1
|
Smith KE, Lezmy J, Arancibia-Cárcamo IL, Bullen A, Jagger DJ, Attwell D. Developmental shaping of node of Ranvier geometry contributes to spike timing maturation in primary auditory afferents. Cell Rep 2024; 43:114651. [PMID: 39178117 DOI: 10.1016/j.celrep.2024.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024] Open
Abstract
Sound is encoded by action potentials in spiral ganglion neurons (SGNs), the auditory afferents from the cochlea. Rapid action potential transmission along SGNs is crucial for quick reactions to sounds, and binaural differences in action potential arrival time at the SGN output synapses enable sound localization based on interaural time or phase differences. SGN myelination increases conduction speed but other cellular changes may contribute. We show that nodes of Ranvier along peripherally and centrally directed SGN neurites form around hearing onset, but peri-somatic nodes mature later. There follows an adjustment of nodal geometry, notably a decrease in length and increase in diameter. Computational modeling predicts this increases conduction speed by >4%, and that four additional myelin wraps would be required on internodes to achieve the same conduction speed increase. We propose that nodal geometry changes optimize signal conduction for mature sound coding and decrease the energy needed for myelination.
Collapse
Affiliation(s)
- Katie E Smith
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan Lezmy
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - I Lorena Arancibia-Cárcamo
- UK Dementia Research Institute, Institute of Neurology, London WC1N 3BG, UK; Francis Crick Institute, London NW1 1AT, UK
| | - Anwen Bullen
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Daniel J Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
2
|
Anacker A, Esser KH, Lenarz T, Paasche G. Purification of Fibroblasts From the Spiral Ganglion. Front Neurol 2022; 13:877342. [PMID: 35493807 PMCID: PMC9051338 DOI: 10.3389/fneur.2022.877342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Using cultures of freshly isolated spiral ganglion cells (SGC) is common to investigate the effect of substances on spiral ganglion neurons (SGN) in vitro. As these cultures contain more cell types than just neurons, and it might be beneficial to have cochlear fibroblasts available to further investigate approaches to reduce the growth of fibrous tissue around the electrode array after cochlear implantation, we aimed at the purification of fibroblasts from the spiral ganglion in the current study. Subcultivation of the primary SGC culture removed the neurons from the culture and increased the fibroblast to glial cell ratio in the preparations, which was revealed by staining for vimentin, the S100B-protein, and the 200-kD neurofilament. We performed direct immunolabeling for the Thy1-glycoprotein and the p75NGFR-enabled fluorescence-based cell sorting. This procedure resulted in a cell culture of cochlear fibroblasts with a purity of more than 99%. The received fibroblasts can be subcultivated for up to 10 passages before proliferation rates drop. Additionally, 80% of the cells survived the first attempt of cryopreservation and exhibited a fibroblast-specific morphology. Using the described approach provides a purified preparation of cochlear fibroblasts, which can now be used in vitro for further investigations.
Collapse
Affiliation(s)
- Annett Anacker
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
- *Correspondence: Gerrit Paasche
| |
Collapse
|
3
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
4
|
Rousset F, Schmidbauer D, Fink S, Adel Y, Obexer B, Müller M, Glueckert R, Löwenheim H, Senn P. Phoenix auditory neurons as 3R cell model for high throughput screening of neurogenic compounds. Hear Res 2021; 414:108391. [PMID: 34844170 DOI: 10.1016/j.heares.2021.108391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022]
Abstract
Auditory neurons connect the sensory hair cells from the inner ear to the brainstem. These bipolar neurons are relevant targets for pharmacological intervention aiming at protecting or improving the hearing function in various forms of sensorineural hearing loss. In the research laboratory, neurotrophic compounds are commonly used to improve survival and to promote regeneration of auditory neurons. One important roadblock delaying eventual clinical applications of these strategies in humans is the lack of powerful in vitro models allowing high throughput screening of otoprotective and regenerative compounds. The recently discovered auditory neuroprogenitors (ANPGs) derived from the A/J mouse with an unprecedented capacity to self-renew and to provide mature auditory neurons offer the possibility to overcome this bottleneck. In the present study, we further characterized the new phoenix ANPGs model and compared it to the current gold-standard spiral ganglion organotypic explant (SGE) model to assay neurite outgrowth, neurite length and glutamate-induced Ca2+ response in response to neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF) treatment. Whereas both, SGEs and phoenix ANPGs exhibited a robust and sensitive response to neurotrophins, the phoenix ANPGs offer a considerable range of advantages including high throughput suitability, lower experimental variability, single cell resolution and an important reduction of animal numbers. The phoenix ANPGs in vitro model therefore provides a robust high-throughput platform to screen for otoprotective and regenerative neurotrophic compounds in line with 3R principles and is of interest for the field of auditory neuroscience.
Collapse
Affiliation(s)
- Francis Rousset
- The Inner Ear & Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| | - Dominik Schmidbauer
- Inner Ear Laboratory, Department of Otolaryngology, Medical University of Innsbruck, Austria
| | - Stefan Fink
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Youssef Adel
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Benjamin Obexer
- Inner Ear Laboratory, Department of Otolaryngology, Medical University of Innsbruck, Austria
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Rudolf Glueckert
- Inner Ear Laboratory, Department of Otolaryngology, Medical University of Innsbruck, Austria.
