1
|
Akisaka T. Platinum replicas of broken-open osteoclasts imaged by transmission electron microscopy. J Oral Biosci 2021; 63:307-318. [PMID: 34628004 DOI: 10.1016/j.job.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Preserving the cellular structure at the highest possible resolution is a prerequisite for morphological studies to deepen our understanding of cellular functions. A revival of interest in rapid-freezing methods combined with breaking-open techniques has taken place with the development of effective and informative approaches in platinum replica electron microscopy, thus providing new approaches to address unresolved issues in cell biology. HIGHLIGHT The images produced with platinum replicas revealed 3D structures of the cell interior: (1) cell membranes associated with highly organized cytoskeletons, including podosomes or geodomes, (2) heterogeneous clathrin assemblies and membrane skeletons on the inner side of the membrane, and (3) organization of the cytoskeleton after detergent extraction. CONCLUSION In this review, I will focus on the platinum replica method after brokenopen cells have been broken open with mechanical shearing or detergent extraction. Often forgotten nowadays is the use of platinum replicas with stereomicroscopic observations for transmission electron microscopy study; these "old-fashioned" imaging techniques, combined with the breaking-open technique represent a highly informative approach to deepen our understanding of the organization of the cell interior. These are still being pursued to answer outstanding biological questions.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
New advances in scanning microscopy and its application to study parasitic protozoa. Exp Parasitol 2018; 190:10-33. [PMID: 29702111 DOI: 10.1016/j.exppara.2018.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Scanning electron microscopy has been used to observe and study parasitic protozoa for at least 40 years. However, field emission electron sources, as well as improvements in lenses and detectors, brought the resolution power of scanning electron microscopes (SEM) to a new level. Parallel to the refinement of instruments, protocols for preservation of the ultrastructure, immunolabeling, exposure of cytoskeleton and inner structures of parasites and host cells were developed. This review is focused on protozoan parasites of medical and veterinary relevance, e.g., Toxoplasma gondii, Tritrichomonas foetus, Giardia intestinalis, and Trypanosoma cruzi, compilating the main achievements in describing the fine ultrastructure of their surface, cytoskeleton and interaction with host cells. Two new resources, namely, Helium Ion Microscopy (HIM) and Slice and View, using either Focused Ion Beam (FIB) abrasion or Microtome Serial Sectioning (MSS) within the microscope chamber, combined to backscattered electron imaging of fixed (chemically or by quick freezing followed by freeze substitution and resin embedded samples is bringing an exponential amount of valuable information. In HIM there is no need of conductive coating and the depth of field is much higher than in any field emission SEM. As for FIB- and MSS-SEM, high resolution 3-D models of areas and volumes larger than any other technique allows can be obtained. The main results achieved with all these technological tools and some protocols for sample preparation are included in this review. In addition, we included some results obtained with environmental/low vacuum scanning microscopy and cryo-scanning electron microscopy, both promising, but not yet largely employed SEM modalities.
Collapse
|
3
|
Bolshakova A, Magnusson KE, Pinaev G, Petukhova O. Functional compartmentalisation of NF-kB-associated proteins in A431 cells. Cell Biol Int 2015; 37:387-96. [PMID: 23408724 DOI: 10.1002/cbin.10053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022]
Abstract
NF-kB proteins belong to a family of ubiquitous transcription factors involved in a number of cellular responses. While the pathways of NF-kB activation and input into the regulation of gene activity have been comprehensively investigated, its cytoplasmic functions are poorly understood. In this study we addressed effects of the compartmentalisation of NF-kB proteins RelA/p65 and p50 in relation to the inhibitor IkB-a, using fibronectin (FN) and epidermal growth factor (EGF) for environmental stimulation of epidermoid carcinoma A431 cells. We thus assessed the presence of NF-kB family proteins in the cytosol, membrane, nuclear and cytoskeletal fractions with a special attention to the cytoskeletal fraction to define whether NFkB was active or not. Sub-cellular fractionation demonstrated that the proportion of RelA/p65 differed in diverse sub-cellular fractions, and that the cytoskeleton harboured about 7% thereof. Neither the nuclear nor the cytoskeleton fraction did contain IkB-a. The cytoskeleton binding of RelA/p65 and p50 was further confirmed by co-localisation and electron microscopy data. During 30-min EGF stimulation similar dynamics were found for RelA/p65 and IkB-a in the cytosol, RelA/p65 and p50 in the nucleus and p50 and IkB-a in the membrane. Furthermore, EGF stimulation for 30 min resulted in a threefold accumulation of RelA/p65 in cytoskeletal fraction. Our results suggest that nuclear-, membrane- and cytoskeleton-associated NF-kB are dynamic and comprise active pools, whereas the cytoplasmic is more constant and likely non-active due to the presence of IkB-a. Moreover, we discovered the existence of a dynamic, IkB-a-free pool of RelA/p65 associated with cytoskeletal fraction, what argues for a special regulatory role of the cytoskeleton in NF-kB stimulation.
