1
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
2
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
3
|
Kim Y, Cho IH, Cho SH. Effect of ginseng and ginsenosides on attention deficit hyperactivity disorder: A systematic review. J Ginseng Res 2024; 48:437-448. [PMID: 39263306 PMCID: PMC11385392 DOI: 10.1016/j.jgr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 09/13/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a rapidly increasing neurodevelopmental disorder but currently available treatments are associated with abuse risk, side effects, and incomplete symptom relief. There is growing interest in exploring complementary options, and ginseng has gained attention for its therapeutic potential. This systematic review aimed to assess current evidence on the efficacy of ginseng and its active components, ginsenosides, for ADHD. Eligible studies were identified through searches of PubMed, Embase, Cochrane Library, and Web of Science, up to June 2023. The inclusion criteria included both human and animal studies that investigated the effects of ginseng or ginsenosides on ADHD. The risk of bias was assessed according to study type. Six human studies and three animal studies met the inclusion criteria. The results suggest that ginseng and ginsenosides may have beneficial effects on ADHD symptoms, particularly inattention, through dopaminergic/norepinephrinergicmodulation and BDNF/TrkB signaling. Ginseng and ginsenosides have promising potential for ADHD treatment. Due to limitations in evidence quality, such as the risk of bias and variability in study designs, larger controlled studies are essential. Integrating ginseng into ADHD management may have valuable implications for individuals seeking well-tolerated alternatives or adjunctive therapies.
Collapse
Affiliation(s)
- Yunna Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Hun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kim D, Yadav D, Song M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl Psychiatry 2024; 14:187. [PMID: 38605002 PMCID: PMC11009407 DOI: 10.1038/s41398-024-02893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder affecting both children and adolescents. Individuals with ADHD experience heterogeneous problems, such as difficulty in attention, behavioral hyperactivity, and impulsivity. Recent studies have shown that complex genetic factors play a role in attention-deficit hyperactivity disorders. Animal models with clear hereditary traits are crucial for studying the molecular, biological, and brain circuit mechanisms underlying ADHD. Owing to their well-managed genetic origins and the relative simplicity with which the function of neuronal circuits is clearly established, models of mice can help learn the mechanisms involved in ADHD. Therefore, in this review, we highlighting the important genetic animal models that can be used to study ADHD.
Collapse
Affiliation(s)
- Daegeon Kim
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea.
| |
Collapse
|
5
|
Trujillo V, Camilo TA, Valentim-Lima E, Carbalan QSR, Dos-Santos RC, Felintro V, Reis LC, Lustrino D, Rorato R, Mecawi AS. Neonatal treatment with para-chlorophenylalanine (pCPA) induces adolescent hyperactivity associated with changes in the paraventricular nucleus Crh and Trh expressions. Behav Brain Res 2024; 462:114867. [PMID: 38246394 DOI: 10.1016/j.bbr.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Disruption of the brain serotoninergic (5-HT) system during development induces long-lasting changes in molecular profile, cytoarchitecture, and function of neurons, impacting behavioral regulation throughout life. In male and female rats, we investigate the effect of neonatal tryptophan hydroxylase (TPH) inhibition by using para-chlorophenylalanine (pCPA) on the expression of 5-HTergic system components and neuropeptides related to adolescent social play behavior regulation. We observed sex-dependent 5-HT levels decrease after pCPA-treatment in the dorsal raphe nucleus (DRN) at 17 and 35 days. Neonatal pCPA-treatment increased playing, social and locomotory behaviors assessed in adolescent rats of both sexes. The pCPA-treated rats demonstrated decreased Crh (17 days) and increased Trh (35 days) expression in the hypothalamic paraventricular nucleus (PVN). There was sex dimorphism in Htr2c (17 days) and VGF (35 days) in the prefrontal cortex, with the females expressing higher levels of it than males. Our results indicate that neonatal pCPA-treatment results in a long-lasting and sex-dependent DRN 5-HT synthesis changes, decreased Crh, and increased Trh expression in the PVN, resulting in a hyperactivity-like phenotype during adolescence. The present work demonstrates that the impairment of TPH function leads to neurobehavioral disorders related to hyperactivity and impulsivity, such as attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Verónica Trujillo