| | - Hubert Löwenheim
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Pascal Senn
- The Inner Ear & Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Switzerland
| |
Collapse
|
5
|
Kalluri R. Similarities in the Biophysical Properties of Spiral-Ganglion and Vestibular-Ganglion Neurons in Neonatal Rats. Front Neurosci 2021; 15:710275. [PMID: 34712112 PMCID: PMC8546178 DOI: 10.3389/fnins.2021.710275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The membranes of auditory and vestibular afferent neurons each contain diverse groups of ion channels that lead to heterogeneity in their intrinsic biophysical properties. Pioneering work in both auditory- and vestibular-ganglion physiology have individually examined this remarkable diversity, but there are few direct comparisons between the two ganglia. Here the firing patterns recorded by whole-cell patch-clamping in neonatal vestibular- and spiral ganglion neurons are compared. Indicative of an overall heterogeneity in ion channel composition, both ganglia exhibit qualitatively similar firing patterns ranging from sustained-spiking to transient-spiking in response to current injection. The range of resting potentials, voltage thresholds, current thresholds, input-resistances, and first-spike latencies are similarly broad in both ganglion groups. The covariance between several biophysical properties (e.g., resting potential to voltage threshold and their dependence on postnatal age) was similar between the two ganglia. Cell sizes were on average larger and more variable in VGN than in SGN. One sub-group of VGN stood out as having extra-large somata with transient-firing patterns, very low-input resistance, fast first-spike latencies, and required large current amplitudes to induce spiking. Despite these differences, the input resistance per unit area of the large-bodied transient neurons was like that of smaller-bodied transient-firing neurons in both VGN and SGN, thus appearing to be size-scaled versions of other transient-firing neurons. Our analysis reveals that although auditory and vestibular afferents serve very different functions in distinct sensory modalities, their biophysical properties are more closely related by firing pattern and cell size than by sensory modality.
Collapse
Affiliation(s)
- Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Zilkha Neurogenetics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Smith KE, Murphy P, Jagger DJ. Divergent membrane properties of mouse cochlear glial cells around hearing onset. J Neurosci Res 2020; 99:679-698. [PMID: 33099767 DOI: 10.1002/jnr.24744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/11/2022]
Abstract
Spiral ganglion neurons (SGNs) are the primary afferent neurons of the auditory system, and together with their attendant glia, form the auditory nerve. Within the cochlea, satellite glial cells (SGCs) encapsulate the cell body of SGNs, whereas Schwann cells (SCs) wrap their peripherally- and centrally-directed neurites. Despite their likely importance in auditory nerve function and homeostasis, the physiological properties of auditory glial cells have evaded description. Here, we characterized the voltage-activated membrane currents of glial cells from the mouse cochlea. We identified a prominent weak inwardly rectifying current in SGCs within cochlear slice preparations (postnatal day P5-P6), which was also present in presumptive SGCs within dissociated cultures prepared from the cochleae of hearing mice (P14-P15). Pharmacological block by Ba2+ and desipramine suggested that channels belonging to the Kir4 family mediated the weak inwardly rectifying current, and post hoc immunofluorescence implicated the involvement of Kir4.1 subunits. Additional electrophysiological profiles were identified for glial cells within dissociated cultures, suggesting that glial subtypes may have specific membrane properties to support distinct physiological roles. Immunofluorescence using fixed cochlear sections revealed that although Kir4.1 is restricted to SGCs after the onset of hearing, these channels are more widely distributed within the glial population earlier in postnatal development (i.e., within both SGCs and SCs). The decrease in Kir4.1 immunofluorescence during SC maturation was coincident with a reduction of Sox2 expression and advancing neurite myelination. The data suggest a diversification of glial properties occurs in preparation for sound-driven activity in the auditory nerve.
Collapse
Affiliation(s)
- Katie E Smith
- UCL Ear Institute, University College London, London, UK
| | - Phoebe Murphy
- UCL Ear Institute, University College London, London, UK
| | | |
Collapse
|
7
|
Kaur C, Pal I, Saini S, Jacob T, Nag T, Thakar A, Bhardwaj D, Roy T. Comparison of unbiased stereological estimation of total number of cresyl violet stained neurons and parvalbumin positive neurons in the adult human spiral ganglion. J Chem Neuroanat 2018. [DOI: 10.1016/j.jchemneu.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
The impact of erdosteine on cisplatin-induced ototoxicity: a proteomics approach. Eur Arch Otorhinolaryngol 2016; 274:1365-1374. [DOI: 10.1007/s00405-016-4399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022]
|
9
|
Schwieger J, Esser KH, Lenarz T, Scheper V. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons. J Neurosci Methods 2016; 268:106-16. [DOI: 10.1016/j.jneumeth.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023]
|
10
|
Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JAJ, Kieffer BL, Darmon M, Sokoloff P, Diaz J. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization. J Comp Neurol 2016; 524:2776-802. [PMID: 26918661 DOI: 10.1002/cne.23991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/31/2023]
Abstract
GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Renaud Massart
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Virginie Mignon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Jennifer Stanic
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Paola Munoz-Tello
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Jerôme A J Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Michèle Darmon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Pierre Sokoloff
- Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Jorge Diaz
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| |
Collapse
|
11
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Bas E, Goncalves S, Adams M, Dinh CT, Bas JM, Van De Water TR, Eshraghi AA. Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation. Front Cell Neurosci 2015; 9:303. [PMID: 26321909 PMCID: PMC4532929 DOI: 10.3389/fncel.2015.00303] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/23/2015] [Indexed: 12/03/2022] Open
Abstract
Conservation of a patient's residual hearing and prevention of fibrous tissue/new bone formation around an electrode array are some of the major challenges in cochlear implant (CI) surgery. Although it is well-known that fibrotic tissue formation around the electrode array can interfere with hearing performance in implanted patients, and that associated intracochlear inflammation can initiate loss of residual hearing, little is known about the molecular and cellular mechanisms that promote this response in the cochlea. In vitro studies in neonatal rats and in vivo studies in adult mice were performed to gain insight into the pro-inflammatory, proliferative, and remodeling phases of pathological wound healing that occur in the cochlea following an electrode analog insertion. Resident Schwann cells (SC), macrophages, and fibroblasts had a prominent role in the inflammatory process in the cochlea. Leukocytes were recruited to the cochlea following insertion of a nylon filament in adult mice, where contributed to the inflammatory response. The reparative stages in wound healing are characterized by persistent neuro-inflammation of spiral ganglion neurons (SGN) and expression of regenerative monocytes/macrophages in the cochlea. Accordingly, genes involved in extracellular matrix (ECM) deposition and remodeling were up-regulated in implanted cochleae. Maturation of scar tissue occurs in the remodeling phase of wound healing in the cochlea. Similar to other damaged peripheral nerves, M2 macrophages and de-differentiated SC were observed in damaged cochleae and may play a role in cell survival and axonal regeneration. In conclusion, the insertion of an electrode analog into the cochlea is associated with robust early and chronic inflammatory responses characterized by recruitment of leukocytes and expression of pro-inflammatory cytokines that promote intracochlear fibrosis and loss of the auditory hair cells (HC) and SGN important for hearing after CI surgery.