Collapse
Affiliation(s)
- Anastasia Bolshakova
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russian Federation
| | | | | | | |
Collapse
|
4
|
Abbineni G, Safiejko-Mroczka B, Mao C. Development of an optimized protocol for studying the interaction of filamentous bacteriophage with mammalian cells by fluorescence microscopy. Microsc Res Tech 2010; 73:548-54. [PMID: 19937750 DOI: 10.1002/jemt.20793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Filamentous bacteriophage has been proposed as a vehicle that can carry and deliver therapeutics into mammalian cells for disease treatment, thus a protocol for imaging phage-cell interaction is essential. Because high signal intensity is necessary to study the mechanism of interaction between filamentous bacteriophage and mammalian cells, it is important to optimize the procedure for fluorescence labeling of phage in order to understand such interaction. Here, we describe a procedure that gives intense fluorescence labeling and can show interactions between fd-tet bacteriophage selected from phage libraries and mammalian cells (SKBR-3 and MCF-10A). The indirect labeling of phage with dye-conjugated antibody and cytoskeleton associated proteins was significantly enhanced in the presence of a cross-linking reagent called dithiobissuccinimidylpropionate (DSP) as shown by qualitative and quantitative fluorescence microscopy. The use of DSP resulted in high signal intensity in fluorescence imaging of phage-cell complex. The DSP cross-linker is believed to preserve soluble unbound proteins for fluorescence imaging. The interaction between the phage and mammalian cells was further confirmed by scanning electron microscopy.
Collapse
Affiliation(s)
- Gopal Abbineni
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
5
|
Resch GP, Urban E, Jacob S. The actin cytoskeleton in whole mount preparations and sections. Methods Cell Biol 2010; 96:529-64. [PMID: 20869537 DOI: 10.1016/s0091-679x(10)96022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In non-muscle cells, the actin cytoskeleton plays a key role by providing a scaffold contributing to the definition of cell shape, force for driving cell motility, cytokinesis, endocytosis, and propulsion of pathogens, as well as tracks for intracellular transport. A thorough understanding of these processes requires insight into the spatial and temporal organisation of actin filaments into diverse higher-order structures, such as networks, parallel bundles, and contractile arrays. Transmission and scanning electron microscopy can be used to visualise the actin cytoskeleton, but due to the delicate nature of actin filaments, they are easily affected by standard preparation protocols, yielding variable degrees of ultrastructural preservation. In this chapter, we describe different conventional and cryo-approaches to visualise the actin cytoskeleton using transmission electron microscopy and discuss their specific advantages and drawbacks. In the first part, we present three different whole mount techniques, which allow visualisation of actin in the peripheral, thinly spread parts of cells grown in monolayers. In the second part, we describe specific issues concerning the visualisation of actin in thin sections. Techniques for three-dimensional visualisation of actin, protein localisation, and correlative light and electron microscopy are also included.
