1
|
Nolano M, Provitera V, Caporaso G, Fasolino I, Borreca I, Stancanelli A, Iuzzolino VV, Senerchia G, Vitale F, Tozza S, Ruggiero L, Iodice R, Ferrari S, Santoro L, Manganelli F, Dubbioso R. Skin innervation across amyotrophic lateral sclerosis clinical stages: new prognostic biomarkers. Brain 2024; 147:1740-1750. [PMID: 38123494 DOI: 10.1093/brain/awad426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Over recent decades, peripheral sensory abnormalities, including the evidence of cutaneous denervation, have been reported among the non-motor manifestations in amyotrophic lateral sclerosis (ALS). However, a correlation between cutaneous innervation and clinical features has not been found. The aims of this study were to assess sensory involvement by applying a morpho-functional approach to a large population of ALS patients stratified according to King's stages and correlate these findings with the severity and prognosis of the disease. We recruited 149 ALS patients and 41 healthy controls. Patients undertook clinical questionnaires for small fibre neuropathy symptoms (Small Fiber Neuropathy Symptoms Inventory Questionnaire) and underwent nerve conductions studies (NCS) and 3-mm punch skin biopsies from leg, thigh and fingertip. We assessed intraepidermal nerve fibre (IENF) and Meissner corpuscle (MC) density by applying an indirect immunofluorescence technique. Moreover, a subset of 65 ALS patients underwent a longitudinal study with repeat biopsies from the thigh at 6- and 12-month follow-ups. Serum NfL levels were measured in 40 patients. Sensory symptoms and sensory NCS abnormalities were present in 32.2% and 24% of patients, respectively, and increased across clinical stages. Analogously, we observed a progressive reduction in amplitude of the sensory and motor ulnar nerve potential from stage 1 to stage 4. Skin biopsy showed a significant loss of IENFs and MCs in ALS compared with healthy controls (all P < 0.001). Across the clinical stages, we found a progressive reduction in MCs (P = 0.004) and an increase in IENFs (all P < 0.027). The increase in IENFs was confirmed by the longitudinal study. Interestingly, the MC density inversely correlated with NfL level (r = -0.424, P = 0.012), and survival analysis revealed that low MC density, higher NfL levels and increasing IENF density over time were associated with a poorer prognosis (all P < 0.024). To summarize, in patients with ALS, peripheral sensory involvement worsens in parallel with motor disability. Furthermore, the correlation between skin innervation and disease activity may suggest the use of skin innervation as a putative prognostic biomarker.
Collapse
Affiliation(s)
- Maria Nolano
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Vincenzo Provitera
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Giuseppe Caporaso
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Ilaria Borreca
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Annamaria Stancanelli
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Valentina V Iuzzolino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Gianmaria Senerchia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Floriana Vitale
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, Verona 37134, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
2
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Pardo LA, Markovic M, Schilling AF, Wilke MA, Ernst J. Vibrotactile mapping of the upper extremity: Absolute perceived intensity is location-dependent; perception of relative changes is not. Front Neurosci 2022; 16:958415. [PMID: 36389225 PMCID: PMC9650933 DOI: 10.3389/fnins.2022.958415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Vibrotactile sensation is an essential part of the sense of touch. In this study, the localized vibrotactile sensation of the arm-shoulder region was quantified in 10 able-bodied subjects. For this analysis, the six relevant dermatomes (C3-T2) and three segments—the lower arm, the upper arm, and the shoulder region were studied. For psychometric evaluation, tasks resulting in the quantification of sensation threshold, just noticeable difference, Weber fraction, and perception of dynamically changing vibrotactile stimuli were performed. We found that healthy subjects could reliably detect vibration in all tested regions at low amplitude (2–6% of the maximal amplitude of commonly used vibrotactors). The detection threshold was significantly lower in the lower arm than that in the shoulder, as well as ventral in comparison with the dorsal. There were no significant differences in Weber fraction (20%) detectable between the studied locations. A compensatory tracking task resulted in a significantly higher average rectified error in the shoulder than that in the upper arm, while delay and correlation coefficient showed no difference between the regions. Here, we presented a conclusive map of the vibrotactile sense of the healthy upper limb. These data give an overview of the sensory bandwidth that can be achieved with vibrotactile stimulation at the arm and may help in the design of vibrotactile feedback interfaces (displays) for the hand/arm/shoulder-region.