Collapse
Affiliation(s)
- Esperanza Bas
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Stefania Goncalves
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Michelle Adams
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Christine T Dinh
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Jose M Bas
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Thomas R Van De Water
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| |
Collapse
|
13
|
Calton MA, Lee D, Sundaresan S, Mendus D, Leu R, Wangsawihardja F, Johnson KR, Mustapha M. A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice. PLoS One 2014; 9:e94549. [PMID: 24804771 PMCID: PMC4012943 DOI: 10.1371/journal.pone.0094549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/18/2014] [Indexed: 12/12/2022] Open
Abstract
Early cochlear development is marked by an exuberant outgrowth of neurites that innervate multiple targets. The establishment of mature cochlear neural circuits is, however, dependent on the pruning of inappropriate axons and synaptic connections. Such refinement also occurs in the central nervous system (CNS), and recently, genes ordinarily associated with immune and inflammatory processes have been shown to play roles in synaptic pruning in the brain. These molecules include the major histocompatibility complex class I (MHCI) genes, H2-Kb and H2-Db, and the complement cascade gene, C1qa. Since the mechanisms involved in synaptic refinement in the cochlea are not well understood, we investigated whether these immune system genes may be involved in this process and whether they are required for normal hearing function. Here we report that these genes are not necessary for normal synapse formation and refinement in the mouse cochlea. We further demonstrate that C1qa expression is not necessary for normal hearing in mice but the lack of expression of H2-Kb and H2-Db causes hearing impairment. These data underscore the importance of the highly polymorphic family of MHCI genes in hearing in mice and also suggest that factors and mechanisms regulating synaptic refinement in the cochlea may be distinct from those in the CNS.
Collapse
Affiliation(s)
- Melissa A. Calton
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Dasom Lee
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Srividya Sundaresan
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Diana Mendus
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Rose Leu
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Felix Wangsawihardja
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | | | - Mirna Mustapha
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Leake PA, Stakhovskaya O, Hetherington A, Rebscher SJ, Bonham B. Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats. J Assoc Res Otolaryngol 2013; 14:187-211. [PMID: 23392612 DOI: 10.1007/s10162-013-0372-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 01/03/2013] [Indexed: 12/26/2022] Open
Abstract
Both neurotrophic support and neural activity are required for normal postnatal development and survival of cochlear spiral ganglion (SG) neurons. Previous studies in neonatally deafened cats demonstrated that electrical stimulation (ES) from a cochlear implant can promote improved SG survival but does not completely prevent progressive neural degeneration. Neurotrophic agents combined with an implant may further improve neural survival. Short-term studies in rodents have shown that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness and may be additive to trophic effects of stimulation. Our recent study in neonatally deafened cats provided the first evidence of BDNF neurotrophic effects in the developing auditory system over a prolonged duration Leake et al. (J Comp Neurol 519:1526-1545, 2011). Ten weeks of intracochlear BDNF infusion starting at 4 weeks of age elicited significant improvement in SG survival and larger soma size compared to contralateral. In the present study, the same deafening and BDNF infusion procedures were combined with several months of ES from an implant. After combined BDNF + ES, a highly significant increase in SG numerical density (>50 % improvement re: contralateral) was observed, which was significantly greater than the neurotrophic effect seen with ES-only over comparable durations. Combined BDNF + ES also resulted in a higher density of myelinated radial nerve fibers within the osseous spiral lamina. However, substantial ectopic and disorganized sprouting of these fibers into the scala tympani also occurred, which may be deleterious to implant function. EABR thresholds improved (re: initial thresholds at time of implantation) on the chronically stimulated channels of the implant. Terminal electrophysiological studies recording in the inferior colliculus (IC) revealed that the basic cochleotopic organization was intact in the midbrain in all studied groups. In deafened controls or after ES-only, lower IC thresholds were correlated with more selective activation widths as expected, but no such correlation was seen after BDNF + ES due to much greater variability in both measures.
Collapse
Affiliation(s)
- Patricia A Leake
- Epstein Hearing Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 533 Parnassus Ave., San Francisco, CA 94143-0526, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti from scratch, including the two types of HCs, inner and outer hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral and medial olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the organ of Corti. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision-making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs.
Collapse
|
16
|
|
17
|
Shibata SB, Budenz CL, Bowling SA, Pfingst BE, Raphael Y. Nerve maintenance and regeneration in the damaged cochlea. Hear Res 2011; 281:56-64. [PMID: 21596129 PMCID: PMC3196294 DOI: 10.1016/j.heares.2011.04.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 12/22/2022]
Abstract
Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance.
Collapse
Affiliation(s)
- Seiji B. Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Cameron L. Budenz
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Sara A. Bowling
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Bryan E. Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| |
Collapse
|
18
|
Sox2 up-regulation and glial cell proliferation following degeneration of spiral ganglion neurons in the adult mouse inner ear. J Assoc Res Otolaryngol 2011; 12:151-71. [PMID: 21061038 DOI: 10.1007/s10162-010-0244-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022] Open
Abstract
In the present study, glial cell responses to spiral ganglion neuron (SGN) degeneration were evaluated using a murine model of auditory neuropathy. Ouabain, a well-known Na,K-ATPase inhibitor, has been shown to induce SGN degeneration while sparing hair cell function. In addition to selectively removing type I SGNs, ouabain leads to hyperplasia and hypertrophy of glia-like cells in the injured auditory nerves. As the transcription factor Sox2 is predominantly expressed in proliferating and undifferentiated neural precursors during neurogenesis,we sought to examine Sox2 expression patterns following SGN injury by ouabain. Real-time RT-PCR and Western blot analyses of cochlea indicated a significant increase in Sox2 expression by 3 days posttreatment with ouabain. Cells incorporating bromodeoxyuridine(BrdU) and expressing Sox2 were counted in the auditory nerves of control and ouabain-treated ears. The glial phenotype of Sox2+cells was identified by two neural glial markers: S100 and Sox10. The number of Sox2+ glial cells significantly increased at 3 days post-treatment and reached its maximum level at 7 days post-treatment. Similarly,the number of BrdU+ cells increased at 3 and 7 days post-treatment in the injured nerves. Quantitative analysis with dual-immunostaining procedures indicated that about 70% of BrdU+ cells in the injured nerves were Sox2+ glial cells. These results demonstrate that up-regulation of Sox2 expression is associated with increased cell proliferation in the auditory nerve after injury.