Collapse
Affiliation(s)
- Guenter P Resch
- IMP-IMBA-GMI Electron Microscopy Facility, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | | |
Collapse
|
6
|
Jahn KA, Barton DA, Su Y, Riches J, Kable EPW, Soon LL, Braet F. Correlative fluorescence and transmission electron microscopy: an elegant tool to study the actin cytoskeleton of whole-mount (breast) cancer cells. J Microsc 2009; 235:282-92. [PMID: 19754723 DOI: 10.1111/j.1365-2818.2009.03223.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.
Collapse
Affiliation(s)
- K A Jahn
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Advances in “wet” electron microscopy techniques and their application to the study of food structure. Trends Food Sci Technol 2009. [DOI: 10.1016/j.tifs.2009.01.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Jackson WM, Jaasma MJ, Tang RY, Keaveny TM. Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am J Physiol Cell Physiol 2008; 295:C1007-15. [DOI: 10.1152/ajpcell.00509.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many structural modifications have been observed as a part of the cellular response to mechanical loading in a variety of cell types. Although changes in morphology and cytoskeletal rearrangement have been widely reported, few studies have investigated the change in cytoskeletal composition. Measuring how the amounts of specific structural proteins in the cytoskeleton change in response to mechanical loading will help to elucidate cellular mechanisms of functional adaptation to the applied forces. Therefore, the overall hypothesis of this study was that osteoblasts would respond to fluid shear stress by altering the amount of specific cross-linking proteins in the composition of the cytoskeleton. Mouse osteoblats cell line MC3T3-E1 and human fetal osteoblasts (hFOB) were exposed to 2 Pa of steady fluid shear for 2 h in a parallel plate flow chamber, and then the amount of actin, vimentin, α-actinin, filamin, and talin in the cytoskeleton was measured using Western blot analyses. After mechanical loading, there was no change in the amount of actin monomers in the cytoskeleton, but the cross-linking proteins α-actinin and filamin that cofractionated with the cytoskeleton increased by 29% ( P < 0.01) and 18% ( P < 0.02), respectively. Localization of the cross-linking proteins by fluorescent microscopy revealed that they were more widely distributed throughout the cell after exposure to fluid shear. The amount of vimentin in the cytoskeleton also increased by 15% ( P < 0.01). These results indicate that osteoblasts responded to mechanical loading by altering the cytoskeletal composition, which included an increase in specific proteins that would likely enhance the mechanical resistance of the cytoskeleton.
Collapse
|
9
|
Over-expression of alpha-actinin with a GFP fusion protein is sufficient to increase whole-cell stiffness in human osteoblasts. Ann Biomed Eng 2008; 36:1605-14. [PMID: 18636329 DOI: 10.1007/s10439-008-9533-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
Osteoblasts respond to shear stress by simultaneously increasing their whole-cell stiffness and up-regulating the cytoskeletal crosslinking protein alpha-actinin. The stiffness of reconstituted cytoskeletal networks increases following the addition of alpha-actinin, but the effect of alpha-actinin on whole-cell mechanical behavior has not been investigated. The hypothesis of this study was that increasing alpha-actinin in the cytoskeleton would be sufficient to increase whole-cell stiffness. hFOB osteoblasts were transfected with a plasmid for GFP-tagged alpha-actinin, resulting in a 150% increase in the amount of alpha-actinin. The GFP-alpha-actinin fusion protein co-fractionated with the cytoskeleton and co-localized to the same regions of the cytoskeleton as endogenous alpha-actinin. Whole-cell mechanical behavior was measured by atomic force microscopy using a 25 mum diameter microsphere as an indenter. The whole-cell stiffness of cells over-expressing GFP-alpha-actinin was 60% higher than cells expressing only endogenous alpha-actinin (p < 0.002), which was within the range of mechanical behavior observed in osteoblastic cells exposed to 1 and 2 Pa of fluid shear. These results indicate that the up-regulation of alpha-actinin synthesis in osteoblasts is sufficient to alter the whole-cell mechanical behavior and highlights the potential role of alpha-actinin to reinforce cells against mechanical loads.