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Tays Araújo Camilo
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Evandro Valentim-Lima
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Quézia S R Carbalan
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioral Neuroendocrinology, Department of Physiology, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe (UFS), São Cristóvão, Brazil
| | - Rodrigo Rorato
- Laboratory of Stress Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
6
|
Wells AC, Lotfipour S. Prenatal nicotine exposure during pregnancy results in adverse neurodevelopmental alterations and neurobehavioral deficits. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11628. [PMID: 38389806 PMCID: PMC10880762 DOI: 10.3389/adar.2023.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/28/2023] [Indexed: 02/24/2024]
Abstract
Maternal tobacco use and nicotine exposure during pregnancy have been associated with adverse birth outcomes in infants and can lead to preventable pregnancy complications. Exposure to nicotine and other compounds in tobacco and electronic cigarettes (e-cigarettes) has been shown to increases the risk of miscarriage, prematurity, stillbirth, low birth weight, perinatal morbidity, and sudden infant death syndrome (SIDS). Additionally, recent data provided by clinical and pre-clinical research demonstrates that nicotine exposure during pregnancy may heighten the risk for adverse neurodevelopmental disorders such as Attention-Deficit Hyperactivity (ADHD), anxiety, and depression along with altering the infants underlying brain circuitry, response to neurotransmitters, and brain volume. In the United States, one in 14 women (7.2%) reported to have smoked cigarettes during their pregnancy with the global prevalence of smoking during pregnancy estimated to be 1.7%. Approximately 1.1% of women in the United States also reported to have used e-cigarettes during the last 3 months of pregnancy. Due to the large percentage of women utilizing nicotine products during pregnancy in the United States and globally, this review seeks to centralize pre-clinical and clinical studies focused on the neurobehavioral and neurodevelopmental complications associated with prenatal nicotine exposure (PNE) such as alterations to the hypothalamic-pituitary-adrenal (HPA) axis and brain regions such as the prefrontal cortex (PFC), ventral tegmental area (VTA), nucleus accumbens (NA), hippocampus, and caudate as well as changes to nAChR and cholinergic receptor signaling, long-term drug seeking behavior following PNE, and other related developmental disorders. Current literature analyzing the association between PNE and the risk for offspring developing schizophrenia, attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety, and obesity will also be discussed.
Collapse
Affiliation(s)
- Alicia C Wells
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Emergency Medicine, Pharmaceutical Sciences, Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Macêdo-Souza C, Maisonnette SS, Hallak JE, Crippa JA, Zuardi AW, Landeira-Fernandez J, Leite-Panissi CRA. Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity. Pharmaceuticals (Basel) 2023; 16:1003. [PMID: 37513915 PMCID: PMC10383663 DOI: 10.3390/ph16071003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Studies have shown high comorbidity of anxiety disorder and chronic pain; generalized anxiety disorder (GAD) and neuropathic pain are among these pathologies. Cannabidiol (CBD) has been considered a promising treatment for these conditions. This study investigated whether chronic systemic treatment with CBD alters pain in high- (CHF) and low-freezing (CLF) Carioca rats (GAD model) and control rats (CTL) submitted to chronic neuropathic pain. The rats were evaluated in the sensory aspects (von Frey, acetone, and hot plate tests) before the chronic constriction injury of the ischiatic nerve (CCI) or not (SHAM) and on days 13 and 23 after surgery. Chronic treatment with CBD (5 mg/kg daily) was used for ten days, starting the 14th day after surgery. The open field test on the 22nd also evaluated locomotion and anxiety-like behavior. CBD treatment had an anti-allodynic effect on the mechanical and thermal threshold in all lineages; however, these effects were lower in the CHF and CLF lineages. Considering emotional evaluation, we observed an anxiolytic effect in CTL+CCI and CHF+CCI after CBD treatment and increased mobility in CLF+SHAM rats. These results suggest that the CBD mechanical anti-allodynic and emotional effects can depend on anxiety level.