Collapse
|
19
|
Leake PA, Hradek GT, Hetherington AM, Stakhovskaya O. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. J Comp Neurol 2011; 519:1526-45. [PMID: 21452221 PMCID: PMC3079794 DOI: 10.1002/cne.22582] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Postnatal development and survival of spiral ganglion (SG) neurons depend on both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partially prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae, and this is the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a miniosmotic pump. In BDNF-treated cochleae, SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal, and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement of electrically evoked auditory brainstem response thresholds. BDNF may have potential therapeutic value in the developing auditory system, but many serious obstacles currently preclude clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- Departmant of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143-0526, USA.
| | | | | | | |
Collapse
|
20
|
Whitlon DS, Tieu D, Grover M. Purification and transfection of cochlear Schwann cells. Neuroscience 2010; 171:23-30. [PMID: 20837108 DOI: 10.1016/j.neuroscience.2010.08.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/24/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
Schwann cells line nerve fibers in the peripheral nervous system (PNS) and synthesize myelin. In addition, they support neuronal survival, neurite growth and regeneration. In dissociated cultures of postnatal mouse spiral ganglia, regenerating neurites spontaneously associate with Schwann cells. However, the mechanisms and consequences of interactions between cochlear Schwann cells and spiral ganglion neurites have not been examined. Further, the similarities and differences between cochlear Schwann cells and other PNS Schwann cells have not been studied. Experiments to examine these questions will rely on the ability to purify and characterize cochlear Schwann cells. Here we present methods for purifying Schwann cells from postnatal mouse cochleas and for transfecting them with expression plasmids. Dissociated spiral ganglia were plated on poly-D-lysine/laminin in medium containing neurotrophins, leukemia inhibitory factor (LIF), N2 supplement and serum and maintained for 5 days. Cells were harvested with trypsin/EDTA and subjected to an immuno-magnetic purification procedure. After 24 h in vitro, cultures were >85% Schwann cells. Nucleofection of purified Schwann cells with pMax-green fluorescent protein (pMax-GFP) plasmid, or with pEGFP-C-vimentin plasmid returned >45% transfection efficiency. These methods will allow the in-depth characterization of cochlear Schwann cells and an evaluation of their biochemical, functional, and genetic mechanisms that may promote neurite growth from the spiral ganglion.
Collapse
Affiliation(s)
- D S Whitlon
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
21
|
Jyothi V, Li M, Kilpatrick LA, Smythe N, LaRue AC, Zhou D, Schulte BA, Schmiedt RA, Lang H. Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice. J Comp Neurol 2010; 518:3254-71. [PMID: 20575058 DOI: 10.1002/cne.22398] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the exception of humans, the somata of type I spiral ganglion neurons (SGNs) of most mammalian species are heavily myelinated. In an earlier study, we used Ly5.1 congenic mice as transplant recipients to investigate the role of hematopoietic stem cells in the adult mouse inner ear. An unanticipated finding was that a large percentage of the SGNs in this strain were unmyelinated. Further characterization of the auditory phenotype of young adult Ly5.1 mice in the present study revealed several unusual characteristics, including 1) large aggregates of unmyelinated SGNs in the apical and middle turns, 2) symmetrical junction-like contacts between the unmyelinated neurons, 3) abnormal expression patterns for CNPase and connexin 29 in the SGN clusters, 4) reduced SGN density in the basal cochlea without a corresponding loss of sensory hair cells, 5) significantly delayed auditory brainstem response (ABR) wave I latencies at low and middle frequencies compared with control mice with similar ABR threshold, and 6) elevated ABR thresholds and deceased wave I amplitudes at high frequencies. Taken together, these data suggest a defect in Schwann cells that leads to incomplete myelinization of SGNs during cochlear development. The Ly5.1 mouse strain appears to be the only rodent model so far identified with a high degree of the "human-like" feature of unmyelinated SGNs that aggregate into neural clusters. Thus, this strain may provide a suitable animal platform for modeling human auditory information processing such as synchronous neural activity and other auditory response properties.
Collapse
Affiliation(s)
- Vinu Jyothi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rusznák Z, Szucs G. Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch 2008; 457:1303-25. [PMID: 18777041 DOI: 10.1007/s00424-008-0586-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 11/29/2022]
Abstract
The spiral ganglion cells provide the afferent innervation of the hair cells of the organ of Corti. Ninety-five percent of these cells (termed type I spiral ganglion neurones) are in synaptic contact with the inner hair cells, whereas about 5% of them are type II cells, which are responsible for the sensory innervation of the outer hair cells. To understand the function of the spiral ganglion neurones, it is important to explore their membrane properties, understand their activity patterns and describe the variety of ionic channels determining their behaviour. In this review, a brief description is given of the various experimental methods that allow the investigation of the spiral ganglion cells, followed by the discussion of their action potential firing patterns and ionic conductances. The presence, distribution and significance of the K(+) currents of the spiral ganglion cells are specifically addressed, along with the introduction of the putative subunit compositions of the relevant voltage-gated K(+) channels.