Collapse
|
10
|
Abstract
Fine structural analysis of the infection process is indispensable for understanding the relation between microorganisms and host cells. This chapter focuses on standard techniques for transmission as well as scanning electron microscopy that will be of benefit even to researchers new to the field.
Collapse
Affiliation(s)
- Christian Goosmann
- Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
11
|
Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 2007; 70:230-42. [PMID: 17279510 DOI: 10.1002/jemt.20408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Stan RV. Structure of caveolae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:334-48. [PMID: 16214243 DOI: 10.1016/j.bbamcr.2005.08.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 08/25/2005] [Accepted: 08/27/2005] [Indexed: 12/11/2022]
Abstract
The introduction of the electron microscope to the study of the biological materials in the second half of the last century has dramatically expanded our view and understanding of the inner workings of cells by enabling the discovery and study of subcellular organelles. A population of flask-shaped or spherical invaginations of the plasma membrane were described and named plasmalemmal vesicles or caveolae. Until the discovery of caveolin-1 as their first molecular marker in early 1990s, the study of caveolae was the exclusive domain of electron microscopists that demonstrated caveolae at different surface densities in most mammalian cells with few exceptions. Electron microscopy techniques in combination with other approaches have also revealed the structural features of caveolae as well as some of their protein and lipid residents. This review summarizes the data on the structure and components of caveolae and their stomatal diaphragms.
Collapse
Affiliation(s)
- Radu V Stan
- Angiogenesis Research Center, Department of Pathology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
14
|
Broers JLV, Bronnenberg NMHJ, Kuijpers HJH, Schutte B, Hutchison CJ, Ramaekers FCS. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur J Cell Biol 2002; 81:677-91. [PMID: 12553668 DOI: 10.1078/0171-9335-00282] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, Research Institute Growth & Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Braet F, Spector I, Shochet N, Crews P, Higa T, Menu E, de Zanger R, Wisse E. The new anti-actin agent dihydrohalichondramide reveals fenestrae-forming centers in hepatic endothelial cells. BMC Cell Biol 2002; 3:7. [PMID: 11914125 PMCID: PMC101387 DOI: 10.1186/1471-2121-3-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Accepted: 03/21/2002] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Liver sinusoidal endothelial cells (LSECs) react to different anti-actin agents by increasing their number of fenestrae. A new structure related to fenestrae formation could be observed when LSECs were treated with misakinolide. In this study, we investigated the effects of two new actin-binding agents on fenestrae dynamics. High-resolution microscopy, including immunocytochemistry and a combination of fluorescence- and scanning electron microscopy was applied. RESULTS Halichondramide and dihydrohalichondramide disrupt microfilaments within 10 minutes and double the number of fenestrae in 30 minutes. Dihydrohalichondramide induces fenestrae-forming centers, whereas halichondramide only revealed fenestrae-forming centers without attached rows of fenestrae with increasing diameter. Correlative microscopy showed the absence of actin filaments (F-actin) in sieve plates and fenestrae-forming centers. Comparable experiments on umbilical vein endothelial cells and bone marrow sinusoidal endothelial cells revealed cell contraction without the appearance of fenestrae or fenestrae-forming centers. CONCLUSION (I) A comparison of all anti-actin agents tested so far, revealed that the only activity that misakinolide and dihydrohalichondramide have in common is their barbed end capping activity; (II) this activity seems to slow down the process of fenestrae formation to such extent that it becomes possible to resolve fenestrae-forming centers; (III) fenestrae formation resulting from microfilament disruption is probably unique to LSECs.