Collapse
Affiliation(s)
- Luis A. Pardo
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Luis A. Pardo Jr.
| | - Marko Markovic
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Meike Annika Wilke
- Faculty of Life Sciences, Hamburg University of Applied Sciences (HAW), Hamburg, Germany
| | - Jennifer Ernst
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Trauma Surgery, Medical School Hannover, Hanover, Germany
| |
Collapse
|
4
|
Wala-Zielińska K, Świerczyńska-Mróz K, Krajewski PK, Nowicka-Suszko D, Krajewska M, Szepietowski JC. Elevated Level of Serum Neurotrophin-4, but Not of Brain-Derived Neurotrophic Factor, in Patients with Chronic Kidney Disease-Associated Pruritus. J Clin Med 2022; 11:6292. [PMID: 36362520 PMCID: PMC9653946 DOI: 10.3390/jcm11216292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/03/2023] Open
Abstract
Chronic kidney disease-associated pruritus (CKD-aP) is a bothersome condition that occurs in patients with advanced chronic kidney disease (CKD) and severely reduces their quality of life. Recently, much research has focused on the search for markers that are involved in the pathogenesis of CKD-aP and may become a therapeutic target. One of the suggested hypotheses is the increased activation of sensory neurons by molecules such as neurotrophins (NTs). An increased serum concentration of NTs has been demonstrated in pruritic patients, which may suggest their involvement in the pathogenesis of itch. The purpose of this study is to assess the serum concentration of neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) in hemodialysis patients. The study enrolled 126 patients undergoing dialysis. Participants were divided into 2 groups: with and without CKD-aP. NRS scale was used to evaluate itch severity. Serum levels of NT-4 and BDNF have been assessed using ELISA. The results showed a significantly higher level of NT-4 in the group with pruritus. No significant difference was reported in the serum level of BDNF between the two groups of patients. There was also no correlation between serum NT-4 nor BDNF levels and the severity of pruritus. In summary, NT-4 may play an important role in the pathophysiology of pruritus in dialysis patients. More research is needed to understand the exact mechanism by which NTs influence the pathogenesis of CKD-aP.
Collapse
Affiliation(s)
- Kamila Wala-Zielińska
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Karolina Świerczyńska-Mróz
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Danuta Nowicka-Suszko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
5
|
Rinwa P, Calvo-Enrique L, Zhang MD, Nyengaard JR, Karlsson P, Ernfors P. Demise of nociceptive Schwann cells causes nerve retraction and pain hyperalgesia. Pain 2021; 162:1816-1827. [PMID: 33979318 PMCID: PMC8120683 DOI: 10.1097/j.pain.0000000000002169] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Recent findings indicate that nociceptive nerves are not "free", but similar to touch and pressure sensitive nerves, terminate in an end-organ in mice. This sensory structure consists of the nociceptive nerves and specialized nociceptive Schwann cells forming a mesh-like organ in subepidermis with pain transduction initiated at both these cellular constituents. The intimate relation of nociceptive nerves with nociceptive Schwann cells in mice raises the question whether defects in nociceptive Schwann cells can by itself contribute to pain hyperalgesia, nerve retraction, and peripheral neuropathy. We therefore examined the existence of nociceptive Schwann cells in human skin and their possible contribution to neuropathy and pain hyperalgesia in mouse models. Similar to mouse, human skin contains SOX10+/S100B+/AQP1+ Schwann cells in the subepidermal border that have extensive processes, which are intimately associated with nociceptive nerves projecting into epidermis. The ablation of nociceptive Schwann cells in mice resulted in nerve retraction and mechanical, cold, and heat hyperalgesia. Conversely, ablating the nociceptive nerves led to a retraction of epidermal Schwann cell processes, changes in nociceptive Schwann cell soma morphology, heat analgesia, and mechanical hyperalgesia. Our results provide evidence for a nociceptive sensory end-organ in the human skin and using animal models highlight the interdependence of the nerve and the nociceptive Schwann cell. Finally, we show that demise of nociceptive Schwann cells is sufficient to cause neuropathic-like pain in the mouse.
Collapse
Affiliation(s)
- Puneet Rinwa
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jens Randel Nyengaard
- Department of Clinical Medicine—Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Páll Karlsson
- Department of Clinical Medicine—Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Herpes Simplex Virus 2 Counteracts Neurite Outgrowth Repulsion during Infection in a Nerve Growth Factor-Dependent Manner. J Virol 2020; 94:JVI.01370-20. [PMID: 32669337 PMCID: PMC7527038 DOI: 10.1128/jvi.01370-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration. During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.