Collapse
Affiliation(s)
- Zoltán Rusznák
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, Debrecen, P O Box 22, H-4012, Hungary.
| | | |
Collapse
|
23
|
Wang Y, Manis PB. Temporal coding by cochlear nucleus bushy cells in DBA/2J mice with early onset hearing loss. J Assoc Res Otolaryngol 2006; 7:412-24. [PMID: 17066341 PMCID: PMC1785302 DOI: 10.1007/s10162-006-0052-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 07/27/2006] [Indexed: 11/30/2022] Open
Abstract
The bushy cells of the anterior ventral cochlear nucleus (AVCN) preserve or improve the temporal coding of sound information arriving from auditory nerve fibers (ANF). The critical cellular mechanisms entailed in this process include the specialized nerve terminals, the endbulbs of Held, and the membrane conductance configuration of the bushy cell. In one strain of mice (DBA/2J), an early-onset hearing loss can cause a reduction in neurotransmitter release probability, and a smaller and slower spontaneous miniature excitatory postsynaptic current (EPSC) at the endbulb synapse. In the present study, by using a brain slice preparation, we tested the hypothesis that these changes in synaptic transmission would degrade the transmission of timing information from the ANF to the AVCN bushy neuron. We show that the electrical excitability of bushy cells in hearing-impaired old DBA mice was different from that in young, normal-hearing DBA mice. We found an increase in the action potential (AP) firing threshold with current injection; a larger AP afterhyperpolarization; and an increase in the number of spikes produced by large depolarizing currents. We also tested the temporal precision of bushy cell responses to high-frequency stimulation of the ANF. The standard deviation of spikes (spike jitter) produced by ANF-evoked excitatory postsynaptic potentials (EPSPs) was largely unaffected in old DBA mice. However, spike entrainment during a 100-Hz volley of EPSPs was significantly reduced. This was not a limitation of the ability of bushy cells to fire APs at this stimulus frequency, because entrainment to trains of current pulses was unaffected. Moreover, the decrease in entrainment is not attributable to increased synaptic depression. Surprisingly, the spike latency was 0.46 ms shorter in old DBA mice, and was apparently attributable to a faster conduction velocity, since the evoked excitatory postsynaptic current (EPSC) latency was shorter in old DBA mice as well. We also tested the contribution of the low-voltage-activated K+ conductance (g (KLV)) on the spike latency by using dynamic clamp. Alteration in g (KLV) had little effect on the spike latency. To test whether these changes in DBA mice were simply a result of continued postnatal maturation, we repeated the experiments in CBA mice, a strain that shows normal hearing thresholds through this age range. CBA mice exhibited no reduction in entrainment or increased spike jitter with age. We conclude that the ability of AVCN bushy neurons to reliably follow ANF EPSPs is compromised in a frequency-dependent fashion in hearing-impaired mice. This effect can be best explained by an increase in spike threshold.
Collapse
Affiliation(s)
- Yong Wang
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, 1115 Bioinformatics Building, CB#7070, Chapel Hill, NC 27599-7070, USA.
| | | |
Collapse
|
24
|
Jin Z, Wei D, Järlebark L. Developmental expression and localization of KCNJ10 K+ channels in the guinea pig inner ear. Neuroreport 2006; 17:475-9. [PMID: 16543810 DOI: 10.1097/01.wnr.0000208999.25234.91] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inward rectifier Kir4.1, composed of KCNJ10 K channel subunits, plays an essential role in inner ear K homeostasis. We have investigated the developmental expression and localization of KCNJ10 (Kir4.1) in the guinea pig inner ear using semi-quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Kcnj10 was expressed at low levels from embryonic day 30 (E30), increased from E45, and persisted from E50 to adulthood. KCNJ10 channel protein was detected in spiral ganglion satellite cells of the basal turn at E40, and at E45 its expression proceeded with a base-to-apex gradient along the cochlear spiral. KCNJ10 protein was enriched in the myelin sheath around the cochlear nerve between E40 and E45 and disappeared gradually with age. In the strial intermediate cells, KCNJ10 channel expression was first observed at E50, and lagged behind that of the spiral ganglion. In addition, KCNJ10 channel protein was expressed and localized in vestibular transitional cells. Differential expression of KCNJ10 channel protein suggests roles for KCNJ10 channels in inner ear development and onset of auditory function.
Collapse
Affiliation(s)
- Zhe Jin
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Huang LC, Ryan AF, Cockayne DA, Housley GD. Developmentally regulated expression of the P2X3 receptor in the mouse cochlea. Histochem Cell Biol 2005; 125:681-92. [PMID: 16341871 DOI: 10.1007/s00418-005-0119-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2005] [Indexed: 11/26/2022]
Abstract
ATP-gated non-selective cation channels assembled from P2X(3) receptor subunits contribute to transduction and neurotransmitter signaling in peripheral sensory systems and also feature prominently in the development of the central nervous system. In this study, P2X(3) receptor expression was characterized in the mouse cochlea from embryonic day 18 (E18) using confocal immunofluorescence. From E18 to P6, spiral ganglion neuron cell bodies and peripheral neurites projecting to the inner and outer hair cells were labeled. The inner spiral plexus associated with the inner hair cell synapses had a stronger fluorescence signal than outer spiral bundle fibers which provide the afferent innervation to the outer hair cells. Labeling in the cell bodies and peripheral neurites diminished around P6, and was no longer detected after the onset of hearing (P11, P17, adult). In opposition to the axiom that P2X(3) expression is neuron-specific, inner and outer sensory hair cells were labeled in the base and mid turn region at E18, but at P3 only the outer hair cells in the most apical region of the cochlea continued to express the protein. These data suggest a role for P2X(3) receptor-mediated purinergic signaling in cochlear synaptic reorganization, and establishment of neurotransmission, which occurs just prior to the onset of hearing function.
Collapse
Affiliation(s)
- Lin-Chien Huang
- Department of Physiology, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
26
|
Echteler SM, Magardino T, Rontal M. Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:192-200. [PMID: 15939482 DOI: 10.1016/j.devbrainres.2005.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 11/24/2022]
Abstract
During early postnatal development, afferent neurons of the cochlear (spiral) ganglion progressively refine their projections to auditory hair cells so that, by hearing onset, most cochlear nerve fibers innervate a single hearing receptor. One mechanism that might contribute to these changes in cochlear innervation is the programmed cell death (apoptosis) of developing neurons within the spiral ganglion. In the present study, we used the TUNEL method and morphological criteria to identify apoptotic cells within the spiral ganglion of the Mongolian gerbil during the first week of postnatal life when afferent projections to the cochlea are actively refined in this species. The locations of individual apoptotic spiral ganglion cells were mapped onto three-dimensional reconstructions of the entire ganglion for an age-graded series of gerbils to produce the first high-resolution, spatiotemporal maps of apoptotic ganglion cell death for the postnatal cochlea. We observed a significant increase in apoptosis in the spiral ganglion from postnatal day (P) 4 through P6. During this time, the most intense apoptotic activity occurred in regions of the spiral ganglion providing innervation to the lower middle and apical turns of the cochlea. The time course and regional variation of programmed cell death within the developing gerbil spiral ganglion are discussed in terms of the postnatal refinement of cochlear innervation and its possible functional significance for hearing in gerbils.
