1
|
Perturbed cholesterol homeostasis in aging spinal cord. Neurobiol Aging 2016; 45:123-135. [PMID: 27459933 DOI: 10.1016/j.neurobiolaging.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/28/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.
Collapse
|
2
|
Ballak SB, Degens H, de Haan A, Jaspers RT. Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Res Rev 2014; 14:43-55. [PMID: 24495393 DOI: 10.1016/j.arr.2014.01.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 12/25/2022]
Abstract
Human aging is associated with a progressive decline in skeletal muscle mass and force generating capacity, however the exact mechanisms underlying these changes are not fully understood. Rodents models have often been used to enhance our understanding of mechanisms of age-related changes in human skeletal muscle. However, to what extent age-related alterations in determinants of muscle force generating capacity observed in rodents resemble those in humans has not been considered thoroughly. This review compares the effect of aging on muscle force generating determinants (muscle mass, fiber size, fiber number, fiber type distribution and muscle specific tension), in men and male rodents at similar relative age. It appears that muscle aging in male F344*BN rat resembles that in men most; 32-35-month-old rats exhibit similar signs of muscle weakness to those of 70-80-yr-old men, and the decline in 36-38-month-old rats is similar to that in men aged over 80 yrs. For male C57BL/6 mice, age-related decline in muscle force generating capacity seems to occur only at higher relative age than in men. We conclude that the effects on determinants of muscle force differ between species as well as within species, but qualitatively show the same pattern as that observed in men.
Collapse
Affiliation(s)
- Sam B Ballak
- School of Healthcare Science, Cognitive Motor Function Research Group, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam 1081 BT, The Netherlands.
| | - Hans Degens
- School of Healthcare Science, Cognitive Motor Function Research Group, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Arnold de Haan
- School of Healthcare Science, Cognitive Motor Function Research Group, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam 1081 BT, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam 1081 BT, The Netherlands
| |
Collapse
|
3
|
Chopek JW, Gardiner PF. Life-long caloric restriction: Effect on age-related changes in motoneuron numbers, sizes and apoptotic markers. Mech Ageing Dev 2010; 131:650-9. [DOI: 10.1016/j.mad.2010.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
4
|
Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A 2010; 107:14863-8. [PMID: 20679195 DOI: 10.1073/pnas.1002220107] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular basis of age-related behavioral decline remains obscure but alterations in synapses are likely candidates. Accordingly, the beneficial effects on neural function of caloric restriction and exercise, which are among the most effective anti-aging treatments known, might also be mediated by synapses. As a starting point in testing these ideas, we studied the skeletal neuromuscular junction (NMJ), a large, accessible peripheral synapse. Comparison of NMJs in young adult and aged mice revealed a variety of age-related structural alterations, including axonal swellings, sprouting, synaptic detachment, partial or complete withdrawal of axons from some postsynaptic sites, and fragmentation of the postsynaptic specialization. Alterations were significant by 18 mo of age and severe by 24 mo. A life-long calorie-restricted diet significantly decreased the incidence of pre- and postsynaptic abnormalities in 24-mo-old mice and attenuated age-related loss of motor neurons and turnover of muscle fibers. One month of exercise (wheel running) in 22-mo-old mice also reduced age-related synaptic changes but had no effect on motor neuron number or muscle fiber turnover. Time-lapse imaging in vivo revealed that exercise partially reversed synaptic alterations that had already occurred. These results demonstrate a critical effect of aging on synaptic structure and provide evidence that interventions capable of extending health span and lifespan can partially reverse these age-related synaptic changes.