Collapse
|
7
|
Sleigh JN, Mech AM, Aktar T, Zhang Y, Schiavo G. Altered Sensory Neuron Development in CMT2D Mice Is Site-Specific and Linked to Increased GlyRS Levels. Front Cell Neurosci 2020; 14:232. [PMID: 32848623 PMCID: PMC7431706 DOI: 10.3389/fncel.2020.00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Dominant, missense mutations in the widely and constitutively expressed GARS1 gene cause peripheral neuropathy that usually begins in adolescence and principally impacts the upper limbs. Caused by a toxic gain-of-function in the encoded glycyl-tRNA synthetase (GlyRS) enzyme, the neuropathology appears to be independent of the canonical role of GlyRS in aminoacylation. Patients display progressive, life-long weakness and wasting of muscles in hands followed by feet, with frequently associated deficits in sensation. When dysfunction is observed in motor and sensory nerves, there is a diagnosis of Charcot-Marie-Tooth disease type 2D (CMT2D), or distal hereditary motor neuropathy type V if the symptoms are purely motor. The cause of this varied sensory involvement remains unresolved, as are the pathomechanisms underlying the selective neurodegeneration characteristic of the disease. We have previously identified in CMT2D mice that neuropathy-causing Gars mutations perturb sensory neuron fate and permit mutant GlyRS to aberrantly interact with neurotrophin receptors (Trks). Here, we extend this work by interrogating further the anatomy and function of the CMT2D sensory nervous system in mutant Gars mice, obtaining several key results: (1) sensory pathology is restricted to neurons innervating the hindlimbs; (2) perturbation of sensory development is not common to all mouse models of neuromuscular disease; (3) in vitro axonal transport of signaling endosomes is not impaired in afferent neurons of all CMT2D mouse models; and (4) Gars expression is selectively elevated in a subset of sensory neurons and linked to sensory developmental defects. These findings highlight the importance of comparative neurological assessment in mouse models of disease and shed light on key proposed neuropathogenic mechanisms in GARS1-linked neuropathy.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - Aleksandra M. Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tahmina Aktar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yuxin Zhang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, United Kingdom
| |
Collapse
|
8
|
Gostynska N, Pannella M, Rocco ML, Giardino L, Aloe L, Calzà L. The pleiotropic molecule NGF regulates the in vitro properties of fibroblasts, keratinocytes, and endothelial cells: implications for wound healing. Am J Physiol Cell Physiol 2019; 318:C360-C371. [PMID: 31774700 DOI: 10.1152/ajpcell.00180.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerve growth factor (NGF) is recognized as a pleiotropic molecule, exerting a variety of biological effects on different cell types and pathophysiological conditions, and its role in tissue wound healing has been recently highlighted. However, the preferential cellular target of NGF is still elusive in the complex cellular and molecular cross talk that accompanies wound healing. Thus, to explore possible NGF cellular targets in skin wound healing, we investigated the in vitro NGF responsiveness of keratinocytes (cell line HEKa), fibroblasts (cell line BJ), and endothelial cells (cell line HUVEC), also in the presence of adverse microenvironmental conditions, e.g., hyperglycemia. The main results are summarized as follows: 1) NGF stimulates keratinocyte proliferation and HUVEC proliferation and angiogenesis in a dose-dependent manner although it has no effect on fibroblast proliferation; 2) NGF stimulates keratinocyte but not fibroblast migration in the wound healing assay; and 3) NGF completely reverts the proliferation impairment of keratinocytes and the angiogenesis impairment of HUVECs induced by high d-glucose concentration in the culture medium. These results contribute to better understanding possible targets for the therapeutic use of NGF in skin repair.