Collapse
Affiliation(s)
- Stephen M Echteler
- Abramson Research Building, Room 510D, The Children's Hospital of Philadelphia, 34th St. and Civic Center Boulevard, Philadelphia, PA 19104-4318, USA.
| | | | | |
Collapse
|
27
|
Huang LC, Greenwood D, Thorne PR, Housley GD. Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J Comp Neurol 2005; 484:133-43. [PMID: 15736235 DOI: 10.1002/cne.20442] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP-gated ion channels assembled from P2X3 receptor (P2X3R) subunits contribute to neurotransmission and neurotrophic signaling, associated with neurite development and synaptogenesis, particularly in peripheral sensory neurons. Here, P2X3R expression was characterized in the rat cochlea from embryonic day 16 (E16) to adult (P49-56), using RT-PCR and immunohistochemistry. P2X3R mRNA was strongly expressed in the cochlea prior to birth, declined to a minimal level at P14, and was absent in adult tissue. P2X3R protein expression was confined to spiral ganglion neurons (SGN) within Rosenthal's canal of the cochlea. At E16, immunolabeling was detected in the SGN neurites, but not the distal neurite projection within the developing sensory epithelium (greater epithelial ridge). From E18, the immunolabeling was observed in the peripheral neurites innervating the inner hair cells but was reduced by P6. However, from P2-8, immunolabeling of the SGN neurites extended to include the outer spiral bundle fiber tract beneath the outer hair cells. This labeling of type II SGN afferent fiber declined after P8. By P14, all synaptic terminal immunolabeling in the organ of Corti was absent, and SGN cell body labeling was minimal. In adult cochlear tissue, P2X3R immunolabeling was not detected. Noise exposure did not induce P2X3R expression in the adult cochlea. These data indicate that ATP-gated ion channels incorporating P2X3R subunit expression are specifically targeted to the afferent terminals just prior to the onset of hearing, and likely contribute to the neurotrophic signaling which establishes functional auditory neurotransmission.
Collapse
Affiliation(s)
- Lin-Chien Huang
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
28
|
Trigueiros-Cunha N, Renard N, Humbert G, Tavares MA, Eybalin M. Catecholamine-independent transient expression of tyrosine hydroxylase in primary auditory neurons is coincident with the onset of hearing in the rat cochlea. Eur J Neurosci 2003; 18:2653-62. [PMID: 14622167 DOI: 10.1046/j.1460-9568.2003.02989.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the last stages of neuronal maturation, tyrosine hydroxylase is transiently expressed in the absence of the other catecholamine-synthesizing enzymes. We show here that it is expressed in rat spiral ganglion neurons between postnatal days 8 and 20, with a peak of expression at postnatal day 12. These tyrosine hydroxylase-immunoreactive neurons did not display aromatic amino acid decarboxylase- or dopamine-beta-hydroxylase-immunoreactivities, ruling out the possibilities of dopamine or noradrenaline synthesis. They also did not display peripherin- or intense neurofilament 200-kDa-immunoreactivities, two indicators of type II primary auditory neurons. Tyrosine hydroxylase-immunoreactive dendrites were seen in synaptic contact with the inner hair cells and expressed the GluR2 subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, further confirming the type I nature of the neurons transiently expressing the enzyme. The end of the tyrosine hydroxylase expression was not due to cell death because the immunoreactive neurons did not show TUNEL-labelled nuclei. Finally, all the type I neurons expressed the tyrosine hydroxylase mRNA at postnatal day 12, suggesting that the expression of the enzyme is a maturational step common to all these neurons and that the expression of the protein is not synchronized. Because the period of transient expression of tyrosine hydroxylase in type I neurons parallels the periods of maturation of evoked exocytosis in inner hair cells and of appearance and maturation of the cochlear potentials, we propose that the expression of the enzyme indicates the onset of hearing in individual type I primary auditory neurons. This enzyme expression could rely on a Ca2+ activation of its encoding gene subsequent to a sudden and massive Ca2+ entry through voltage-activated Ca2+ channels.
Collapse
Affiliation(s)
- Nuno Trigueiros-Cunha
- INSERM U.583 and Université Montpellier 1, 71 rue de Navacelles, F-34090 Montpellier, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
In a previous report, we showed abnormal auditory evoked potentials in the mutant hamster, 'black tremor (bt)', with significantly prolonged wave latencies of auditory brainstem responses and prolonged N1 latencies of compound action potentials, but normal cochlear microphonics. In this report, we present the results of morphological studies supporting the results of our electrophysiological studies of the auditory pathway in bt. Observation by transmission electron microscopy revealed an abnormal myelin sheath surrounding the spiral ganglion cells, and a thinner compact myelin sheath surrounding the axons in bt than in normal hamsters. The bt hamster has a myelin deficiency not only in the brainstem, but also in the cochlear nerve.
Collapse
Affiliation(s)
- R Naito
- Department of Otorhinolaryngology, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
30
|
Mo ZL, Adamson CL, Davis RL. Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 2002; 542:763-78. [PMID: 12154177 PMCID: PMC2290456 DOI: 10.1113/jphysiol.2002.017202] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have previously identified two broad electrophysiological classes of spiral ganglion neuron that differ in their rate of accommodation (Mo & Davis, 1997a). In order to understand the underlying ionic basis of these characteristic firing patterns, we used alpha-dendrotoxin (alpha-DTX) to eliminate the contribution of a class of voltage-gated K(+) channels and assessed its effects on a variety of electrophysiological properties by using the whole-cell configuration of the patch-clamp technique. Exposure to alpha-DTX caused neurons that initially displayed rapid accommodation to fire continuously during 240 ms depolarizing test pulses within a restricted voltage range. We found a non-monotonic relationship between number of action potentials fired and membrane potential in the presence of alpha-DTX that peaked at voltages between -40 to -10 mV and declined at more depolarized and hyperpolarized test potentials. The alpha-DTX-sensitive current had two components that activated in different voltage ranges. Analysis of recordings made from acutely isolated neurons gave estimated half-maximal activation voltages of -63 and 12 mV for the two components. Because alpha-DTX blocks the Kv1.1, Kv1.2 and Kv1.6 subunits, we examined the action of the Kv1.1-selective blocker dendrotoxin K (DTX-K). We found that this antagonist reproduced the effects of alpha-DTX on neuronal firing, and that the DTX-K-sensitive current also had two separate components. These data suggest that the transformation from a rapidly adapting to a slowly adapting firing pattern was mediated by the low voltage-activated component of DTX-sensitive current with a potential contribution from the high voltage-activated component at more depolarized potentials. In addition, the effects of DTX-K indicate that Kv1.1 subunits are important constituents of the underlying voltage-gated potassium channels.