Collapse
Affiliation(s)
- Filip Braet
- Laboratory for Cell Biology and Histology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels-Jette, Belgium
| | - Ilan Spector
- Department of Physiology and Biophysics, Health Science Center, State University of New York at Stony Brook (SUNY), Stony Brook, NY 11794-8661, New York, USA
| | - Nava Shochet
- Department of Physiology and Biophysics, Health Science Center, State University of New York at Stony Brook (SUNY), Stony Brook, NY 11794-8661, New York, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 9506, USA
| | - Tatsuo Higa
- Department of Marine Sciences, University of the Ryukyus, Nishihara, Okinawa 903-01, Japan
| | - Eline Menu
- Department of Hematology and Immunology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels-Jette, Belgium
| | - Ronald de Zanger
- Laboratory for Cell Biology and Histology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels-Jette, Belgium
| | - Eddie Wisse
- Laboratory for Cell Biology and Histology, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels-Jette, Belgium
| |
Collapse
|
16
|
Svitkina TM, Borisy GG. Correlative light and electron microscopy of the cytoskeleton of cultured cells. Methods Enzymol 1998; 298:570-92. [PMID: 9751908 DOI: 10.1016/s0076-6879(98)98045-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Braet F, Seynaeve C, De Zanger R, Wisse E. Imaging surface and submembranous structures with the atomic force microscope: a study on living cancer cells, fibroblasts and macrophages. J Microsc 1998; 190:328-38. [PMID: 9674158 DOI: 10.1046/j.1365-2818.1998.00333.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atomic force microscopy (AFM) has been used to image a wide variety of cells. Fixed and dried-coated, wet-fixed or living cells were investigated. The major advantage of AFM over SEM is the avoidance of vacuum and electrons, whereas imaging can be done at environmental pressure and in aqueous conditions. Evidence of the successful application of AFM in biological imaging is provided by comparing results of AFM with SEM and/or TEM. In this study, we investigated surface and submembranous structures of living and glutaraldehyde-fixed colon carcinoma cells, skin fibroblasts and liver macrophages by AFM. Special attention was paid to the correct conditions for the acquisition of images of the surface of these cells, because quality SEM examinations have already been abundantly presented. AFM imaging of living cells revealed specific structures, such as the cytoskeleton, which were not observed by SEM. Membrane structures, such as ruffles, lamellipodia, microspikes and microvilli, could only clearly be observed after fixing the cells with 0.1% glutaraldehyde. AFM images of living cells were comparable to SEM images of fixed, dried and coated cells, but contained a number of artefacts due to tip-sample interaction. In addition, AFM imaging allowed the visualization of cytoplasmic submembranous structures without the necessity for further preparative steps, allowing us: (i) to follow cytoskeletal changes in fibroblasts under the influence of the microfilament disrupting agent latrunculin A; (ii) to study particle phagocytosis in macrophages. Therefore, in spite of the slow image acquisition of the AFM, the instrument can be used for high-resolution real-time studies of dynamic changes in submembranous structures.
Collapse
Affiliation(s)
- F Braet
- Laboratory for Cell Biology and Histology, Free University of Brussels, Jette, Belgium.
| | | | | | | |
Collapse
|
18
|
Carvalho RM, Yoshiyama M, Pashley EL, Pashley DH. In vitro study on the dimensional changes of human dentine after demineralization. Arch Oral Biol 1996; 41:369-77. [PMID: 8771328 DOI: 10.1016/0003-9969(95)00115-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dentine rods measuring approximately 0.7 x 0.7 x 5.0 mm were prepared from dentine of extracted human third molars stored in saline containing 0.5% sodium azide at 4 degrees C until used. Forty specimens were demineralized in 10% citric acid plus 3% ferric chloride (w/w) solution for 8 h, then assigned to four groups (A, B, C and D) of 10 specimens each. Groups A and B were used to investigate volumetric changes after air-drying and further immersion in either water, an aqueous solution of 50% 2-hydroxymethylmethacrylate (HEMA) or 100% HEMA, followed by air-drying. Groups C and D were used to investigate the ability of 100% HEMA or 100% ethylene glycol to prevent shrinkage of demineralized dentine during exposure to air. Demineralization caused a small, non-significant (1.9%) reduction in dentine volume. Air-drying further reduced the volume by 65.6%. When demineralized, shrunken specimens were immersed in water for 24 h, they recovered their original demineralized volume. Immersion in 100% HEMA did not re-expand demineralized shrunken dentine. Specimens immersed in 50% HEMA yielded a 50% volume shrinkage when exposed to air for 24 h. Both 100% HEMA and 100% ethylene glycol were effective in preventing shrinkage of demineralized dentine. The technique used provided useful information about maximal dimensional changes that may occur at a microscopic level during adhesive dental restorative procedures.