Collapse
|
5
|
Augustin H, Partridge L. Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta Gen Subj 2009; 1790:1084-94. [PMID: 19563864 DOI: 10.1016/j.bbagen.2009.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/12/2009] [Accepted: 06/20/2009] [Indexed: 12/26/2022]
Abstract
Functional and structural deterioration of muscles is an inevitable consequence of ageing in a wide variety of animal species. What underlies these changes is a complex network of interactions between the muscle-intrinsic and muscle-extrinsic factors, making it very difficult to distinguish between the cause and the consequence. Many of the genes, structures, and processes implicated in mammalian skeletal muscle ageing are preserved in invertebrate species Drosophila melanogaster and Caenorhabditis elegans. The absence in these organisms of mechanisms that promote muscle regeneration, and substantially different hormonal environment, warrant caution when extrapolating experimental data from studies conducted in invertebrates to mammalian species. The simplicity and accessibility of these models, however, offer ample opportunities for studying age-related myopathologies as well as investigating drugs and therapies to alleviate them.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Institute of Healthy Ageing and GEE, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
6
|
Kalmar JM, Button DC, Gardiner K, Cahill F, Gardiner PF. Caloric Restriction Does Not Offset Age-Associated Changes in the Biophysical Properties of Motoneurons. J Neurophysiol 2009; 101:548-57. [DOI: 10.1152/jn.90617.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Age-associated changes in neuromuscular function may be due to a loss of motor neurons as well as changes in their biophysical properties. Neuronal damage imposed by reactive oxygen species may contribute to age-related deficits in CNS function. Thus we hypothesized that aging would alter the functional properties of motoneurons and that caloric-restriction would offset these changes. Intracellular recordings were made from lumbar motoneurons of old Fisher Brown Norway (FBN) fed ad libitum (oldAL, 30.8 ± 1.3 mo) or on a fortified calorie-restricted diet from 14 wk of age (oldCR, 31.0 ± 1.8 mo). Basic and rhythmic firing properties recorded from these aged motoneurons (MNs) were compared with properties recorded from young FBN controls (young, 8.4 ± 4.6 mo). Compared with young MNs, old MNs had a 104% greater ( P < 0.001) afterhyperpolarization potential (AHP), a 21.1% longer AHP half-decay time ( P < 0.05), 28.7% lower rheobase ( P < 0.001), 49.7% greater ( P < 0.001) input resistance, 21.1% ( P < 0.0001) less spike frequency adaptation, lower minimal (30.2%, P < 0.0001) and maximal (16.7%, P < 0.0001) steady-state firing frequencies, a lower (35.5%, P < 0.0001) frequency-current slope, and an increased incidence of persistent inward current. Because basic properties became more diverse in old MNs and the slope of the frequency-current relationship, which is normally similar for high- and low-threshold MNs, was lower in the old group, we conclude that aging alters the biophysical properties of MNs in a fashion that cannot be simply attributed to a loss of high-threshold MNs. Surprisingly, caloric restriction, which is known to attenuate aging-associated changes in hindlimb muscles, had no effect on the progress of aging in the innervating MNs.
Collapse
|
7
|
Sanz A, Caro P, Ibañez J, Gómez J, Gredilla R, Barja G. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 2005; 37:83-90. [PMID: 15906153 DOI: 10.1007/s10863-005-4131-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 02/17/2005] [Indexed: 01/09/2023]
Abstract
Previous studies in mammalian models indicate that the rate of mitochondrial reactive oxygen species ROS production and the ensuing modification of mitochondrial DNA (mtDNA) link oxidative stress to aging rate. However, there is scarce information concerning this in relation to caloric restriction (CR) in the brain, an organ of maximum relevance for ageing. Furthermore, it has never been studied if CR started late in life can improve those oxidative stress-related parameters. In this investigation, rats were subjected during 1 year to 40% CR starting at 24 months of age. This protocol of CR significantly decreased the rate of mitochondrial H(2)O(2) production (by 24%) and oxidative damage to mtDNA (by 23%) in the brain below the level of both old and young ad libitum-fed animals. In agreement with the progressive character of aging, the rate of H(2)O(2) production of brain mitochondria stayed constant with age. Oxidative damage to nuclear DNA increased with age and this increase was fully reversed by CR to the level of the young controls. The decrease in ROS production induced by CR was localized at Complex I and occurred without changes in oxygen consumption. Instead, the efficiency of brain mitochondria to avoid electron leak to oxygen at Complex I was increased by CR. The mechanism involved in that increase in efficiency was related to the degree of electronic reduction of the Complex I generator. The results agree with the idea that CR decreases aging rate in part by lowering the rate of free radical generation of mitochondria in the brain.
