1
|
Park HA, Sung J, Chang Y, Ryu S, Yoon KJ, Kim HL, Kim HN. Metagenomic Analysis Identifies Sex-Related Gut Microbial Functions and Bacterial Taxa Associated With Skeletal Muscle Mass. J Cachexia Sarcopenia Muscle 2024. [PMID: 39563023 DOI: 10.1002/jcsm.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND This study aimed to explore the association between gut microbiota functional profiles and skeletal muscle mass, focusing on sex-specific differences in a population under 65 years of age. METHODS Stool samples from participants were analysed using metagenomic shotgun sequencing. Skeletal muscle mass and skeletal muscle mass index (SMI) were quantified (SMI [%] = total appendage muscle mass [kg]/body weight [kg] × 100) using bioelectrical impedance analysis. Participants were categorized into SMI quartiles, and associations between gut microbiota, functional profiling and SMI were assessed by sex, adjusting for age, BMI and physical activity. RESULTS The cohort included 1027 participants (651 men, 376 women). In men, Escherichia coli (log2 fold change 3.08, q = 0.001), Ruminococcus_B gnavus (log2 fold change 2.89, q = 0.014) and Enterocloster sp001517625 (log2 fold change 2.47, q = 0.026) were more abundant in the lowest SMI compared to the highest SMI group. In contrast, Bifidobacterium bifidum (log2 fold change 3.13, q = 0.025) showed higher levels in the second lowest SMI group in women. Microbial pathways associated with amino acid synthesis (MET-SAM-PWY: log2 fold change 0.42; METSYN-PWY: log2 fold change 0.44; SER-GLYSYN-PWY: log2 fold change 0.20; PWY-5347: log2 fold change 0.41; P4-PWY: log2 fold change 0.53), N-acetylneuraminate degradation (log2 fold change 0.43), isoprene biosynthesis (log2 fold change 0.20) and purine nucleotide degradation and salvage (PWY-6353: log2 fold change 0.42; PWY-6608: log2 fold change 0.38; PWY66-409: log2 fold change 0.52; SALVADEHYPOX-PWY: log2 fold change 0.43) were enriched in the lowest SMI in men (q < 0.10). In women, the second lowest SMI group showed enrichment in energy-related pathways, including lactic acid fermentation (ANAEROFRUCAT-PWY: log2 fold change 0.19), pentose phosphate pathway (PENTOSE-P-PWY: log2 fold change 0.30) and carbohydrate degradation (PWY-5484: log2 fold change 0.31; GLYCOLYSIS: log2 fold change 0.29; PWY-6901: log2 fold change 0.27) (q < 0.05). CONCLUSIONS This study highlights sex-specific differences in gut microbiota and functional pathways associated with SMI. These findings suggest that gut microbiota may play a role in muscle health and point toward microbiota-targeted strategies for maintaining muscle mass.
Collapse
Affiliation(s)
- Hang A Park
- Genome and Health Big Data Laboratory, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Department of Emergency Medicine, Hallym University, Dongtan Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| | - Joohon Sung
- Genome and Health Big Data Laboratory, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Genomic Medicine Institute, Seoul National University, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyung Jae Yoon
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han-Na Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Gao N, Zhuang Y, Zheng Y, Li Y, Wang Y, Zhu S, Fan M, Tian W, Jiang Y, Wang Y, Cui M, Suo C, Zhang T, Jin L, Chen X, Xu K. Investigating the link between gut microbiome and bone mineral density: The role of genetic factors. Bone 2024; 188:117239. [PMID: 39179139 DOI: 10.1016/j.bone.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Osteoporosis is a complex metabolic bone disease that severely undermines the quality of life and overall health of the elderly. While previous studies have established a close relationship between gut microbiome and host bone metabolism, the role of genetic factors has received less scrutiny. This research aims to identify potential taxa associated with various bone mineral density states, incorporating assessments of genetic factors. Fecal microbiome profiles from 605 individuals (334 females and 271 males) aged 55-65 from the Taizhou Imaging Study with osteopenia (n = 270, 170 women) or osteoporosis (n = 94, 85 women) or normal (n = 241, 79 women) were determined using shotgun metagenomic sequencing. The linear discriminant analysis was employed to identify differentially enriched taxa. Utilizing the Kyoto Encyclopedia of Genes and Genomes for annotation, functional pathway analysis was conducted to identify differentially metabolic pathways. Polygenic risk score for osteoporosis was estimated to represent genetic susceptibility to osteoporosis, followed by stratification and interaction analyses. Gut flora diversity did not show significant differences among various bone mineral groups. After multivariable adjustment, certain species, such as Clostridium leptum, Fusicatenibacter saccharivorans and Roseburia hominis, were enriched in osteoporosis patients. Statistically significant interactions between the polygenic risk score and taxa Roseburia faecis, Megasphaera elsdenii were observed (P for interaction = 0.005, 0.018, respectively). Stratified analyses revealed a significantly negative association between Roseburia faecis and bone mineral density in the low-genetic-risk group (β = -0.045, P < 0.05), while Turicimonas muris was positively associated with bone mineral density in the high-genetic-risk group (β = 4.177, P < 0.05) after multivariable adjustments. Functional predictions of the gut microbiome indicated an increase in pathways related to structural proteins in high-genetic-risk patients, while low-genetic-risk patients exhibited enrichment in enzyme-related pathways. This study emphasizes the association between gut microbes and bone mass, offering new insights into the interaction between genetic background and gut microbiome.
