1
|
Yang YQ, Sun RF, Ge P, Li WX, Zhang X, Zhang J, Ye L, Zhang N, Wang SY, Lv MQ, Zhou DX. GRPR down-regulation inhibits spermatogenesis through Ca 2+ mediated by PLCβ/IP3R signaling pathway in long-term formaldehyde-exposed rats. Food Chem Toxicol 2023; 179:113998. [PMID: 37604300 DOI: 10.1016/j.fct.2023.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Formaldehyde (FA), which is known as an air pollutant, has been proven to induce male infertility. However, the underlying mechanism of FA-induced male infertility remains elusive. In this study, 24 male SD rats were exposed to different levels of FA (0, 0.5, 2.46, and 5 mg/m3) for eight consecutive weeks. Through HE staining and sperm smear, we observed that FA exposure resulted in spermatogenic injury and the sperm quality decreased in rats. The qRT-PCR and Western blot analysis further revealed that GRPR was down-regulated in testicular tissues of FA-exposed rats as well as primary spermatogenic cells. Meanwhile, ZDOCK uncovered an interaction between GRPR and PLCβ. In addition, the CCK8, Fluo 3-AM and Flow cytometry results showed that FA exposure suppressed the expression of GRPR, PLCβ and IP3R, consequently reducing the Ca2+ concentration in spermatogenic cells, inducing apoptosis and inhibiting proliferation of spermatogenic cells. Moreover, rescue experiments confirmed that promoting GRPR could improve intracellular Ca2+ concentration by upregulating PLCβ and IP3R, partially reducing the apoptosis and promoting the proliferation of FA-treated spermatogenic cells. These findings revealed that GRPR participates in spermatogenesis through Ca2+ mediated by the PLCβ/IP3R signaling pathway in FA-exposed rats.
Collapse
Affiliation(s)
- Yan-Qi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Pan Ge
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Wen-Xing Li
- Department of SURGICAL Oncology, Xi'an Jiaotong University Medical College First Affiliated Hospital, 277 West Yanta Road, Shaanxi, 710061, China
| | - Xiang Zhang
- Department of Electrocardiographic Diagnosis, Xi'an Children's Hospital, Xi'an, 710003, China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Lu Ye
- Medical School, Xi'an Jiaotong University, Shaanxi, 710061, China; Xi'an Fourth Hospital, Shaanxi, 710061, China
| | - Nan Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Si-Yu Wang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Mo-Qi Lv
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China.
| | - Dang-Xia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China.
| |
Collapse
|
2
|
Iruzubieta-Villagra L, Ramos I, Cisint S, Crespo CA, Fernández S. Calcium, Ca 2+-ATPase, Calmodulin, and Calbindin D-28KD Localization in Testis of Leptodactylus chaquensis (Anura: Leptodactylidae). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-11. [PMID: 35297365 DOI: 10.1017/s1431927622000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intracellular localization of Ca2+, Ca2+-ATPase, Calmodulin, and Calbindin D-28KD have been studied in testes of the toad Leptodactylus chaquensis, using ultracytochemical and immunohistochemical techniques. The Ca2+ presences in the nucleus and into the mitochondria of the germ cells, together with the activity of Ca2+-ATPase detected in the nuclear envelope and mitochondrial crests, suggest the participation of this transporter in the storage of Ca2+. In Sertoli cells, Ca2+ deposits were also found in vesicles and lamellar bodies. Calmodulin and Calbindin D-28KD were revealed in the cytoplasm of both cell types. At the spermatozoon level, the cation deposits were located in the subacrosomal space and in the acrosomal vesicle. Ca2+-ATPase activity was observed in the acrosomal and plasma membranes of the gamete that suggests the existence of a transport system responsible for maintaining low cytoplasmic Ca2+ levels. The activity of Ca2+-ATPase and the location of Ca2+ deposits in gamete tail would be related to flagellar movement. The colocalization of Ca2+ deposits and their binding proteins in efferent duct cells would probably be associated with secretory activity. Considering that intracellular Ca2+ is present in different gonadal cells, this work would provide a better understanding of the cation importance in the testicular functions of this species.