Collapse
Affiliation(s)
- N Gostynska
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy
| | - M Pannella
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy
| | - M L Rocco
- IRET Foundation, Ozzano dell'Emilia, Italy
| | - L Giardino
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - L Aloe
- IRET Foundation, Ozzano dell'Emilia, Italy
| | - L Calzà
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
9
|
García-Piqueras J, García-Mesa Y, Cárcaba L, Feito J, Torres-Parejo I, Martín-Biedma B, Cobo J, García-Suárez O, Vega JA. Ageing of the somatosensory system at the periphery: age-related changes in cutaneous mechanoreceptors. J Anat 2019; 234:839-852. [PMID: 30924930 DOI: 10.1111/joa.12983] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Decline of tactile sensation associated with ageing depends on modifications in skin and both central and peripheral nervous systems. At present, age-related changes in the periphery of the somatosensory system, particularly concerning the effects on mechanoreceptors, remain unknown. Here we used immunohistochemistry to analyse the age-dependent changes in Meissner's and Pacinian corpuscles as well as in Merkel cell-neurite complexes. Moreover, variations in the neurotrophic TrkB-BDNF system and the mechanoprotein Piezo2 (involved in maintenance of cutaneous mechanoreceptors and light touch, respectively) were evaluated. The number of Meissner's corpuscles and Merkel cells decreased progressively with ageing. Meissner's corpuscles were smaller, rounded in morphology and located deeper in the dermis, and signs of corpuscular denervation were found in the oldest subjects. Pacinian corpuscles generally showed no relevant age-related alterations. Reduced expression of Piezo2 in the axon of Meissner's corpuscles and in Merkel cells was observed in old subjects, as well was a decline in the BDNF-TrkB neurotrophic system. This study demonstrates that cutaneous Meissner's corpuscles and Merkel cell-neurite complexes (and less evidently Pacinian corpuscles) undergo morphological and size changes during the ageing process, as well as a reduction in terms of density. Furthermore, the mechanoprotein Piezo2 and the neurotrophic TrkB-BDNF system are reduced in aged corpuscles. Taken together, these alterations might explain part of the impairment of the somatosensory system associated with ageing.
Collapse
Affiliation(s)
- Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Lucia Cárcaba
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Isidro Torres-Parejo
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
10
|
George DS, Anderson WA, Sommerhage F, Willenberg AR, Hines RB, Bosak AJ, Willenberg BJ, Lambert S. Bundling of axons through a capillary alginate gel enhances the detection of axonal action potentials using microelectrode arrays. J Tissue Eng Regen Med 2019; 13:385-395. [PMID: 30636354 DOI: 10.1002/term.2793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/25/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022]
Abstract
Microelectrode arrays (MEAs) have become important tools in high throughput assessment of neuronal activity. However, geometric and electrical constraints largely limit their ability to detect action potentials to the neuronal soma. Enhancing the resolution of these systems to detect axonal action potentials has proved both challenging and complex. In this study, we have bundled sensory axons from dorsal root ganglia through a capillary alginate gel (Capgel™) interfaced with an MEA and observed an enhanced ability to detect spontaneous axonal activity compared with two-dimensional cultures. Moreover, this arrangement facilitated the long-term monitoring of spontaneous activity from the same bundle of axons at a single electrode. Finally, using waveform analysis for cultures treated with the nociceptor agonist capsaicin, we were able to dissect action potentials from multiple axons on an individual electrode, suggesting that this model can reproduce the functional complexity associated with sensory fascicles in vivo. This novel three-dimensional functional model of the peripheral nerve can be used to study the functional complexities of peripheral neuropathies and nerve regeneration as well as being utilized in the development of novel therapeutics.
Collapse
Affiliation(s)
- Dale S George
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Wesley A Anderson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Frank Sommerhage
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Alicia R Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Robert B Hines
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Alexander J Bosak
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Bradley J Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.,Saisijin Biotech LLC, St. Cloud, FL, USA
| | - Stephen Lambert
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
11
|
Olson W, Dong P, Fleming M, Luo W. The specification and wiring of mammalian cutaneous low-threshold mechanoreceptors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:389-404. [PMID: 26992078 DOI: 10.1002/wdev.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Abstract