Collapse
Affiliation(s)
- Ningxin Gao
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yue Zhuang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yi Zheng
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Mei Cui
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Tiejun Zhang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| |
Collapse
|
3
|
Minawala R, Kim M, Delau O, Ghiasian G, McKenney AS, Da Luz Moreira A, Chodosh J, McAdams-DeMarco M, Segev DL, Adhikari S, Dodson J, Shaukat A, Dane B, Faye AS. Sarcopenia Is a Risk Factor for Postoperative Complications Among Older Adults With Inflammatory Bowel Disease. Inflamm Bowel Dis 2024:izae187. [PMID: 39177976 DOI: 10.1093/ibd/izae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Sarcopenia has been associated with adverse postoperative outcomes in older age cohorts, but has not been assessed in older adults with inflammatory bowel disease (IBD). Further, current assessments of sarcopenia among all aged individuals with IBD have used various measures of muscle mass as well as cutoffs to define its presence, leading to heterogeneous findings. METHODS In this single-institution, multihospital retrospective study, we identified all patients aged 60 years and older with IBD who underwent disease-related intestinal resection between 2012 and 2022. Skeletal Muscle Index (SMI) and Total Psoas Index (TPI) were measured at the superior L3 endplate on preoperative computed tomography scans and compared through receiver operating characteristic curve. We then performed multivariable logistic regression to assess risk factors associated with an adverse 30-day postoperative outcome. Our primary outcome included a 30-day composite of postoperative mortality and complications, including infection, bleeding, cardiac event, cerebrovascular accident, acute kidney injury, venous thromboembolism, reoperation, all-cause rehospitalization, and need for intensive care unit-level care. RESULTS A total of 120 individuals were included. Overall, 52% were female, 40% had ulcerative colitis, 60% had Crohn's disease, and median age at time of surgery was 70 years (interquartile range: 65-75). Forty percent of older adults had an adverse 30-day postoperative outcome, including infection (23%), readmission (17%), acute kidney injury (13%), bleeding (13%), intensive care unit admission (10%), cardiac event (8%), venous thromboembolism (7%), reoperation (6%), mortality (5%), and cerebrovascular accident (2%). When evaluating the predictive performance of SMI vs TPI for an adverse 30-day postoperative event, SMI had a significantly higher area under the curve of 0.66 (95% CI, 0.56-0.76) as compared to 0.58 (95% CI, 0.48-0.69) for TPI (P = .02). On multivariable logistic regression, prior IBD-related surgery (adjusted odds ratio [adjOR] 6.46, 95% CI, 1.85-22.51) and preoperative sepsis (adjOR 5.74, 95% CI, 1.36-24.17) significantly increased the odds of adverse postoperative outcomes, whereas increasing SMI was associated with a decreased risk of an adverse postoperative outcome (adjOR 0.88, 95% CI, 0.82-0.94). CONCLUSIONS Sarcopenia, as measured by SMI, is associated with an increased risk of postoperative complications among older adults with IBD. Measurement of SMI from preoperative imaging can help risk stratify older adults with IBD undergoing intestinal resection.