Collapse
Affiliation(s)
- Alberto Sanz
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University, c/Antonio Novais-2, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Hepple RT, Baker DJ, Kaczor JJ, Krause DJ. Long‐term caloric restriction abrogates the age‐related decline in skeletal muscle aerobic function. FASEB J 2005; 19:1320-2. [PMID: 15955841 DOI: 10.1096/fj.04-3535fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine the effect of long-term caloric restriction (CR) on the age-associated decline of skeletal muscle aerobic function. Skeletal muscle maximal aerobic performance (VO2max) was assessed in ad libitum (AL) and CR rats aged 8-10 months and 35 months using a pump-perfused hindlimb model to match oxygen delivery to muscle mass between groups. Whereas there was a 46% decline in muscle mass-specific VO2max between 8-10 mo (524+/-13 micromol x min(-1) x 100 g(-1); mean+/- SE) and 35 mo (281+/-54 micromol x min(-1) x 100 g(-1)) in AL rats, not only did CR rats begin at the same point in 8-10 mo old rats (490+/-42 micromol x min(-1) x 100 g(-1)), we found no decline in 35 mo old CR animals (484+/-49 micromol x min(-1) x 100 g(-1)). Interestingly, although most markers of oxidative capacity began at a lower point in young adult CR animals, CR rats exhibited a higher in situ activity of complex IV at VO2max. This activity allows the young adult CR animals to exhibit normal aerobic capacity despite the lower oxidative enzyme activities. In stark contrast to the 19-41% decline in activities of citrate synthase, complexes I-III, and complex IV in homogenates prepared from the plantaris muscle and mixed region of gastrocnemius muscle with aging in AL rats, no age-related decline was found in CR animals. Thus, our results showed that CR preserves aerobic function in aged skeletal muscles by facilitating a higher in situ function of complex IV and by preventing the age-related decline in mitochondrial oxidative capacity.
Collapse
|
9
|
Sugiura M, Kanda K. Progress of Age-Related Changes in Properties of Motor Units in the Gastrocnemius Muscle of Rats. J Neurophysiol 2004; 92:1357-65. [PMID: 15084644 DOI: 10.1152/jn.00947.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanical properties of individual motor units in the medial gastrocnemius muscle, as well as the whole muscle properties and innervating motor nucleus, were investigated in dietary-restricted, male Fischer 344/DuCrj rats at ages of 4, 7, 12, 21/22, 27, 31, and 36 mo. The tetanic tension of the type S units continuously increased until the age of 36 mo. Those of type FF and FR units declined from 21/22 to 27 mo of age but did not change further while the whole muscle tension decreased greatly. The atrophy of muscle fibers, the decline in motoneuron number and axonal conduction velocity, and the decrease in the posttetanic potentiation of twitch contraction of motor units seemed to start after 21/22 mo of age and were accelerated with advancing age. Prolongation of twitch contraction time was evident for only type S and FR units in 36-mo-old rats. The fatigue index was greatly increased for type FF units in 36-mo-old rats. These findings indicated that the progress of changes in various properties occurring in the senescent muscle was different in terms of their time course and degree and also dependent on the types of motor unit. The atrophy and decrease in specific tension of muscle fibers affected the decline in tension output of motor units. This was effectively compensated for by the capture of denervated muscle fibers over time.
Collapse
Affiliation(s)
- Miho Sugiura
- The Vocational School of Acupuncture and Judo Therapy, 5 Samoncho, Shinjuku-ku, Tokyo 160-0017, Japan
| | | |
Collapse
|
10
|
McKiernan SH, Bua E, McGorray J, Aiken J. Early‐onset calorie restriction conserves fiber number in aging rat skeletal muscle. FASEB J 2004; 18:580-1. [PMID: 14734642 DOI: 10.1096/fj.03-0667fje] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to determine the effect of early-onset calorie restriction on sarcopenia in the aging rat. Ad libitum (AL) fed animals were examined at 5, 18, 21, and 36 months of age. Calorie-restricted (CR) rats, 40% restricted since 4 months of age, were examined at 21 and 36 months of age. By 36 months, vastus lateralis, rectus femoris and soleus muscles, from AL-fed rats, had significant muscle mass and fiber loss, and reduced muscle cross-sectional area. Mean fiber diameter decreased with age in the vastus lateralis and rectus femoris but not the soleus of AL-fed rats. The number of Type I fibers significantly increased in the vastus lateralis with age. Calorie restriction did not prevent muscle mass loss with age; however, it significantly reduced muscle mass loss between 21 and 36 months of age compared with age-matched AL cohorts. Calorie restriction prevented fiber loss with age, and this conservation of fiber number reduced muscle mass loss with age.
Collapse
Affiliation(s)
- Susan H McKiernan
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
11
|
Anti-aging medicine literaturewatch. JOURNAL OF ANTI-AGING MEDICINE 2003; 6:45-64. [PMID: 12971397 DOI: 10.1089/109454503765361588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|