Collapse
Affiliation(s)
- Lucrecia Iruzubieta-Villagra
- Facultad de Bioquímica, Química y Farmacia, Instituto de Biología, Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
| | - Inés Ramos
- Facultad de Bioquímica, Química y Farmacia, Instituto de Biología, Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
| | - Susana Cisint
- Facultad de Bioquímica, Química y Farmacia, Instituto de Biología, Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
| | - Claudia A Crespo
- Facultad de Bioquímica, Química y Farmacia, Instituto de Biología, Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
| | - Silvia Fernández
- Facultad de Bioquímica, Química y Farmacia, Instituto de Biología, Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán, Chacabuco 461, 4000S.M. de Tucumán, Argentina
| |
Collapse
|
3
|
Wenzhong L, Hualan L. COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells. Immunol Res 2021; 69:496-519. [PMID: 34410575 PMCID: PMC8374125 DOI: 10.1007/s12026-021-09224-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 S protein on the membrane of infected cells can promote receptor-dependent syncytia formation, relating to extensive tissue damage and lymphocyte elimination. In this case, it is challenging to obtain neutralizing antibodies and prevent them through antibodies effectively. Considering that, in the current study, structural domain search methods are adopted to analyze the SARS-CoV-2 S protein to find the fusion mechanism. The results show that after the EF-hand domain of S protein bound to calcium ions, S2 protein had CaMKII protein activities. Besides, the CaMKII_AD domain of S2 changed S2 conformation, facilitating the formation of HR1-HR2 six-helix bundles. Apart from that, the Ca2+-ATPase of S2 pumped calcium ions from the virus cytoplasm to help membrane fusion, while motor structures of S drove the CaATP_NAI and CaMKII_AD domains to extend to the outside and combined the viral membrane and the cell membrane, thus forming a calcium bridge. Furthermore, the phospholipid-flipping-ATPase released water, triggering lipid mixing and fusion and generating fusion pores. Then, motor structures promoted fusion pore extension, followed by the cytoplasmic contents of the virus being discharged into the cell cytoplasm. After that, the membrane of the virus slid onto the cell membrane along the flowing membrane on the gap of the three CaATP_NAI. At last, the HR1-HR2 hexamer would fall into the cytoplasm or stay on the cell membrane. Therefore, the CaMKII_like system of S protein facilitated membrane fusion for further inducing syncytial multinucleated giant cells.
Collapse
Affiliation(s)
- Liu Wenzhong
- School of Computer Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643002, China.
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China.
| | - Li Hualan
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China
| |
Collapse
|
4
|
Beigi Harchegani A, Irandoost A, Mirnamniha M, Rahmani H, Tahmasbpour E, Shahriary A. Possible Mechanisms for The Effects of Calcium Deficiency on Male Infertility. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:267-272. [PMID: 30291684 PMCID: PMC6186280 DOI: 10.22074/ijfs.2019.5420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/29/2018] [Indexed: 01/15/2023]
Abstract
Calcium (Ca) is a significant element that acts as an intracellular second messenger. It is necessary for many physi-
ological processes in spermatozoa including spermatogenesis, sperm motility, capacitation, acrosome reaction and
fertilization. Although influences of Ca deficiency on sperm function and male infertility have been widely studied,
mechanisms for these abnormalities are not well considered. Poor sperm motility, impairment of chemotaxis, capaci-
tation, acrosome reaction and steroidogenesis are the major mechanisms by which Ca deficiency induces male infertil-
ity. Therefore, an optimal seminal Ca concentration is required to strengthen sperm function and all steps leading to
successful fertilization. Furthermore, identification of these mechanisms provides valuable information regarding the
mechanisms of Ca deficiency on male reproductive system and the way for developing a better clinical approach. In
this review, we aim to discuss the proposed cellular and molecular mechanisms of Ca deficiency on male reproductive
system, sperm function and male fertility. Also we will discuss the valuable information currently available for the
roles of Ca in male reproduction.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Irandoost
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdiyeh Mirnamniha
- Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad, Tehran, Iran
| | - Hamid Rahmani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran. Electronic Address:
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
5
|
Vogl W, Lyon K, Adams A, Piva M, Nassour V. The endoplasmic reticulum, calcium signaling and junction turnover in Sertoli cells. Reproduction 2017; 155:R93-R104. [PMID: 29066527 DOI: 10.1530/rep-17-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/12/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) forms a continuous network throughout morphologically differentiated Sertoli cells. It is an integral component of intercellular adhesion junctions in this cell type, as well as forming membrane contact sites with the plasma membrane and intracellular organelles. One of the major functions of the ER in cells generally is maintaining calcium homeostasis and generating calcium signals. In this review, we discuss what is currently known about the overall pattern of distribution of the ER in Sertoli cells and the location of calcium regulatory machinery in the various subdomains of the organelle. Current data are consistent with the hypothesis that calcium signaling by the ER of Sertoli cells may play a significant role in events related to junction remodeling that occur in the seminiferous epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Wayne Vogl
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada .,Department of Obstetrics and GynaecologyUniversity of British Columbia, British Columbia, Canada
| | - Kevin Lyon