Collapse
Affiliation(s)
- Ria Minawala
- Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Michelle Kim
- Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Olivia Delau
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ghoncheh Ghiasian
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Anna Sophia McKenney
- Department of Radiology, New York-Presbyterian Weill Cornell Medical College, New York, NY, USA
| | - Andre Da Luz Moreira
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Joshua Chodosh
- Division of Geriatric Medicine and Palliative Care, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | | | - Dorry L Segev
- Department of Surgery, NYU School of Medicine, New York, NY, USA
| | | | - John Dodson
- Division of Cardiology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Aasma Shaukat
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Bari Dane
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Adam S Faye
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Song Q, Zhu Y, Liu X, Liu H, Zhao X, Xue L, Yang S, Wang Y, Liu X. Changes in the gut microbiota of patients with sarcopenia based on 16S rRNA gene sequencing: a systematic review and meta-analysis. Front Nutr 2024; 11:1429242. [PMID: 39006102 PMCID: PMC11239431 DOI: 10.3389/fnut.2024.1429242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Sarcopenia, an age-related disease, has become a major public health concern, threatening muscle health and daily functioning in older adults around the world. Changes in the gut microbiota can affect skeletal muscle metabolism, but the exact association is unclear. The richness of gut microbiota refers to the number of different species in a sample, while diversity not only considers the number of species but also the evenness of their abundances. Alpha diversity is a comprehensive metric that measures both the number of different species (richness) and the evenness of their abundances, thereby providing a thorough understanding of the species composition and structure of a community. Methods This meta-analysis explored the differences in intestinal microbiota diversity and richness between populations with sarcopenia and non-sarcopenia based on 16 s rRNA gene sequencing and identified new targets for the prevention and treatment of sarcopenia. PubMed, Embase, Web of Science, and Google Scholar databases were searched for cross-sectional studies on the differences in gut microbiota between sarcopenia and non-sarcopenia published from 1995 to September 2023 scale and funnel plot analysis assessed the risk of bias, and performed a meta-analysis with State v.15. 1. Results A total of 17 randomized controlled studies were included, involving 4,307 participants aged 43 to 87 years. The alpha diversity of intestinal flora in the sarcopenia group was significantly reduced compared to the non-sarcopenia group: At the richness level, the proportion of Actinobacteria and Fusobacteria decreased, although there was no significant change in other phyla. At the genus level, the abundance of f-Ruminococcaceae; g-Faecalibacterium, g-Prevotella, Lachnoclostridium, and other genera decreased, whereas the abundance of g-Bacteroides, Parabacteroides, and Shigella increased. Discussion This study showed that the richness of the gut microbiota decreased with age in patients with sarcopenia. Furthermore, the relative abundance of different microbiota changed related to age, comorbidity, participation in protein metabolism, and other factors. This study provides new ideas for targeting the gut microbiota for the prevention and treatment of sarcopenia. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=475887, CRD475887.
Collapse
Affiliation(s)
- Qi Song
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Youkang Zhu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xiao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Hai Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | | | - Liyun Xue
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Shaoying Yang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Yujia Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xifang Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Iwasaka C, Nanri H, Nakagata T, Ohno H, Tanisawa K, Konishi K, Murakami H, Hosomi K, Park J, Yamada Y, Ono R, Mizuguchi K, Kunisawa J, Miyachi M. Association of skeletal muscle function, quantity, and quality with gut microbiota in Japanese adults: A cross-sectional study. Geriatr Gerontol Int 2024; 24:53-60. [PMID: 38098315 DOI: 10.1111/ggi.14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
AIM The gut microbiota has emerged as a new intervention target for sarcopenia. Prior studies in humans have focused on the association between gut microbiota and skeletal muscle quantity, while the evidence on muscle function and quality is lacking. This study aimed to identify gut microbiota genera associated with skeletal muscle function, quantity, and quality in a general population of Japanese adults. METHODS This cross-sectional study included 164 participants aged 35-80 years, women and men recruited from urban areas of Japan. Fecal samples were collected and analyzed using 16S rRNA gene amplicon sequencing. Skeletal muscle function was measured using handgrip strength and leg extension power (LEP), while skeletal muscle mass was estimated using bioelectrical impedance analysis. Phase angle was used as a measure of skeletal muscle quality. Multivariate linear regression analysis stratified by age group was used to examine the association between the dominant genera of the gut microbiota and skeletal muscle variables. RESULTS A significant association was found between Bacteroides and Prevotella 9 with LEP only in the ≥60 years group. When both Bacteroides and Prevotella 9 were included in the same regression model, only Bacteroides remained consistently and significantly associated with LEP. No significant associations were observed between skeletal muscle mass, handgrip strength, and phase angle and major gut microbiota genera. CONCLUSIONS In this study, we observed a significant positive association between Bacteroides and leg muscle function in older adults. Further studies are required to elucidate the underlying mechanisms linking Bacteroides to lower-extremity muscle function. Geriatr Gerontol Int 2024; 24: 53-60.
