1
|
Liver Regeneration: Changes in Oxidative Stress, Immune System, Cytokines, and Epigenetic Modifications Associated with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9018811. [PMID: 35936214 PMCID: PMC9352489 DOI: 10.1155/2022/9018811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023]
Abstract
The regenerative capacity of the liver decreases with increase in age. In recent years, studies in mice have found that the regenerative capacity of the liver is associated with changes in the immune system of the liver, cytokines in the body, aging-related epigenetic modifications in the cell, and intracellular signaling pathways. In the immune system of the aging liver, monocytes and macrophages play an important role in tissue repair. During tissue repair, monocytes and macrophages undergo a series of functional and phenotypic changes to initiate and maintain tissue repair. Studies have discovered that knocking out macrophages in the liver during the repair phase results in significant impairment of liver regeneration. Furthermore, as the body ages, the secretion and function of cytokines undergo a series of changes. For example, the levels of interleukin-6, transforming growth factor-alpha, hepatocyte growth factor, and vascular endothelial growth factor undergo changes that alter hepatocyte regulation, thereby affecting its proliferation. In addition, body aging is accompanied by cellular aging, which leads to changes in gene expression and epigenetic modifications. Additionally, this in turn causes alterations in cell function, morphology, and division and affects the regenerative capacity of the liver. As the body ages, the activity of associated functional proteins, such as CCAAT-enhancer-binding proteins, p53, and switch/sucrose nonfermentable complex, changes in the liver, leading to alterations in several signaling pathways, such as the Hippo, PI3K-Akt, mTOR, and STAT3 pathways. Therefore, in recent years, research on aging and liver regeneration has primarily focused on the immune system, signaling pathways, epigenetic changes of senescent cells, and cytokine secretion in the liver. Hence, this review details the roles of these influencing factors in liver regeneration and impact of aging-related factors.
Collapse
|
2
|
Zhou Y, Wang Q, Deng H, Xu B, Zhou Y, Liu J, Liu Y, Shi Y, Zheng X, Jiang J. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m 6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis 2022; 13:72. [PMID: 35064107 PMCID: PMC8782929 DOI: 10.1038/s41419-022-04503-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is the fifth most common tumor and the third most deadly cancer worldwide. N6-methyladenosine (m6A) modification has been reported to play a regulatory role in human cancers. However, the exact role of m6A in GC remains largely unknown, and the dysregulation of m6A on mitochondrial metabolism has never been studied. In the present study, we demonstrated that FTO, a key demethylase for RNA m6A modification, was up-regulated in GC tissues, especially in tissues with liver metastasis. Functionally, FTO acted as a promoter for the proliferation and metastasis in GC. Moreover, FTO enhanced the degradation of caveolin-1 mRNA via its demethylation, which regulated the mitochondrial fission/fusion and metabolism. Collectively, our current findings provided some valuable insights into FTO-mediated m6A demethylation modification and could be used as a new strategy for more careful surveillance and aggressive therapeutic intervention.
Collapse
Affiliation(s)
- You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Qi Wang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Haifeng Deng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Bin Xu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Yi Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Jian Liu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Yingting Liu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, 215123, China
| | - Xiao Zheng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China.
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China.
| | - Jingting Jiang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China.
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China.
| |
Collapse
|
3
|
Single-cell RNA-seq reveals novel mitochondria-related musculoskeletal cell populations during adult axolotl limb regeneration process. Cell Death Differ 2021; 28:1110-1125. [PMID: 33116295 PMCID: PMC7937690 DOI: 10.1038/s41418-020-00640-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
While the capacity to regenerate tissues or limbs is limited in mammals, including humans, axolotls are able to regrow entire limbs and major organs after incurring a wound. The wound blastema has been extensively studied in limb regeneration. However, due to the inadequate characterization of ECM and cell subpopulations involved in the regeneration process, the discovery of the key drivers for human limb regeneration remains unknown. In this study, we applied large-scale single-cell RNA sequencing to classify cells throughout the adult axolotl limb regeneration process, uncovering a novel regeneration-specific mitochondria-related cluster supporting regeneration through energy providing and the ECM secretion (COL2+) cluster contributing to regeneration through cell-cell interactions signals. We also discovered the dedifferentiation and re-differentiation of the COL1+/COL2+ cellular subpopulation and exposed a COL2-mitochondria subcluster supporting the musculoskeletal system regeneration. On the basis of these findings, we reconstructed the dynamic single-cell transcriptome of adult axolotl limb regenerative process, and identified the novel regenerative mitochondria-related musculoskeletal populations, which yielded deeper insights into the crucial interactions between cell clusters within the regenerative microenvironment.