- Department of Obstetrics and GynaecologyUniversity of British Columbia, British Columbia, Canada
| | - Arlo Adams
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada
| | - Matthew Piva
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada
| | - Vanessa Nassour
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada
| |
Collapse
|
6
|
Golpour A, Pšenička M, Niksirat H. Ultrastructural Localization of Intracellular Calcium During Spermatogenesis of Sterlet (Acipenser ruthenus). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1155-1161. [PMID: 27866505 DOI: 10.1017/s1431927616011958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Calcium regulates many intracellular events such as growth and differentiation during different stages of gamete development. The aim of this study was to localize and quantify the intracellular distribution of calcium during different developmental stages of spermatogenesis in sterlet, Acipenser ruthenus, using a combined oxalate-pyroantimonate technique. The distribution of calcium was described in spermatogonium, spermatocyte, spermatid, and spermatozoon stages. In the spermatogonium and spermatocyte, calcium deposits were mainly localized in the nucleus and cytoplasm. The spermatid had calcium in the nucleus, developing acrosomal vesicle, and cytoplasm. Intracellular calcium transformed from scattered deposits in spermatogonia and spermatocyte stages into an unbound form in spermatid and the spermatozoon. The proportion of area covered by calcium increased significantly (p<0.05) from early to late stages of spermatogenesis. The largest proportion of area covered by calcium was observed in the nucleus of the spermatozoon. In conclusion, although most of the intracellular calcium is deposited in limited areas of the spermatogonium and spermatocyte, it is present an unbound form in the larger area of spermatids and spermatozoa which probably reflects changes in its physiological function and homeostasis during the process of male gamete production in spermatogenesis.
Collapse
Affiliation(s)
- Amin Golpour
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters,South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses,Research Institute of Fish Culture and Hydrobiology,Zátiší 728/II,389 25 Vodňany,Czech Republic
| | - Martin Pšenička
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters,South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses,Research Institute of Fish Culture and Hydrobiology,Zátiší 728/II,389 25 Vodňany,Czech Republic
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters,South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses,Research Institute of Fish Culture and Hydrobiology,Zátiší 728/II,389 25 Vodňany,Czech Republic
| |
Collapse
|
7
|
Anti-infertility significance of aqueous extract of I pomoea batatas (L.) Lam. against exposure of bisphenol A (BPA) promoted testicular toxicity in male Sprague Dawley rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2013. [DOI: 10.1016/s2305-0500(13)60160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Suliburska J, Bogdański P, Szulińska M. Iron excess disturbs metabolic status and relative gonad mass in rats on high fat, fructose, and salt diets. Biol Trace Elem Res 2013; 151. [PMID: 23179349 PMCID: PMC3548103 DOI: 10.1007/s12011-012-9548-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to assess the metabolic and physiological changes in rats fed a diet high in fat, fructose, and salt, and with excess iron level. Mineral status was also estimated. Wistar rats were assigned to groups fed either a standard control diet (C) or a diet high in fat, fructose, and salt. The noncontrol diets contained either normal (M) or high level (MFe) of iron. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The kidneys and gonads were collected, and blood samples were taken. Serum levels of insulin, nitric oxide, and iron were measured. The iron, zinc, copper, and calcium concentrations of tissues were determined. It was found that the M diet led to a significant increase in the relative kidney mass of the rats compared with the control group. Among the rats fed the M diet, markedly higher serum level of iron and lower levels of zinc and copper were observed in tissues, while significantly higher calcium levels were found in the gonads. The MFe diet resulted in decreased obesity index, insulin level, and nitric oxide serum concentration in the rats, when compared with both the M and C diets. The high iron level in the modified diet increased the relative mass of the gonads. The excess iron level in the diet disturbed the zinc, copper, and calcium status of tissues. The decrease in insulin and nitric oxide in rats fed the diet high in iron, fat, fructose, and salt was associated with disorders of zinc, copper, and calcium status, as well as with an increase in the relative mass of the gonads.
Collapse
Affiliation(s)
- Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland.
| | | | | |
Collapse
|
9
|
|
10
|
Rato L, Socorro S, Cavaco JEB, Oliveira PF. Tubular Fluid Secretion in the Seminiferous Epithelium: Ion Transporters and Aquaporins in Sertoli Cells. J Membr Biol 2010; 236:215-24. [DOI: 10.1007/s00232-010-9294-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 07/20/2010] [Indexed: 01/01/2023]
|
11
|
Peña FJ, Rodríguez Martínez H, Tapia JA, Ortega Ferrusola C, González Fernández L, Macías García B. Mitochondria in mammalian sperm physiology and pathology: a review. Reprod Domest Anim 2008; 44:345-9. [PMID: 19144010 DOI: 10.1111/j.1439-0531.2008.01211.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
While, for a long time, the role of mitochondria in sperm physiology and pathology has been largely ignored, recent research points out the mitochondria as a major organelle with key roles in sperm function both under physiological and biotechnological conditions. This paper briefly reviews these novel findings regarding the role of mitochondria in sperm, paying special attention to the most practical, readily applicable, aspects of the topic such as their role as a major source of the sublethal damage that sperm experiments after cryopreservation.