Collapse
Affiliation(s)
- Chiharu Iwasaka
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hinako Nanri
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takashi Nakagata
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Harumi Ohno
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Nutrition, Kiryu University, Kiryu, Japan
| | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Kana Konishi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Food and Nutritional Sciences, Toyo University, Tokyo, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yosuke Yamada
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Rei Ono
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
6
|
Li X, Lin Y, Chen Y, Sui H, Chen J, Li J, Zhang G, Yan Y. The effects of race and probiotic supplementation on the intestinal microbiota of 10-km open-water swimmers. Heliyon 2023; 9:e22735. [PMID: 38144321 PMCID: PMC10746432 DOI: 10.1016/j.heliyon.2023.e22735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
This study collected the stools of 10-km open-water swimmers after race and probiotic supplementation, and 16S rRNA sequencing and metabolomic analysis were performed to clarify their intestinal microbiota characteristics. The findings revealed a relatively high proportion of Firmicutes in all the athletes. Firmicutes in female athletes were significantly higher after probiotic supplementation. The intestinal microbiota of athletes was closely associated with the pathways of exercise against cancer, exercise against aging, exercise for improving cognition, sphingolipid metabolism and endocrine resistance. Future research should focus on the relationship between Firmicutes and Proteobacteria with super class metabolites in athletes. This report initially explored the changes in intestinal microbiota involved in metabolic pathways in athletes after race and after probiotic supplementation and provided a theoretical basis for the further improvement of the monitoring of their physical function after race and selection of nutritional strategies during exercise training.
Collapse
Affiliation(s)
- Xuehan Li
- Sport Science School, Beijing Sport University, Beijing, China
| | - Yihsuan Lin
- Sport Science School, Beijing Sport University, Beijing, China
| | - Yue Chen
- Sport Science School, Beijing Sport University, Beijing, China
| | - Hongtao Sui
- Sport Science School, Beijing Sport University, Beijing, China
| | - Jianhao Chen
- Sport Science School, Beijing Sport University, Beijing, China
| | - Jiaqi Li
- Sport Science School, Beijing Sport University, Beijing, China
| | - Guoqing Zhang
- Shandong Swimming Sports Management Center, Shandong, China
| | - Yi Yan
- Sport Science School, Beijing Sport University, Beijing, China
- Key Laboratory of Exercise and Physical Fitness (Beijing Sport University), Ministry of Education, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing, China
| |
Collapse
|
7
|
Liu H, Xi Q, Tan S, Qu Y, Meng Q, Zhang Y, Cheng Y, Wu G. The metabolite butyrate produced by gut microbiota inhibits cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization. Int Immunopharmacol 2023; 124:111001. [PMID: 37804658 DOI: 10.1016/j.intimp.2023.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Cachexia, marked by muscle atrophy, poses substantial challenges for prevention and treatment. This study delves into the unclear role of butyrate, a gut microbiota metabolite, in cachexia by examining gut microbiota and short-chain fatty acid (SCFA) profiles in human and mouse fecal samples. METHODS We analyzed cachexia-associated gut microbiota and SCFA profiles using 16S rRNA sequencing and metabolomic techniques. Mouse cachexia models were developed with C26 cells, and LPS was used to induce muscle cell atrophy in C2C12 cells. We evaluated butyrate's in vivo effects on intestinal health, muscle preservation, inflammation, and macrophage activity. In vitro studies focused on butyrate's influence on macrophage polarization and the subsequent effects on muscle cells. RESULTS Both cachexia patients and mice exhibited gut microbiota imbalances, irregular butyrate concentrations, and a decline in butyrate-producing bacteria. In vivo tests showed that butyrate counteract cachexia-induced muscle atrophy by adjusting the Akt/mTOR/Foxo3a and Fbox32/Trim63 pathways. These butyrate also bolstered intestinal barrier integrity, minimized endotoxin migration, and mitigated oxidative stress. Furthermore, butyrate curtailed inflammation and macrophage penetration in muscles. In vitro experimental results demonstrate that butyrate inhibit macrophage polarization towards the M1 phenotype and promote polarization towards the M2 phenotype. Both M1 and M2 macrophages influence the aforementioned pathways and oxidative stress, participating in the regulation of muscle cell atrophy. CONCLUSION Our study delineates the intricate interplay between gut microbiota dysbiosis, butyrate fluctuations, and cachexia progression. Butyrate not only reinforces the intestinal barrier but also orchestrates macrophage polarization, mitigating muscle atrophy and averting cachexia-induced muscle deterioration. Concurrently, the M1 and M2 macrophages play pivotal roles in modulating skeletal muscle cell atrophy. This highlights the potential of utilizing the gut-derived metabolite butyrate as a promising therapeutic approach for addressing cachexia-related issues.