Collapse
|
4
|
Mahdy MM, El-Ekiaby NM, Hashish RM, Salah RA, Hanafi RS, El-Said Azzazy HM, Abdelaziz AI. miR-29a Promotes Lipid Droplet and Triglyceride Formation in HCV Infection by Inducing Expression of SREBP-1c and CAV1. J Clin Transl Hepatol 2016; 4:293-299. [PMID: 28097097 PMCID: PMC5225148 DOI: 10.14218/jcth.2016.00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023] Open
Abstract
Aims: To examine the regulation of SREBP-1c and CAV1 by microRNA-29a (miR-29a) in cells infected with hepatitis C virus (HCV) in an attempt to control HCV-induced non-alcoholic fatty liver disease. Methods: In order to examine the manipulation of SREBP-1c and CAV1 by miR-29a, oleic acid (OA)-treated JFH-I-infected Huh-7 cells were used. OA was added 24 h post-transfection and gene expression was investigated by qRT-PCR at 48 h post treatment. The functional impact of the observed alteration in SREBP-1c and CAV1 expression was analyzed by examining lipid droplet (LD) and triglyceride (TG) content at 72 h post-OA treatment using light microscopy and spectrophotometry, respectively. Viral load was quantified by qRT-PCR at 72 h post-transfection. Results: OA treatment induced the expression of miR-29a and SREBP-1c, as compared to untreated cells. Forced miR-29a expression led to a significant up-regulation of SREBP-1c as well as CAV1 compared to mock untransfected cells. Ectopic expression of miR-29a resulted in a marked increase in LDs and their respective TGs, while miR-29a antagomirs decreased both the LD and TG content compared to mock untransfected cells. Moreover, forcing the expression of miR-29a in JFH-1 HCV-infected Huh-7 cells resulted in 53% reduction in viral titers compared to mock untransfected Huh-7 cells. Conclusion: Inducing miR-29a expression significantly induces SREBP-1c and CAV1 expression, thereby increasing LDs as well as their respective TGs. Nonetheless, forcing the expression of miR-29a resulted in reduction of HCV RNA levels in Huh-7 cells.
Collapse
Affiliation(s)
| | - Nada Magdy El-Ekiaby
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Egypt
- School of Medicine, NewGiza University, Cairo, Egypt
| | - Rana Mahmoud Hashish
- Department of Pharmaceutical Biology, German University in Cairo, New Cairo City, Egypt
| | - Radwa Ayman Salah
- Department of Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Rasha Sayed Hanafi
- Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Egypt
| | | | - Ahmed Ihab Abdelaziz
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Egypt
- School of Medicine, NewGiza University, Cairo, Egypt
- *Correspondence to: Ahmed Ihab Abdelaziz, Department of Molecular Medicine, School of Medicine, Newgiza University, Cairo 11431, Egypt. Tel: +20-238277847, E-mail:
| |
Collapse
|
5
|
Lopedota A, Cutrignelli A, Laquintana V, Denora N, Iacobazzi RM, Perrone M, Fanizza E, Mastrodonato M, Mentino D, Lopalco A, Depalo N, Franco M. Spray Dried Chitosan Microparticles for Intravesical Delivery of Celecoxib: Preparation and Characterization. Pharm Res 2016; 33:2195-208. [PMID: 27245467 DOI: 10.1007/s11095-016-1956-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE Chitosan microparticles containing celecoxib (CB), were developed as chemoprevention of bladder cancer. Furthermore two inclusion complexes of CB with methyl-β-cyclodextrin (C1 and C2) were prepared to improve the solubility of the drug. METHODS C1 and C2 were obtained by freeze-drying and characterized in the solid state and in solution. Microparticles loaded with CB or C1 or C2 were prepared by spray drying and fully characterized. RESULTS The yield and encapsulation efficiencies of microparticles depended by both the viscosity and the presence of the inclusion complex in the feed medium nebulised. Generally, the microparticles exhibited a spherical shape with mean diameter of approximately 2 μm which was compatible with local intravesical administration using a catheter. The CB release studies from the microparticles allowed us to identify both immediate release systems (microparticles including the complexes) and prolonged release systems (microparticles including CB alone). The latter exhibited good adhesion to the bladder mucosa, as highlighted by a mucoadhesion study. Histological studies revealed a desquamation of the superficial cells when the bladder mucosa was treated with microparticles loaded with CB, while the morphology of the urothelium did not change when it was treated with microparticles loaded with the inclusion complex. CONCLUSION A new CB intravesical formulation than can easily be administered with a catheter and is able to release the drug at the target site for several hours was realized. This new delivery system could be a good alternative to classic oral CB administration.
Collapse
Affiliation(s)
- Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 Orabona Street, 70125, Bari, Italy.