Collapse
Affiliation(s)
- Zun-Li Mo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA
| | | | | |
Collapse
|
31
|
Fitzakerley JL, McGee JA, Walsh EJ. Paradoxical relationship between frequency selectivity and threshold sensitivity during auditory-nerve fiber development. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1998; 103:3464-3477. [PMID: 9637032 DOI: 10.1121/1.423055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The acquisition of adult-like frequency selectivity is generally assumed to be the tightly coupled to improvements in threshold sensitivity during cochlear development. In this study, frequency versus threshold (tuning) curves obtained from 1108 auditory-nerve fibers were used to investigate the relationship between tuning and threshold at characteristic frequency (CF) during postnatal development in kittens. At the earliest ages included in this study, sharpness was within the adult range, but thresholds were significantly higher than adult values. Tuning and thresholds improved along different exponential time courses that varied with CF. For units with CFs below 1 kHz, tuning curve slopes below CF matured earliest, followed by CF threshold, and then by slopes above CF. In contrast, for CFs above 1 kHz, the high-frequency slopes matured first, followed by threshold and then by slope below CF. One interpretation of these results is that tuning and thresholds are not tightly coupled in immature animals. Paradoxically, however, high-frequency slopes were correlated with threshold for individual units at all ages, suggesting that the relationship between tuning and threshold is maintained during development. This contradiction can be resolved by a developmental model that features a functional separation between cochlear nonlinearities and mechanical/electrical conversion.
Collapse
Affiliation(s)
- J L Fitzakerley
- Boys Town National Research Hospital, Creighton University, Omaha, Nebraska 68131, USA
| | | | | |
Collapse
|
32
|
Sun YJ, Naito A, Watanabe SY. Perikaryal myelination of cultured chick embryo statoacoustic ganglion cells: an electron microscopic study. Acta Otolaryngol 1998; 118:344-51. [PMID: 9655208 DOI: 10.1080/00016489850183421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Perikaryal myelin formation on cultured chick embryo statoacoustic ganglion (SAG) cells was studied using electron microscopy. SAGs were dissected from 13-day embryos and cultured for 1 to 6 weeks. Myelinated perikarya, which were completely encircled by two or more layers of loose and/or compact myelin lamellae like those in vivo in the chick, were first observed in 3-week-cultured SAGs; myelinated axons appeared in 2-week-cultured SAGs. The perikaryal myelination progressively increased loose and compact lamellae and the axonal myelination increased compact lamellae. In 4- to 6-week-cultured SAGs, 11 to 12% of SAG cells had the myelinated perikaryon of which perikaryal myelin lamellae terminated at the axon hillock in the same manner as those in vivo in the chick. The number of layers of myelin lamellae around the myelinated perikaryon in 5- to 6-week-cultured SAGs and around the myelinated axon in 4- to 6-week-cultured SAGs ranged between 2 and 15, and between 12 and 26, respectively. Since these numbers were consistent with those in vivo in chicks 3 days after hatching, it is suggested that the culture provides perikaryal myelin sheaths, which are equivalent to those in vivo in structure, in more than 10% of SAG cells, while the myelination process in vitro is carried out much more slowly than that in vivo.
Collapse
Affiliation(s)
- Y J Sun
- Department of Anatomy, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | | | | |
Collapse
|
33
|
Sun YJ, Komatsu S, Naito A, Watanabe SY. Fine structures of perikaryal myelin sheaths on statoacoustic ganglion cells in 3-day-old chicks. TOHOKU J EXP MED 1996; 180:309-17. [PMID: 9130369 DOI: 10.1620/tjem.180.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Perikaryal myelin sheaths on statoacoustic ganglion cells in 3-day-old chicks were studied by electron microscopy. The fixation method with a high-concentrated warm fixative helped in successful demonstrations of perikaryal myelin structures. The sheaths were composed of loose and compact myelin mixed by various arrangements. Twenty-seven percent of perikarya were entirely encircled by compact myelin, 71% were partly wrapped by compact myelin, and 2% were wrapped by just loose myelin. The perikaryal myelin was composed of 3 to 16 layers of loose and compact lamellae, whereas the axonal myelin of 10 to 28 of compact lamellae. Since no unmyelinated perikarya, which are covered by a single layer of Schwann cell cytoplasm, were detected, it is suggested that the perikarya myelination on all the ganglion cells has started before 3 days after hatching.
Collapse
Affiliation(s)
- Y J Sun
- Department of Anatomy, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | |
Collapse
|
34
|
Regeneration of the Auditory Nerve: The Role of Neurotrophic Factors. CLINICAL ASPECTS OF HEARING 1996. [DOI: 10.1007/978-1-4612-4068-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Luo L, Brumm D, Ryan AF. Distribution of non-NMDA glutamate receptor mRNAs in the developing rat cochlea. J Comp Neurol 1995; 361:372-82. [PMID: 8550886 DOI: 10.1002/cne.903610303] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In situ hybridization was used to document the distribution of mRNA encoding six subunit isoforms of non-N-methyl D-aspartic acid (NMDA) glutamate receptors (GluR1, GluR2, GluR3, GluR4, GluR5 and GluR6) in the inner ears of embryonic, postnatal and adult rats. GluR2 and GluR3 expression in the spiral ganglion appeared well before birth, and reached adult levels several days before the onset of function in the cochlea. In the spiral limbus, expression of GluR2 and GluR3 mRNA reached very high levels at around the time of birth, then declined after a few days. Low levels of GluR1, GluR4 and GluR6 expression were detected in various tissues of the cochlea during development. In the adult cochlea, GluR expression was limited to GluR2 and GluR3 mRNAs in the spiral ganglion neurons and GluR2 mRNA in fibrocytes of the spiral limbus, a non-neural tissue. The ontogenetic expression of additional GluR subunit genes and their appearance in different cochlear tissues could reflect different roles for these genes during development, or less precise regulation of gene expression within the GluR family. In particular, the very high levels of GluR gene expression in the spiral limbus during the perinatal period support a non-neural function, perhaps as cell surface receptors during tissue differentiation.