Collapse
Affiliation(s)
- Carolina Macêdo-Souza
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
| | - Silvia Soares Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Jaime E Hallak
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José A Crippa
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Antônio W Zuardi
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
| |
Collapse
|
8
|
Li X, Xiao Z, Pu W, Jiang Z, Wang S, Zhang Y. Network pharmacology, molecular docking, and experimental validation to explore the potential mechanism of Long Mu Qing Xin mixture for the treatment of attention deficit hyperactivity disorder. Front Pharmacol 2023; 14:1144907. [PMID: 37007045 PMCID: PMC10063801 DOI: 10.3389/fphar.2023.1144907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Long Mu Qing Xin Mixture (LMQXM) has shown potentially positive effects in alleviating attention deficit hyperactivity disorder (ADHD); however, the action mechanism is still not fully understood. This study aimed to predict the potential mechanism of LMQXM for ADHD using network pharmacology and molecular docking, which were then validated using animal experiments.Methods: Network pharmacology and molecular docking techniques were used to predict the core targets and potential pathways of LMQXMQ for ADHD, and KEGG pathway enrichment analysis revealed the potential significance of dopamine (DA) and cyclic adenosine monophosphate (cAMP) signaling pathways. To verify the hypothesis, we conducted an animal experiment. In the animal experiment, the young spontaneously hypertensive rats (SHRs) were randomly divided into the model group (SHR), the methylphenidate hydrochloride group (MPH, 4.22 mg/kg), and 3 LMQXM groups (low-dose (LD) group, 5.28 ml/kg; medium-dose (MD) group, 10.56 ml/kg; and high-dose (HD) group, 21.12 ml/kg), and administered by gavage for 4 weeks; the WKY rats were set as the control group. The open field test and Morris water maze test were used to evaluate the behavioral performance of rats, high performance liquid chromatography mass spectrometry (LC-MS) was used to analyze DA levels in the prefrontal cortex (PFC) and striatum of rats, ELISA was used to detect cAMP concentrations in the PFC and striatum, and immunohistochemistry and qPCR were used to analyze positive cell expression and mRNA expression for indicators related to DA and cAMP pathways.Results: The results showed that beta-sitosterol, stigmasterol, rhynchophylline, baicalein, and formononetin might be key components of LMQXM for ADHD and that these components bind well to the core targets, DA receptors (DRD1 and DRD2). Furthermore, LMQXM might act through the DA and cAMP signaling pathways. In the animal experiment, we found that MPH and LMQXM-MD controlled hyperactivity and improved learning and memory in SHRs, while LMQXM-HD only controlled hyperactivity in SHRs; meanwhile, MPH and LMQXM-MD upregulated DA and cAMP levels, mean optical density (MOD) of cAMP, and MOD and mRNA expression of DRD1 and PKA in the prefrontal cortex (PFC) and striatum of SHRs, while LMQXM-LD and LMQXM-HD upregulated DA and cAMP levels in the striatum, MOD of cAMP in the PFC, and mRNA expression of PKA in the PFC. However, we did not find a significant regulatory effect of LMQXM on DRD2.Conclusion: To sum up, this study demonstrated that LMQXM may increase DA levels mainly by activating the cAMP/PKA signaling pathway through DRD1, thereby controlling the behavioral disorders of SHRs, which is most effective at moderate doses, and this may be a key mechanism for LMQXM in the treatment of ADHD.
