance
| | - Sebastian Frechen
- Bayer AG, Pharmaceuticals, Research & DevelopmentSystems Pharmacology & MedicineLeverkusenGermany
| | - Maaike van der Lee
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgartGermany
- Departments of Clinical Pharmacology, Pharmacy and BiochemistryUniversity of TübingenTübingenGermany
- Cluster of Excellence iFIT (EXC2180) “Image‐guided and Functionally Instructed Tumor Therapies”University of TübingenTübingenGermany
| | - Thorsten Lehr
- Clinical PharmacySaarland UniversitySaarbrückenGermany
| |
Collapse
|
3
|
Fairman K, Choi MK, Gonnabathula P, Lumen A, Worth A, Paini A, Li M. An Overview of Physiologically-Based Pharmacokinetic Models for Forensic Science. TOXICS 2023; 11:126. [PMID: 36851001 PMCID: PMC9964742 DOI: 10.3390/toxics11020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A physiologically-based pharmacokinetic (PBPK) model represents the structural components of the body with physiologically relevant compartments connected via blood flow rates described by mathematical equations to determine drug disposition. PBPK models are used in the pharmaceutical sector for drug development, precision medicine, and the chemical industry to predict safe levels of exposure during the registration of chemical substances. However, one area of application where PBPK models have been scarcely used is forensic science. In this review, we give an overview of PBPK models successfully developed for several illicit drugs and environmental chemicals that could be applied for forensic interpretation, highlighting the gaps, uncertainties, and limitations.
Collapse
Affiliation(s)
- Kiara Fairman
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Me-Kyoung Choi
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Pavani Gonnabathula
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | | | - Miao Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
4
|
Satkunananthan SE, Suppiah V, Toh GT, Yow HY. Pharmacogenomics of Cancer Pain Treatment Outcomes in Asian Populations: A Review. J Pers Med 2022; 12:1927. [PMID: 36422103 PMCID: PMC9694298 DOI: 10.3390/jpm12111927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/26/2023] Open
Abstract
In advanced cancer, pain is a poor prognostic factor, significantly impacting patients' quality of life. It has been shown that up to 30% of cancer patients in Southeast Asian countries may receive inadequate analgesia from opioid therapy. This significant under-management of cancer pain is largely due to the inter-individual variability in opioid dosage and relative efficacy of available opioids, leading to unpredictable clinical responses to opioid treatment. Single nucleotide polymorphisms (SNPs) cause the variability in opioid treatment outcomes, yet their association in Asian populations remains unclear. Therefore, this review aimed to evaluate the association of SNPs with variability in opioid treatment responses in Asian populations. A literature search was conducted in Medline and Embase databases and included primary studies investigating the association of SNPs in opioid treatment outcomes, namely pharmacokinetics, opioid dose requirements, and pain control among Asian cancer patients. The results show that CYP2D6*10 has the most clinical relevance in tramadol treatment. Other SNPs such as rs7439366 (UGT2B7), rs1641025 (ABAT) and rs1718125 (P2RX7) though significant have limited pharmacogenetic implications due to insufficient evidence. OPRM1 rs1799971, COMT rs4680 and ABCB1 (rs1045642, rs1128503, and rs2032582) need to be further explored in future for relevance in Asian populations.
Collapse
Affiliation(s)
| | - Vijayaprakash Suppiah
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Gaik-Theng Toh
- School of Medicine, Faculty of Health and Medical Sciences, Centre for Drug Discovery and Molecular Pharmacology, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Tulipan J, Abboudi J, Wang ML, Kwok M, Seigerman D, Gallant GG, Beredjiklian P. Tramadol Versus Codeine in Hand Surgery. Cureus 2022; 14:e26886. [PMID: 35854953 PMCID: PMC9286301 DOI: 10.7759/cureus.26886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Tramadol and codeine are both commonly prescribed in the setting of surgery or injury to the upper extremity. Despite their comparable strength in terms of opioid receptor affinity, the drugs differ pharmacologically and thus are not completely interchangeable. Methods This study analyzes all prescriptions for codeine and tramadol by a group of hand surgeons over a one-year period and tests the central hypothesis that the prescribing and refill patterns of these two drugs would be similar. Results Despite similar prescription amounts in terms of morphine equivalents, patients receiving tramadol required prescription refills at a significantly higher amount than those receiving codeine, and these individuals tended to be older. Additionally, patients treated nonoperatively were prescribed significantly more tramadol than those treated surgically. Conclusion Our findings suggest that codeine and tramadol are not equivalent in managing upper extremity pain. Further study is needed to articulate the situations in which physicians and patients are better served by tramadol versus codeine.
Collapse
|
6
|
Muhn S, Amin NS, Bardolia C, Del Toro-Pagán N, Pizzolato K, Thacker D, Turgeon J, Tomaino C, Michaud V. Pharmacogenomics and Drug-Induced Phenoconversion Informed Medication Safety Review in the Management of Pain Control and Quality of Life: A Case Report. J Pers Med 2022; 12:jpm12060974. [PMID: 35743759 PMCID: PMC9225568 DOI: 10.3390/jpm12060974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022] Open
Abstract
Utilizing pharmacogenomics (PGx) and integrating drug-induced phenoconversion to guide opioid therapies could improve the treatment response and decrease the occurrence of adverse drug events. Genetics contribute to the interindividual differences in opioid response. The purpose of this case report highlights the impact of a PGx-informed medication safety review, assisted by a clinical decision support system, in mitigating the drug–gene and drug–drug–gene interactions (DGI and DDGI, respectively) that increase the risk of an inadequate drug response and adverse drug events (ADEs). This case describes a 69-year-old female who was referred for PGx testing for uncontrolled chronic pain caused by osteoarthritis and neuropathy. The clinical pharmacist reviewed the PGx test results and medication regimen and identified several (DGIs and DDGIs, respectively) at Cytochrome P450 (CYP) 2C19 and CYP2D6. The recommendations were to: (1) switch tramadol to buprenorphine transdermal patch, an opioid with lower potential for ADEs, to mitigate a CYP2D6 DDGI; (2) gradually discontinue amitriptyline to alleviate the risk of anticholinergic side effects, ADEs, and multiple DDGIs; and (3) optimize the pregabalin. The provider and the patient agreed to implement these recommendations. Upon follow-up one month later, the patient reported an improved quality of life and pain control. Following the amitriptyline taper, the patient experienced tremors in the upper and lower extremities. When the perpetrator drug, omeprazole, was stopped, the metabolic capacity was no longer impeded; the patient experienced possible amitriptyline withdrawal symptoms due to the rapid withdrawal of amitriptyline, which was reinitiated and tapered off more slowly. This case report demonstrates a successful PGx-informed medication safety review that considered drug-induced phenoconversion and mitigated the risks of pharmacotherapy failure, ADEs, and opioid misuse.
Collapse
Affiliation(s)
- Selina Muhn
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Nishita Shah Amin
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Chandni Bardolia
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Nicole Del Toro-Pagán
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - Katie Pizzolato
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA; (S.M.); (N.S.A.); (C.B.); (N.D.T.-P.); (K.P.)
| | - David Thacker
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (D.T.); (J.T.)
| | - Jacques Turgeon
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (D.T.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Crystal Tomaino
- VieCare Beaver, Program of All-Inclusive Care for the Elderly (PACE), Lutheran Senior Life, Aliquippa, PA 15001, USA;
| | - Veronique Michaud
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (D.T.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Research Center of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Correspondence: ; Tel.: +1-407-454-9964
| |
Collapse
|
7
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|