Collapse
Affiliation(s)
- R M Carvalho
- Department of Operative Dentistry, Bauru School of Dentistry, University of Sao Paulo, Brazil
| | | | | | | |
Collapse
|
19
|
Carvalho RM, Yoshiyama M, Brewer PD, Pashley DH. Dimensional changes of demineralized human dentine during preparation for scanning electron microscopy. Arch Oral Biol 1996; 41:379-86. [PMID: 8771329 DOI: 10.1016/0003-9969(95)00130-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dentine rods measuring approx. 0.7 x 0.7 x 5.0mm were prepared from the crowns of extracted human third molars. The specimens were demineralized in 0.5 M EDTA (pH 7.0) for 3 days and their volume measured with a digital micrometer under a dissecting microscope. The specimens were randomly assigned to experimental groups and were chemically dehydrated in acetone. Next they were dried using either hexamethyldisilazane, Peldri II, or critical-point drying techniques. The dimensions of the specimens were measured again after each step and the changes in volume were expressed as a percentage of the original demineralized volume. The effects of fixing the specimens in 10% buffered formalin before dehydration with acetone were also investigated for every drying procedure. Dehydration in acetone caused a small but significant reduction in the volume of demineralized formalin-fixed specimens but unfixed specimens did not change significantly. In general, all three drying procedures caused some shrinkage in demineralized dentine specimens. Unfixed specimens exhibited a volumetric shrinkage of approx. 15-20% after drying with any of the methods. Fixed specimens shrank more than unfixed specimens after drying (25-35%). Regardless of the drying technique, the specimens shrank a further 10-20% when measured in the vacuum chamber of the scanning electron microscope. Among the three drying techniques employed, hexamethyldisilazane seems to be a very useful alternative to critical-point drying for the preparation of dentine specimens for scanning electron microscopy.
Collapse
Affiliation(s)
- R M Carvalho
- Department of Operative Dentistry, Bauru School of Dentistry, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
20
|
Temkin RJ, So DY, Lea PJ. Advantages of digitonin extraction to reveal the intracellular structure of rat glomerular podocytes for high-resolution scanning electron microscopy. Microsc Res Tech 1993; 26:260-71. [PMID: 8241563 DOI: 10.1002/jemt.1070260308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Kidneys of anesthetized rats were perfused with digitonin to extract cytosolic proteins of glomerular podocytes so that the remaining intracellular structures could be examined by three-dimensional stereo high-resolution scanning electron microscopy (HRSEM). Cytoskeleton, consisting of microtubules and intermediate filaments, was preserved with each applied concentration of digitonin. High concentrations of digitonin (1.0 mg/ml) produced a corrugated appearance in plasma membranes likely due to the formation of digitonin-cholesterol complexes. At 1.0 mg/ml digitonin, the Golgi complex became vesicularized, and mitochondria were well extracted and their ultrastructure preserved. Lower concentrations of digitonin (0.1 and 0.2 mg/ml) were less disruptive to both the plasma membrane and the Golgi complex. Mitochondria, rough endoplasmic reticulum, coated vesicles, nuclear membrane, and chromatin were well preserved. Extraction with digitonin, at the optimal concentration and perfusion time, simultaneously maintains both the cytoskeleton and membranous organelles inside the cell and provides a method to elucidate the interactions between these two components. Furthermore, digitonin extraction should preserve antigenic sites, thereby allowing the localization of intracellular proteins by backscattered electron imaging of immunogold labels in the scanning electron microscope.
Collapse
Affiliation(s)
- R J Temkin
- Canadian Genetic Diseases Network, Faculty of Medicine, University of Toronto, Ontario
| | | | | |
Collapse
|