Collapse
Affiliation(s)
- Xuejun Li
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Xiao
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhen Xiao, ; Zhiyan Jiang,
| | - Wenyan Pu
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyan Jiang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhen Xiao, ; Zhiyan Jiang,
| | - Shumin Wang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixing Zhang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
10
|
The orphan receptor GPR88 controls impulsivity and is a risk factor for Attention-Deficit/Hyperactivity Disorder. Mol Psychiatry 2022; 27:4662-4672. [PMID: 36075963 PMCID: PMC9936886 DOI: 10.1038/s41380-022-01738-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/02/2023]
Abstract
The neural orphan G protein coupled receptor GPR88 is predominant in the striatum and cortex of both rodents and humans, and considered a potential target for brain disorders. Previous studies have shown multiple behavioral phenotypes in Gpr88 knockout mice, and human genetic studies have reported association with psychosis. Here we tested the possibility that GPR88 contributes to Attention Deficit Hyperactivity Disorder (ADHD). In the mouse, we tested Gpr88 knockout mice in three behavioral paradigms, best translatable between rodents and humans, and found higher motor impulsivity and reduced attention together with the reported hyperactivity. Atomoxetine, a typical ADHD drug, reduced impulsivity in mutant mice. Conditional Gpr88 knockout mice in either D1R-type or D2R-type medium spiny neurons revealed distinct implications of the two receptor populations in waiting and stopping impulsivity. Thus, animal data demonstrate that deficient GPR88 activity causally promotes ADHD-like behaviors, and identify circuit mechanisms underlying GPR88-regulated impulsivity. In humans, we performed a family-based genetic study including 567 nuclear families with DSM-IV diagnosis of ADHD. There was a minor association for SNP rs2036212 with diagnosis, treatment response and cognition. A stronger association was found for SNP rs2809817 upon patient stratification, suggesting that the T allele is a risk factor when prenatal stress is involved. Human data therefore identify GPR88 variants associated with the disease, and highlight a potential role of life trajectories to modulate GPR88 function. Overall, animal and human data concur to suggest that GPR88 signaling should be considered a key factor for diagnostic and treatment of ADHD.
Collapse
|
11
|
Ding J, Ding Y, Wu J, Deng J, Yu Q, Wang J. "Jing-Ning Granules" Can Alleviate Attention Deficit Hyperactivity Disorder in Rats by Modulating Dopaminergic D2/D1-Like Receptor-Mediated Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9139841. [PMID: 36337583 PMCID: PMC9635972 DOI: 10.1155/2022/9139841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by attention deficit, hyperactivity, and impulsivity. Jing-Ning Granules (JNG) is a traditional Chinese medicine (TCM) that can alleviate ADHD. Although JNG is commonly used for the effective treatment of ADHD and has obtained the national invention patent, the exact mechanism of action remains unclear. Objective In this study, we examined the effect and mechanism of JNG in spontaneously hypertensive rats (SHRs). We hypothesized that JNG affects dopaminergic D2/D1-like receptors and related pathways. Materials and Methods Six rat groups were used in the experiment: Wistar-Kyoto rats (WKY, control group) and five SHR groups, including a model group; atomoxetine (ATX, positive control) group; and low, medium, and high-dose JNG groups. The corresponding treatments were daily administered to each group for 6 weeks. A behavioral test, including a step-down test and open field test (OFT), was carried out at the end of treatment. After the behavioral test, all animals were sacrificed, and the brain tissue was collected and analyzed ex vivo; histopathological analysis was performed to assess the pathological changes of the hippocampus; expression of D1-like and D2-like receptors, sensor protein calmodulin (CaM), protein kinase A (PKA), and calcium/calmodulin-dependent serine/threonine protein kinase (CaMKII) in the striatum and hippocampus was measured by western blot and real-time quantitative PCR (RT-PCR); cyclic adenosine monophosphate (cAMP) levels in the striatum were analyzed using an enzyme-linked immunosorbent assay (ELISA), while the level of Ca2+ in the striatum was analyzed by a calcium kit. Results Our results showed that ATX or JNG could ameliorate the hyperactive/impulsive behavior and cognitive function of ADHD by promoting neuroprotection. Mechanistically, ATX or JNG could prompt the expressions of Dl-like and D2-like receptors and improve the mRNA and protein levels of cAMP/PKA and Ca2+/CAM/CAMKII signaling pathways. Conclusion These results indicate that JNG can produce therapeutic effects by regulating the balance of D2/D1-like receptor-mediated cAMP/PKA and Ca2+/CaM/CaMKII signaling pathways.