Collapse
Affiliation(s)
- L Luo
- Department of Surgery, UCSD School of Medicine, La Jolla 92093-0666, USA
| | | | | |
Collapse
|
36
|
Sánchez Del Rey A, Sánchez Fernández JM, Martínez Ibarguen A, Santaolalla Montoya F. Morphologic and morphometric study of human spiral ganglion development. Acta Otolaryngol 1995; 115:211-7. [PMID: 7610807 DOI: 10.3109/00016489509139294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A light microscopic study of the spiral ganglion was done in human embryos and fetuses measuring 45, 50, 60, 74, 90, 134, 270 mm crown-rump length (crl), and in a one-day-old neonate. Morphometric evaluations of i) cell and nuclear area, ii) nuclear area/cell area ratio, iii) ganglion area, iv) cell concentration/surface unit, and v) distance between the first neuron and the receptor were made, and the results statistically evaluated. In earlier stages of development, spiral ganglion primordia appeared as a cluster of neuroblasts and some schwannoblasts immersed in the mesenchymal tissue, close to the ductus cochlearis. A honeycomb pattern in the spiral ganglion neurons was observed in the basal turn of a 74 mm crl fetus. In later stages, the basal turn of a 90 mm crl fetus showed a spatial organization. Peripheral and central fibers of the acoustic nerve appeared stratified in early periods of development (45 mm crl embryo). From this stage on, both phenomena progress apicalwards until the neonatal period. A significant decrease in the nuclear area/cell area ratio was observed from the 134 mm crl fetus (17 weeks) to the neonatal stage in all turns. This led to a significant increase in cellular area from the 270 mm crl fetus (32 weeks) to the neonate, with no significant variation in nuclear area. The distance from the primordium of the organ of Corti to the spiral ganglion in the interval between 45 and 74 mm crl showed a significant increase in all turns.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Sánchez Del Rey
- Otolaryngology Department, Basurto Hospital, School of Medicine, University of the Basque Country, Bilbao, Spain
| | | | | | | |
Collapse
|
37
|
Abstract
In situ hybridization was used to document the distribution of mRNA encoding acidic and basic fibroblast growth factor (aFGF and bFGF) in the rat cochlea from embryonic day (E) 16 to postnatal day (P) > 60. bFGF mRNA was not detected in the cochlea at any age. In the adult, aFGF mRNA was strongly expressed in spiral ganglion (SG) neurons, and this expression increased from base to apex. The stria vascularis (SV) and spiral prominence (SP) showed lesser expression which was equal in all turns. Developmentally, low level expression of aFGF mRNA was first seen in the SG at E-20, and remained low until P-4. Expression increased from P-6 to P-14, when adult levels were reached. aFGF mRNA was also observed in the developing hair cells of all turns at E-20. This expression increased after birth but disappeared after P-6. Expression in the SV and SP was first noted at E-20 and reached adult levels by P-16 and P-10, respectively. High levels of aFGF mRNA in the adult SG suggest that aFGF is important for the maintenance of SG neuron function and structure. aFGF in hair cells during the first postnatal week may be involved in the establishment of cochlear innervation.
Collapse
Affiliation(s)
- L Luo
- Department of Surgery, UCSD School of Medicine, La Jolla 92093-0666
| | | | | | | |
Collapse
|
38
|
Ivanov E, Koitchev K, Cazals Y, Aran JM. Axo-somatic contacts in the postnatal developing white rat spiral ganglion. Acta Otolaryngol 1992; 112:985-90. [PMID: 1481669 DOI: 10.3109/00016489209137499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Development of the spiral ganglion in white rats was followed during the first 2 weeks after birth and morphological characteristics of the two neuronal types (I and II) were examined. In some neurons different stages of partial degeneration leading to formation of residual bodies were found without observation of degenerated cell, supporting the idea that differentiation at this time is not associated with cell death. Contacts between cell body of type II neurons and neuronal endings is reported for the first time. Such axo-somatic contacts previously observed only in monkey and man, also exists in lower mammals.
Collapse
Affiliation(s)
- E Ivanov
- Department of Anatomy, Histology and Cytology, Pleven Medical University, Bulgaria
| | | | | | | |
Collapse
|
39
|
Woolf NK, Koehrn FJ, Ryan AF. Immunohistochemical localization of fibronectin-like protein in the inner ear of the developing gerbil and rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 65:21-33. [PMID: 1551230 DOI: 10.1016/0165-3806(92)90004-g] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immunohistochemistry was used to demonstrate the distribution of fibronectin-like protein within the developing inner ear of two species of altricial rodents: gerbils and rats. While there were temporal differences between the two species, the developmental sequence of immunostaining was virtually identical. Most notably, in rats from embryonic day 18 through day 1 postpartum, and in gerbils from birth through day 4 postpartum, intense, discrete fibronectin-like immunoreactivity was observed in the cochlea immediately beneath the inner and outer hair cells, sites of active auditory nerve fiber growth and nerve-hair cell synaptogenesis at these ages. The results suggest that fibronectin is appropriately positioned spatially and temporally to play a significant role in promoting, guiding and/or maintaining neural innervation within the developing organ of Corti. The temporo-spatial pattern of immunostaining in Schwann cells and auditory (VIIIth cranial) nerve neurons implies that fibronectin also plays a significant role in the early formation of myelin. In non-neural elements of the cochlea, fibronectin is a major structural component within the basilar membrane at all of the developmental stages investigated.
Collapse
Affiliation(s)
- N K Woolf
- Department of Surgery, University of California, San Diego, School of Medicine, La Jolla
| | | | | |
Collapse
|