Collapse
Affiliation(s)
- F J Peña
- Laboratory of Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Feiden S, Wolfrum U, Wegener G, Kamp G. Expression and compartmentalisation of the glycolytic enzymes GAPDH and pyruvate kinase in boar spermatogenesis. Reprod Fertil Dev 2008; 20:713-23. [PMID: 18671919 DOI: 10.1071/rd08004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 05/18/2008] [Indexed: 12/13/2022] Open
Abstract
Boar spermatozoa contain isoforms of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) and pyruvate kinase (PK, EC 2.7.1.40). The sperm-specific forms, GAPDH-S and PK-S, are tightly bound to cell structures. By immunofluorescence microscopy GAPDH-S and PK-S were localised in the principal piece of the boar sperm flagellum as well as in the acrosomal region of the sperm head and at the head-midpiece junction. The midpiece of the flagellum, however, contains isoforms of GAPDH and PK that were only recognised by antibodies against somatic GAPDH and PK, respectively, but not by the antibodies against GAPDH-S and PK-S. In sections of boar testis, GAPDH-S and PK-S were first detected in elongating spermatids when both the developing flagellum and the head were labelled with antibodies against GAPDH-S and PK-S. In contrast, antibodies against rabbit muscle GAPDH and PK labelled all developmental stages of germ cells and also neighbouring contractile cells. Thus, the structure-bound sperm-specific enzymes, GAPDH-S and PK-S, appeared only late in spermatogenesis simultaneously with the development of the structures to which they are bound. Anchoring glycolytic enzymes to structures in these mitochondria-free regions may secure ATP-production for both motility and acrosome function.
Collapse
Affiliation(s)
- Sandra Feiden
- Institute of Zoology, Molecular Physiology Section, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
13
|
Kumosani T, Elshal M, Al-Jonaid A, Abduljabar H. The influence of smoking on semen quality, seminal microelements and Ca2+-ATPase activity among infertile and fertile men. Clin Biochem 2008; 41:1199-203. [DOI: 10.1016/j.clinbiochem.2008.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 06/17/2008] [Accepted: 07/13/2008] [Indexed: 10/21/2022]
|
14
|
Feiden S, Stypa H, Wolfrum U, Wegener G, Kamp G. A novel pyruvate kinase (PK-S) from boar spermatozoa is localized at the fibrous sheath and the acrosome. Reproduction 2007; 134:81-95. [PMID: 17641091 DOI: 10.1530/rep-06-0250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Boar spermatozoa contain a novel pyruvate kinase (PK-S) that is tightly bound at the acrosome of the sperm head and at the fibrous sheath in the principal piece of the flagellum, while the midpiece contains a soluble pyruvate kinase (PK). PK-S could not be solubilized by detergents, but by trypsin with no loss of activity. Purified PK-S as well as PK-S still bound to cell structures and soluble sperm PK have all kinetics similar to those of rabbit muscle PK-M1. The PK-S subunit had a relative molecular mass of 64 +/- 1 x 10(3) (n = 3), i.e. slightly higher than that of PK-M1, and carried an N-terminal extension (NH(2)-TSEAM-COOH) that is lacking in native PK-M1. Evidence is provided that PK-S is encoded by the PKM gene. Antibodies produced against the N-terminus of purified PK-S (NH(2)-TSEAMPKAHMDAG-COOH) were specific for PK-S as they did not react with somatic PKs or soluble sperm PK, while anti-PK-M1 recognized both sperm PKs. Immunofluorescence microscopy showed anti-PK-S to label the acrosome and the flagellar principal piece, whereas the midpiece containing the mitochondria was labelled only by anti-PK-M1. Immunogold labelling confirmed the localization of PK-S at the acrosome. In the principal piece, both polyclonal anti-PK-M1 and anti-PK-S were found at the fibrous sheath. Our results suggest that PK-S is a major component in the structural organization of glycolysis in boar spermatozoa.
Collapse
Affiliation(s)
- Sandra Feiden
- Molecular Physiology Section, Institute of Zoology, Johannes Gutenberg-University, Becherweg 9-11, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|