Collapse
Affiliation(s)
- Jie Ding
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yiyun Ding
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Jingjing Wu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jialin Deng
- Department of Pediatrics, Beijing Huaxin Hospital, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| | - Qingyang Yu
- Department of TCM, Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junhong Wang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
12
|
Potential Targets and Action Mechanism of Gastrodin in the Treatment of Attention-Deficit/Hyperactivity Disorder: Bioinformatics and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3607053. [PMID: 36133787 PMCID: PMC9484880 DOI: 10.1155/2022/3607053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Objective Gastrodin is a main medicinal component of traditional Chinese medicine (TCM) Gastrodia elata Blume (G. elata), presenting the potential for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, the underlying targets and action mechanisms of the treatment have not been identified. Methods The gastrodin-related microarray dataset GSE85871 was obtained from the GEO database and analyzed by GEO2R to obtain differentially expressed genes (DEGs). Subsequently, the targets of gastrodin were supplemented by the Encyclopedia of Traditional Chinese Medicine (ETCM), PubChem, STITCH, and SwissTargetPrediction databases. ADHD-associated genes were collected from six available disease databases (i.e., TTD, DrugBank, OMIM, PharmGKB, GAD, and KEGG DISEASE). The potential targets of gastrodin during ADHD treatment were obtained by mapping gastrodin-related targets with ADHD genes, and their protein–protein interaction (PPI) relationship was constructed by the STRING database. The GO function and KEGG pathway enrichment analyses were performed using the ClueGO plug-in in the Cytoscape software and DAVID database, respectively. Finally, the binding affinity between gastrodin and important targets was verified by molecular docking. Results A total of 460 gastrodin-related DEGs were identified from GSE85871, and 124 known gastrodin targets were supplemented from 4 databases, including ETCM. A total of 440 genes were collected from the above 6 disease databases, and 267 ADHD-relevant genes were obtained after duplicate removal. Through mapping the 584 gastrodin targets to the 267 ADHD genes, 16 potential therapeutic targets were obtained, among which the important ones were DRD2, DRD4, CHRNA3, CYP1A1, TNF, IL6, and KCNJ3. The enrichment analysis results indicated that 16 potential targets were involved in 25 biological processes (e.g., dopamine (DA) transport) and 22 molecular functions (e.g., postsynaptic neurotransmitter receptor activity), which were mainly localized at excitatory synapses. The neuroactive ligand-receptor interaction, cholinergic synapse, and dopaminergic synapse might be the core pathways of gastrodin in ADHD treatment. Through molecular docking, it was preliminarily verified that gastrodin showed good binding activity to seven important targets and formed stable binding conformations. Conclusions Gastrodin might exert an anti-ADHD effect by upgrading the dopaminergic system and central cholinergic system, inhibiting the inflammatory response and GIRK channel, and exerting a synergistic effect with other drugs on ADHD. For this reason, gastrodin should be considered a multitarget drug for ADHD treatment.
Collapse
|
13
|
Raony Í, Domith I, Lourenco MV, Paes-de-Carvalho R, Pandolfo P. Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110555. [PMID: 35346791 DOI: 10.1016/j.pnpbp.2022.110555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has recently been implicated in several psychiatric conditions related to monoaminergic dysfunction, such as schizophrenia, substance use disorders, and mood disorders. Although attention-deficit/hyperactivity disorder (ADHD) is also related to changes in monoaminergic neurotransmission, studies that assess whether TAAR1 participates in the neurobiology of ADHD are lacking. We hypothesized that TAAR1 plays an important role in ADHD and might represent a potential therapeutic target. Here, we investigate if TAAR1 modulates behavioral phenotypes in Spontaneously Hypertensive Rats (SHR), the most validated animal model of ADHD, and Wistar Kyoto rats (WKY, used as a control strain). Our results showed that TAAR1 is downregulated in ADHD-related brain regions in SHR compared with WKY. While intracerebroventricular (i.c.v.) administration of the selective TAAR1 antagonist EPPTB impaired cognitive performance in SHR, i.c.v. administration of highly selective TAAR1 full agonist RO5256390 decreased motor hyperactivity, novelty-induced locomotion, and induced an anxiolytic-like behavior. Overall, our findings show that changes in TAAR1 levels/activity underlie behavior in SHR, suggesting that TAAR1 plays a role in the neurobiology of ADHD. Although additional confirmatory studies are required, TAAR1 might be a potential pharmacological target for individuals with this disorder.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil.