Collapse
Affiliation(s)
- Hao Liu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiulei Xi
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yidan Qu
- Department of Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qingyang Meng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanni Zhang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxi Cheng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Morelli C, Formica V, Bossi P, Rofei M, Guerriero S, Riondino S, Argirò R, Pucci N, Cenci T, Savino L, Rinaldi CG, Garaci F, Orlandi A, D’Angelillo RM, Arkenau HT, Roselli M. Untailored vs. Gender- and Body-Mass-Index-Tailored Skeletal Muscle Mass Index (SMI) to Assess Sarcopenia in Advanced Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2023; 15:4716. [PMID: 37835410 PMCID: PMC10571960 DOI: 10.3390/cancers15194716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: Sarcopenia lasting >1 year might be considered a chronic condition in many HNSCC patients. CT-scan-derived Skeletal Muscle Mass Index (SMI) is an established surrogate of sarcopenia; yet, the cut-off reported in the literature (literature-based, lb-SMI < 43.2) is mainly based on the risk of chemoradiotherapy-induced toxicity, and the optimal value to discriminate OS is under-investigated. (2) Methods: The effect on OS of the lb-SMI cutoff was compared with an untailored OS-oriented SMI cutoff obtained in a cohort of consecutive advanced HNSCC patients treated with primary chemoradiotherapy, bio-chemotherapy or chemo-immunotherapy (cohort-specific, cs-SMI cutoff). Gender- and BMI-tailored (gt-SMI and bt-SMI) cut-offs were also evaluated. Cutoff values were identified by using the maximally selected rank statistics for OS. (3) Results: In 115 HNSCC patients, the cs-SMI cutoff was 31.50, which was lower compared to the lb-SMI reported cut-off. The optimal cut-off separately determined in females, males, overweight and non-overweight patients were 46.02, 34.37, 27.32 and 34.73, respectively. gt-SMI categorization had the highest effect on survival (p < 0.0001); its prognostic value was independent of the treatment setting or the primary location and was retained in a multivariate cox-regression analysis for OS including other HNSCC-specific prognostic factors (p = 0.0004). (4) Conclusions: A tailored SMI assessment would improve clinical management of sarcopenia in chemoradiotherapy-, bio-chemotherapy- or chemo-immunotherapy-treated HNSCC patients. Gender-based SMI could be used for prognostication in HNSCC patients.
Collapse
Affiliation(s)
- Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.M.); (M.R.); (S.G.); (S.R.); (M.R.)
| | - Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.M.); (M.R.); (S.G.); (S.R.); (M.R.)
| | - Paolo Bossi
- Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, “ASST Spedali Civili di Brescia”, University of Brescia, 25123 Brescia, Italy;
| | - Michela Rofei
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.M.); (M.R.); (S.G.); (S.R.); (M.R.)
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.M.); (M.R.); (S.G.); (S.R.); (M.R.)
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.M.); (M.R.); (S.G.); (S.R.); (M.R.)
| | - Renato Argirò
- Interventional Radiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Noemi Pucci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.P.); (F.G.)
| | - Tonia Cenci
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.C.); (L.S.); (A.O.)
| | - Luca Savino
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.C.); (L.S.); (A.O.)
| | - Carla G. Rinaldi
- Radiation Oncology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00152 Rome, Italy; (C.G.R.); (R.M.D.)
