1
|
Manivasagam VK, Popat KC. Improved Hemocompatibility on Superhemophobic Micro-Nano-Structured Titanium Surfaces. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010043. [PMID: 36671615 PMCID: PMC9855096 DOI: 10.3390/bioengineering10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Blood-contacting titanium-based implants such as endovascular stents and heart valve casings are prone to blood clotting due to improper interactions at the surface level. In complement, the current clinical demand for cardiovascular implants is at a new apex. Hence, there is a crucial necessity to fabricate an implant with optimal mechanical properties and improved blood compatibility, while simultaneously interacting differentially with cells and other microbial agents. The present study intends to develop a superhydrophobic implant surface with the novel micro-nano topography, developed using a facile thermochemical process. The surface topography, apparent contact angle, and crystal structure are characterized on different surfaces. The hemo/blood compatibility on different surfaces is assessed by evaluating hemolysis, fibrinogen adsorption, cell adhesion and identification, thrombin generation, complement activation, and whole blood clotting kinetics. The results indicate that the super-hemo/hydrophobic micro-nano titanium surface improved hemocompatibility by significantly reducing fibrinogen adsorption, platelet adhesion, and leukocyte adhesion. Thus, the developed surface has high potential to be used as an implant. Further studies are directed towards analyzing the mechanisms causing the improved hemocompatibility of micro/nano surface features under dynamic in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Vignesh K. Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence:
| |
Collapse
|
2
|
Qi H, Shi M, Ni Y, Mo W, Zhang P, Jiang S, Zhang Y, Deng X. Size-Confined Effects of Nanostructures on Fibronectin-Induced Macrophage Inflammation on Titanium Implants. Adv Healthc Mater 2021; 10:e2100994. [PMID: 34196125 DOI: 10.1002/adhm.202100994] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 01/01/2023]
Abstract
Macrophage activation determines the fate of biomaterials implantation. Though researches have shown that fibronectin (FN) is highly involved in integrin-induced macrophage activation on biomaterials, the mechanism of how nanosized structure affects macrophage behavior is still unknown. Here, titanium dioxide nanotube structures with different sizes are fabricated to investigate the effects of nanostructure on macrophage activation. Compared with larger sized nanotubes and smooth surface, 30 nm nanotubes exhibit considerable lesser pro-inflammatory properties on macrophage differentiation. Confocal protein observation and molecular dynamics simulation show that FN displays conformation changes on different nanotubes in a feature of "size-confined," which causes the hiding of Arg-Gly-Asp (RGD) domain on other surfaces. The matching size of nanotube with FN allows the maximum exposure of RGD on 30 nm nanotubes, activating integrin-mediated focal adhesion kinase (FAK)-phosphatidylinositol-3 kinase γ (PI3Kγ) pathway to inhibit nuclear factor kappa B (NF-κB) signaling. In conclusion, this study explains the mechanism of nanostructural-biological signaling transduction in protein and molecular levels, as well as proposes a promising strategy for surface modification to regulate immune responses on bioimplants.
Collapse
Affiliation(s)
- Haoning Qi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 P. R. China
| | - Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 P. R. China
| | - Yueqi Ni
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 P. R. China
| | - Wenting Mo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 P. R. China
| | - Peng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 P. R. China
| | - Shuting Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 P. R. China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 P. R. China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 P. R. China
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology NMPA Key Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
| |
Collapse
|
3
|
Manivasagam V, Popat KC. In Vitro Investigation of Hemocompatibility of Hydrothermally Treated Titanium and Titanium Alloy Surfaces. ACS OMEGA 2020; 5:8108-8120. [PMID: 32309720 PMCID: PMC7161035 DOI: 10.1021/acsomega.0c00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 06/01/2023]
Abstract
For decades, titanium and its alloys have been established as a biocompatible material for cardiovascular medical devices such as heart valves, stents, vascular grafts, catheters, etc. However, thrombosis is one of the reasons for implant failure, where blood clot forms on the implant surface, thus obstructing the flow of the blood and that leads to some serious complications. Various surface modification techniques such as heparin modification, albumin coating, surface anodization, plasma etching, and hydrothermal treatments have been explored to improve the hemocompatibility of titanium-based materials. However, there are several limitations related to the robustness of the surfaces and long-term efficacy in vivo. In this study, titanium and its alloy Ti-6Al-4V were hydrothermally treated to form nanostructured surfaces with the aim to enhance their hemocompatibility. These modified surfaces were characterized for their wettability, surface morphology, surface chemistry, and crystallinity. The hemocompatibility of these surfaces was characterized by evaluating blood plasma protein adsorption, platelet adhesion and activation, platelet-leukocyte complex formation, and whole blood clotting. The results indicate lower fibrinogen adsorption, cell adhesion, platelet activation, and whole blood clotting on hydrothermally treated surfaces. Thus, these surfaces may be a promising approach to prevent thrombosis for several titanium blood-contacting medical devices.