| |
Collapse
|
14
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
15
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
16
|
Vázquez JC, Martin de la Torre O, López Palomé J, Redolar-Ripoll D. Effects of Caffeine Consumption on Attention Deficit Hyperactivity Disorder (ADHD) Treatment: A Systematic Review of Animal Studies. Nutrients 2022; 14:nu14040739. [PMID: 35215389 PMCID: PMC8875377 DOI: 10.3390/nu14040739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by a persistent pattern of inattention and/or hyperactivity-impulsivity. ADHD impairments arise from irregularities primarily in dopamine (DA) and norepinephrine (NE) circuits within the prefrontal cortex. Due to ADHD medication’s controversial side effects and high rates of diagnosis, alternative/complementary pharmacological therapeutic approaches for ADHD are needed. Although the number of publications that study the potential effects of caffeine consumption on ADHD treatment have been accumulating over the last years, and caffeine has recently been used in ADHD research in the context of animal models, an updated evidence-based systematic review on the effects of caffeine on ADHD-like symptoms in animal studies is lacking. To provide insight and value at the preclinical level, a systematic review based on PRISMA guidelines was performed for all publications available up to 1 September 2021. Caffeine treatment increases attention and improves learning, memory, and olfactory discrimination without altering blood pressure and body weight. These results are supported at the neuronal/molecular level. Nonetheless, the role of caffeine in modulating ADHD-like symptoms of hyperactivity and impulsivity is contradictory, raising discrepancies that require further clarification. Our results strengthen the hypothesis that the cognitive effects of caffeine found in animal models could be translated to human ADHD, particularly during adolescence.
Collapse
Affiliation(s)
- Javier C. Vázquez
- Faculty of Psychology and Educational Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (O.M.d.l.T.); (D.R.-R.)
- Neuromodulation Unit, Institut Brain 360, 08022 Barcelona, Spain
- Correspondence:
| | - Ona Martin de la Torre
- Faculty of Psychology and Educational Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (O.M.d.l.T.); (D.R.-R.)
- Neuromodulation Unit, Institut Brain 360, 08022 Barcelona, Spain
| | - Júdit López Palomé
- Consorci d’Educació de Barcelona, Centre de Màxima Complexitat Elisenda de Montcada, Generalitat de Catalunya, 08010 Barcelona, Spain;
| | - Diego Redolar-Ripoll
- Faculty of Psychology and Educational Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (O.M.d.l.T.); (D.R.-R.)
- Neuromodulation Unit, Institut Brain 360, 08022 Barcelona, Spain
| |
Collapse
|
17
|
Al-Saad MSH, Al-Jabri B, Almarzouki AF. A Review of Working Memory Training in the Management of Attention Deficit Hyperactivity Disorder. Front Behav Neurosci 2021; 15:686873. [PMID: 34366803 PMCID: PMC8334010 DOI: 10.3389/fnbeh.2021.686873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders among children. Working memory deficits underlie many of the behavioural symptoms of ADHD. Alongside psychostimulant medications, strategies to improve working memory may play an important adjuvant role in the management of ADHD. In this study, we review the role of working memory deficits in ADHD, the evidence surrounding working memory training strategies in the management of the condition, and the factors affecting the success of these strategies in alleviating ADHD symptoms. More specifically, we review several non-pharmacological interventions that target working memory deficits in ADHD, with special emphasis on cognitive working memory training. We conclude that the development of evidence-based interventions such as computerised cognitive training (CCT) could provide an alternative or adjunct to the use of psychostimulants, especially in cases where side effects are a major issue.
Collapse
Affiliation(s)
- Maha Saleh Habsan Al-Saad
- Faculty of Medicine, Department of Clinical Physiology, King Abdulaziz University, Jeddah, Saudi Arabia.,Public Health Sector, General Directorate of Health Affairs in Najran, Ministry of Health, Najran, Saudi Arabia
| | - Basma Al-Jabri
- Faculty of Medicine, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer F Almarzouki
- Faculty of Medicine, Department of Clinical Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|