The mammalian cutaneous low-threshold mechanoreceptors (LTMRs) are a diverse set of primary somatosensory neurons that function to sense external mechanical force. Generally, LTMRs are composed of Aβ-LTMRs, Aδ-LTMRs, and C-LTMRs, which have distinct molecular, physiological, anatomical, and functional features. The specification and wiring of each type of mammalian cutaneous LTMRs is established during development by the interplay of transcription factors with trophic factor signalling. In this review, we summarize the cohort of extrinsic and intrinsic factors generating the complex mammalian cutaneous LTMR circuits that mediate our tactile sensations and behaviors. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Cabrera JR, Viejo-Borbolla A, Martinez-Martín N, Blanco S, Wandosell F, Alcamí A. Secreted herpes simplex virus-2 glycoprotein G modifies NGF-TrkA signaling to attract free nerve endings to the site of infection. PLoS Pathog 2015; 11:e1004571. [PMID: 25611061 PMCID: PMC4303327 DOI: 10.1371/journal.ppat.1004571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 11/12/2014] [Indexed: 12/26/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and HSV-2 are highly prevalent viruses that cause a variety of diseases, from cold sores to encephalitis. Both viruses establish latency in peripheral neurons but the molecular mechanisms facilitating the infection of neurons are not fully understood. Using surface plasmon resonance and crosslinking assays, we show that glycoprotein G (gG) from HSV-2, known to modulate immune mediators (chemokines), also interacts with neurotrophic factors, with high affinity. In our experimental model, HSV-2 secreted gG (SgG2) increases nerve growth factor (NGF)-dependent axonal growth of sympathetic neurons ex vivo, and modifies tropomyosin related kinase (Trk)A-mediated signaling. SgG2 alters TrkA recruitment to lipid rafts and decreases TrkA internalization. We could show, with microfluidic devices, that SgG2 reduced NGF-induced TrkA retrograde transport. In vivo, both HSV-2 infection and SgG2 expression in mouse hindpaw epidermis enhance axonal growth modifying the termination zone of the NGF-dependent peptidergic free nerve endings. This constitutes, to our knowledge, the discovery of the first viral protein that modulates neurotrophins, an activity that may facilitate HSV-2 infection of neurons. This dual function of the chemokine-binding protein SgG2 uncovers a novel strategy developed by HSV-2 to modulate factors from both the immune and nervous systems.
Collapse
Affiliation(s)
- Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigaciones Biologicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Nadia Martinez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigaciones Biologicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Langerhans cells regulate cutaneous innervation density and mechanical sensitivity in mouse footpad. Neurosci Lett 2014; 578:55-60. [PMID: 24970748 DOI: 10.1016/j.neulet.2014.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/26/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022]
Abstract
Langerhans cells are epidermal dendritic cells responsible for antigen presentation during an immune response. Langerhans cells associate intimately with epidermal sensory axons. While there is evidence that Langerhans cells may produce neurotrophic factors, a role in regulating cutaneous innervation has not been established. We used genetically engineered mice in which the diphtheria toxin (DT) receptor is targeted to Langerhans cells (Lang-DTR mice) to assess sensory axon-dendritic cell interactions. Diphtheria toxin administration to wild type mice did not affect epidermal structure, Langerhans cell content, or innervation density. A DT administration regimen supramaximal for completely ablating epidermal Langerhans cells in Lang-DTR mice reduced PGP 9.5-immunoreactive total innervation and calcitonin gene related peptide-immunoreactive peptidergic nociceptor innervation. Quantitative real-time polymerase chain reaction showed that epidermal gene expression of brain derived neurotrophic factor was unchanged, but nerve growth factor and glial cell line-derived neurotrophic factor mRNAs were reduced. Behavioral testing showed that, while thermal sensitivity was unaffected, mice depleted of Langerhans cells displayed mechanical hypersensitivity. These findings provide evidence that Langerhans cells play an important role in determining cutaneous sensory innervation density and mechanical sensitivity. This may involve alterations in neurotrophin production by Langerhans or other epidermal cells, which in turn may affect mechanical sensitivity directly or as a result of neuropathic changes.
Collapse
|
14
|
Fleming MS, Luo W. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. ACTA ACUST UNITED AC 2013; 8. [PMID: 24376457 DOI: 10.1007/s11515-013-1271-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Touch sensation is critical for our social and environmental interactions. In mammals, most discriminative light touch sensation is mediated by the Aβ low-threshold mechanoreceptors. Cell bodies of Aβ low-threshold mechanoreceptors are located in the dorsal root ganglia and trigeminal ganglia, which extend a central projection innervating the spinal cord and brain stem and a peripheral projection innervating the specialized mechanosensory end organs. These specialized mechanosensory end organs include Meissner's corpuscles, Pacinian corpuscles, lanceolate endings, Merkel cells, and Ruffini corpuscles. The morphologies and physiological properties of these mechanosensory end organs and their innervating neurons have been investigated for over a century. In addition, recent advances in mouse genetics have enabled the identification of molecular mechanisms underlying the development of Aβ low-threshold mechanoreceptors, which highlight the crucial roles of neurotrophic factor signaling and transcription factor activity in this process. Here, we will review the anatomy, physiological properties, and development of mammalian low-threshold Aβ mechanoreceptors.