Collapse
Affiliation(s)
- Vignesh
K. Manivasagam
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Advanced Materials Discovery, Colorado
State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Nanoporous Anodic Alumina for Drug Delivery and Biomedical Applications. NANOPOROUS ALUMINA 2015. [DOI: 10.1007/978-3-319-20334-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Sinn Aw M, Kurian M, Losic D. Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci 2014; 2:10-34. [DOI: 10.1039/c3bm60196j] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Yin W, Lu H, Leventis N, Rubenstein DA. Characterization of the Biocompatibility and Mechanical Properties of Polyurea Organic Aerogels with the Vascular System: Potential as a Blood Implantable Material. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.698339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Sokolov A, Hellerud BC, Tønnessen TI, Johannessen EA, Mollnes TE. Activation of coagulation and platelets by candidate membranes of implantable devices in a whole blood model without soluble anticoagulant. J Biomed Mater Res A 2012; 101:575-81. [PMID: 22949225 DOI: 10.1002/jbm.a.34348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 02/01/2023]
Abstract
Implantable devices are challenged with thrombus formation at their biomaterial interface. Thus the importance of identifying compatible biomaterials that will help to improve the performance of these devices are becoming increasingly paramount. The aim of this study was to evaluate the activation of coagulation and platelets by candidate membranes considered for use in implantable devices on the basis of an adapted whole blood model without soluble anticoagulants. Evaluated materials were incubated with whole blood without soluble anticoagulant in wells coated with heparin. Prothrombin fragment 1+2 (PTF 1+2), thrombin-antithrombin complex (TAT), and β-thromboglobulin (BTG) were analyzed in plasma samples using enzyme immunoassays. The C5 inhibitor eculizumab was used to evaluate the role of complement. Incubation of two of the polyamide membranes PAR and PATF led to an increase in concentration of PTF 1+2 and TAT (p < 0.01 for PAR, ns for PATF). The BTG concentration was significantly increased for five materials [PAR, PATF, polycarbonate (PC), and two polyarylethersulphone membranes PAES-1 and PAES-2]. Complement inhibition had no effect on coagulation or platelet activation induced by PAR and PATF. In conclusion, PAR and PATF were not compatible with blood and should be avoided for use in implantable devices.
Collapse
Affiliation(s)
- A Sokolov
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, P.O. 4950, Nydalen 0424 Oslo, Norway.
| | | | | | | | | |
Collapse
|
8
|
Ekdahl KN, Lambris JD, Elwing H, Ricklin D, Nilsson PH, Teramura Y, Nicholls IA, Nilsson B. Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev 2011; 63:1042-50. [PMID: 21771620 PMCID: PMC3166435 DOI: 10.1016/j.addr.2011.06.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/13/2011] [Accepted: 06/25/2011] [Indexed: 01/28/2023]
Abstract
When an artificial biomaterial (e.g., a stent or implantable pump) is exposed to blood, plasma proteins immediately adhere to the surface, creating a new interface between the biomaterial and the blood. The recognition proteins within the complement and contact activation/coagulation cascade systems of the blood will be bound to, or inserted into, this protein film and generate different mediators that will activate polymorphonuclear leukocytes and monocytes, as well as platelets. Under clinical conditions, the ultimate outcome of these processes may be thrombotic and inflammatory reactions, and consequently the composition and conformation of the proteins in the initial layer formed on the surface will to a large extent determine the outcome of a treatment involving the biomaterial, affecting both the functionality of the material and the patient's life quality. This review presents models of biomaterial-induced activation processes and describes various strategies to attenuate potential adverse reactions by conjugating bioactive molecules to surfaces or by introducing nanostructures.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Dept of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, Roy S. Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng 2011; 39:1296-305. [PMID: 21287275 PMCID: PMC3069312 DOI: 10.1007/s10439-011-0256-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/18/2011] [Indexed: 11/24/2022]
Abstract
Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable biomedical devices. We report the results of hemocompatibility studies using bare silicon, polysilicon, and modified silicon substrates. The surface modifications tested have been shown to reduce protein and/or platelet adhesion, thus potentially improving biocompatibility of silicon. Hemocompatibility was evaluated under four categories—coagulation (thrombin–antithrombin complex, TAT generation), complement activation (complement protein, C3a production), platelet activation (P-selectin, CD62P expression), and platelet adhesion. Our tests revealed that all silicon substrates display low coagulation and complement activation, comparable to that of Teflon and stainless steel, two materials commonly used in medical implants, and significantly lower than that of diethylaminoethyl (DEAE) cellulose, a polymer used in dialysis membranes. Unmodified silicon and polysilicon showed significant platelet attachment; however, the surface modifications on silicon reduced platelet adhesion and activation to levels comparable to that on Teflon. These results suggest that surface-modified silicon substrates are viable for the development of miniaturized renal replacement systems.
Collapse
Affiliation(s)
- Lalitha Muthusubramaniam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| | - Rachel Lowe
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
| | - William H. Fissell
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH USA
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH USA
| | - Lingyan Li
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH USA
| | - Roger E. Marchant
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| |
Collapse
|