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.P.); (F.G.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.C.); (L.S.); (A.O.)
| | - Rolando M. D’Angelillo
- Radiation Oncology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00152 Rome, Italy; (C.G.R.); (R.M.D.)
| | | | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.M.); (M.R.); (S.G.); (S.R.); (M.R.)
| |
Collapse
|
9
|
Shen ZL, Chen WH, Liu Z, Yu DY, Chen WZ, Zang WF, Zhang P, Yan XL, Yu Z. A novel insight into the key gene signature associated with the immune landscape in the progression of sarcopenia. Exp Gerontol 2023; 179:112244. [PMID: 37343810 DOI: 10.1016/j.exger.2023.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Sarcopenia is an age-related skeletal muscle disorder that causes falls, disability and death in the elderly, but its exact mechanism remains unknown. In this study, we merged three GEO datasets into the expression profiles of 118 samples and screened 22 differentially expressed genes (DEGs) as candidate genes. Pathway analysis demonstrated that the functional enrichment of DEGs is mainly in the cellular response to insulin stimulus, PPAR signaling pathway and other metabolism-related pathways. Then, we identified six key genes by machine learning, which were confirmed to be closely associated with sarcopenia by bioinformatics analysis. It was experimentally verified that SCD1 exhibits the most substantial alterations in the progression of sarcopenia with disturbed lipid metabolism and myosteatosis. In addition, the immune microenvironment of sarcopenia was found to be affected by these key genes, with Th17 cells down-regulated and NK cells up-regulated. Sarcopenic patients consequently presented a more significant systemic inflammatory state with higher CAR (p = 0.028) and PAR (p = 0.018). For the first time, we identified key genes in sarcopenia with high-throughput data and demonstrated that key genes can regulate the progression of sarcopenia by affecting the immune microenvironment. Among them, SCD1 may influence lipid metabolism and myosteatosis process. Screening of key genes and analyzing of immune microenvironment provide a more accurate target for treating sarcopenia.
Collapse
Affiliation(s)
- Zi-Le Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wen-Hao Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhang Liu
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ding-Ye Yu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wei-Zhe Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wang-Fu Zang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Peng Zhang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Xia-Lin Yan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhen Yu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Zhu L, Yang X, Yao Z, Wang Z, Lai Y, Xu S, Liu K, Zhao B. Bioinformatic Analysis of lncRNA Mediated CeRNA Network in Intestinal Ischemia/Reperfusion Injury. J Surg Res 2023; 284:280-289. [PMID: 36621258 DOI: 10.1016/j.jss.2022.11.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Recently, accumulating studies have reported the roles of competitive endogenous RNA (ceRNA) networks in ischemia/reperfusion (I/R) injury in several organs, including the liver, kidney, heart, brain, and intestine. However, the functions and mechanisms of long noncoding RNAs (lncRNAs)-which serve as ceRNA networks in intestinal I/R injury-remain elusive. METHODS RNA expression data were retrieved from the National Center for Biotechnology Information-Gene Expression Omnibus database. Differentially expressed microRNAs (miRNAs) (miDEGs) were explored between the sham and intestinal I/R injury samples. Next, targeted lncRNAs and messenger RNAs in the database were matched based on miDEGs. Hub ceRNA networks were constructed and visualized via Cytoscape. Intersection analysis was performed to screen mDEGs between two datasets. Finally, the vital nodes of the ceRNA networks were validated by quantitative PCR. RESULTS A total of 189 miDEGs were identified. Forty miRNAs were found to be associated with 240 predicted target genes from miRWalk 3.0. The ceRNA network was constructed with 10 miRNAs, including the 1700020114Rik/mmu-miR-7a-5p/Klf4 axis. Furthermore, the expression of lncRNA 1700020114Rik (P < 0.05) and messenger RNA Klf4 (P < 0.01) was markedly decreased in mouse models of intestinal I/R injury, whereas the expression level of mmu-miR-7a-5p was significantly increased (P < 0.05). CONCLUSIONS The results provide novel insights into the molecular mechanism of ceRNA networks in intestinal I/R injury and highlight the potential of the 170002700020114Rik/mmu-miR-7a-5p/Klf4 axis in the prevention and treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiwen Yao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyi Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yupei Lai
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shiting Xu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kexuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bingcheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|