Collapse
Affiliation(s)
- Michael S Fleming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
15
|
Myers MI, Peltier AC, Li J. Evaluating dermal myelinated nerve fibers in skin biopsy. Muscle Nerve 2013; 47:1-11. [PMID: 23192899 PMCID: PMC3528842 DOI: 10.1002/mus.23510] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 11/07/2022]
Abstract
Although there has been extensive research on small, unmyelinated fibers in the skin, little research has investigated dermal myelinated fibers in comparison. Glabrous, nonhairy skin contains mechanoreceptors that afford a vantage point for observation of myelinated fibers that have previously been seen only with invasively obtained nerve biopsies. This review discusses current morphometric and molecular expression data of normative and pathogenic glabrous skin obtained by various processing and analysis methods for cutaneous myelinated fibers. Recent publications have shed light on the role of glabrous skin biopsy in identifying signs of peripheral neuropathy and as a potential biomarker of distal myelin and mechanoreceptor integrity. The clinical relevance of a better understanding of the role of dermal myelinated nerve terminations in peripheral neuropathy will be addressed in light of recent publications in the growing field of skin biopsy.
Collapse
Affiliation(s)
- M. Iliza Myers
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | | | - Jun Li
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN, USA
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Frias B, Lopes T, Pinto R, Cruz F, Cruz CD. Neurotrophins in the lower urinary tract: becoming of age. Curr Neuropharmacol 2012; 9:553-8. [PMID: 22654715 PMCID: PMC3263451 DOI: 10.2174/157015911798376253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 01/23/2023] Open
Abstract
The lower urinary tract (LUT) comprises a storage unit, the urinary bladder, and an outlet, the urethra. The coordination between the two structures is tightly controlled by the nervous system and, therefore, LUT function is highly susceptible to injuries to the neuronal pathways involved in micturition control. These injuries may include lesions to the
spinal cord or to nerve fibres and result in micturition dysfunction. A common trait of micturition pathologies, irrespective of its origin, is an upregulation in synthesis and secretion of neurotrophins, most notably Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF). These neurotrophins are produced by neuronal and non-neuronal cells and exert their effects upon binding to their high-affinity receptors abundantly expressed in the neuronal circuits regulating
LUT function. In addition, NGF and BDNF are present in detectable amounts in the urine of patients suffering from various LUT pathologies, suggesting that analysis of urinary NGF and BDNF may serve as likely biomarkers to be studied in tandem with other factors when diagnosing patients. Studies with experimental models of bladder dysfunction
using antagonists of NGF and BDNF receptors as well as scavenging agents suggest that those NTs may be key elements in the pathophysiology of bladder dysfunctions. In addition, available data indicates that NGF and BDNF might constitute future targets for designing new drugs for better treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Bárbara Frias
- Department of Experimental Biology, Faculty of Medicine of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|
17
|
Truzzi F, Marconi A, Pincelli C. Neurotrophins in healthy and diseased skin. DERMATO-ENDOCRINOLOGY 2011; 3:32-6. [PMID: 21519407 PMCID: PMC3051851 DOI: 10.4161/derm.3.1.14661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/16/2022]
Abstract
Neurotrophins (NT) belong to a family of structurally and functionally related proteins that, depending on the tissue context and the receptors involved, promote either neuronal cell survival and differentiation or cell death. NT, and in particular NGF, were first identified as neurotrophic factors supporting the synthesis and development of sensory neurons in the central and peripheral nervous system. It is now widely accepted that NT also act as growth factors in non-neuronal cells, including the skin. In the skin, most cell types are able to secrete and/or to respond to stimulation by NT, creating a unique network of molecular signaling in the cutaneous microenvironment. Moreover, many skin diseases have been associated with an involvement of a number of neural factors including NT, but less attention has been given to the role of NT as growth factors in the development of skin pathologies. This review summarizes currently data on the expression and function of NT and their receptors in several cell types in the skin. Moreover it focuses on the role of the skin NT network in two cutaneous conditions, melanoma and psoriasis where NT are clearly involved.
Collapse
Affiliation(s)
- Francesca Truzzi
- Institute of Dermatology; School of Biosciences and Biotechnologies; University of Modena and Reggio Emilia; Modena, Italy
| | | | | |
Collapse
|
18
|
García-Cosamalón J, del Valle ME, Calavia MG, García-Suárez O, López-Muñiz A, Otero J, Vega JA. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 2010; 217:1-15. [PMID: 20456524 DOI: 10.1111/j.1469-7580.2010.01227.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs.
Collapse
|