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 Orabona Street, 70125, Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 Orabona Street, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 Orabona Street, 70125, Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 Orabona Street, 70125, Bari, Italy.,Istituto Tumori IRCCS Giovanni Paolo II, Bari, Italy
| | - Mara Perrone
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 Orabona Street, 70125, Bari, Italy
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy.,CNR-Institute for Physical and Chemical Processes UOS, Bari, Italy
| | - Maria Mastrodonato
- Department of Biology, Section of Animal and Environmental Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Donatella Mentino
- Department of Biology, Section of Animal and Environmental Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Lopalco
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Nicoletta Depalo
- CNR-Institute for Physical and Chemical Processes UOS, Bari, Italy
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 Orabona Street, 70125, Bari, Italy
| |
Collapse
|
6
|
Wang Y, Tong J, Chang B, Wang BF, Zhang D, Wang BY. Effects of ethanol on the expression of caveolin-1 in HepG2 cells. Mol Med Rep 2015; 11:4409-13. [PMID: 25651074 DOI: 10.3892/mmr.2015.3296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/09/2014] [Indexed: 11/05/2022] Open
Abstract
This study aimed to investigate the effects of ethanol on the expression of caveolin‑1 (CAV‑1) in HepG2 hepatocarcinoma cells. Ethanol‑treated HepG2 cells were investigated using the in vitro model to determine whether ethanol can influence the expression of CAV‑1. Cell viability was measured using the colorimetric 3‑(4, 5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Expression of CAV‑1 was detected using western blot analysis. Quantitative PCR (qPCR) was used to determine CAV‑1 mRNA levels. The distribution of CAV‑1 in HepG2 cells was analyzed using immunofluorescence. The MTT assay results revealed that cell viability was not altered at ethanol concentrations of <1.0%, while ethanol concentrations >1.0% caused cell shedding, but not cell fragmentation. Western blot analysis showed significant differences in the levels of CAV‑1 expression between the control group and the 1.0% ethanol‑treated group at 6, 12 and 24 h (all P<0.05). qPCR showed significant differences in the expression levels of caveolin‑1 mRNA between the control group and the 1.0% ethanol‑treated group at 6 h, 12 h and 24 h (all P<0.05). Immunofluorescence demonstrated that CAV‑1 was distributed discontinuously at the boundaries of HepG2 cells. The results indicate that ethanol may increase the expression of CAV‑1 in HepG2 cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jing Tong
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bai-Fang Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dai Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bing-Yuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
7
|
Mentino D, Mastrodonato M, Rossi R, Scillitani G. Histochemical and structural characterization of egg extra-cellular matrix in bufonid toads, Bufo bufo and Bufotes balearicus: molecular diversity versus morphological uniformity. Microsc Res Tech 2014; 77:910-7. [PMID: 25091902 DOI: 10.1002/jemt.22414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022]
Abstract
The extra-cellular matrix of fertilized eggs in the bufonid toads Bufo bufo and Bufotes balearicus was studied to clear the relationships between structural and molecular diversity. Histochemical (PAS, AB pH 2.5 and pH 1.0, Beta-elimination PAS) and lectin-histochemical (Con A, WGA, Succinyl-WGA, PNA, RCA-1, DBA, SBA, AAA, UEA-I, LTA) techniques were used and the observations were made under light and electron microscopy. Both species present a fertilization envelope (FE) and two jelly layers (J1 and J2). The fibers of J2 are shared among the eggs of a clutch in a jelly ribbon. The FE of both species presents neutral glycoproteins, mostly N-linked. In B. bufo there are also residuals of mannose and/or glucose and N-acetylglucosamine. In the FE fibers run parallel to egg's surface or are in bundles or looser hanks with no clear orientation. The J1 layer of both species presents sialosulfoglycoproteins, mostly O-linked, with lactosaminylated, galactosaminylated, glycosaminylated, and fucosylated residuals. A lower amount of galactosaminylated residuals is observed in B. balearicus in respect to B. bufo, whereas the opposite is seen in the amount of fucosylated residuals. The J2 layer is similar in composition to J1 but in B. balearicus there are no glucosaminylated residuals. J layers present fibers and granules that reduce towards J2 . Several microorganisms, in particular blue algae, are observed in the J2 layer of both species. In respect to other species, B. bufo and B. balearicus have a lower number of jelly layers, but a comparable number of glycan types.
Collapse
Affiliation(s)
- Donatella Mentino
- Department of Biology, Section of Animal and Environmental Biology, Laboratory of Histology and Comparative Anatomy, University of Bari, I-70125, Bari, Italy
| | | | | | | |
Collapse
|
8
|
High-fat diet alters the oligosaccharide chains of colon mucins in mice. Histochem Cell Biol 2014; 142:449-59. [PMID: 24770665 DOI: 10.1007/s00418-014-1221-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
Abstract
Mucins are high molecular weight epithelial proteins, strongly glycosylated, and are the main component of the mucus. Since mucus secretion can be altered in diseases, colon mucins can be regarded as a biomarker of chronic inflammatory bowel diseases or preneoplastic changes. Conventional histochemistry and lectin histochemistry combined with chemical treatment and enzymatic digestion were carried out to analyze the colon mucins in mice fed a high-fat diet for 25 weeks, a period sufficient to induce simple liver steatosis, to check whether the carbohydrate features of mucus can be altered by an inadequate diet. An increase in the sialo/sulfomucins ratio with respect to control mice, assessed by computerized image analysis, was observed in the colon, although differences in sialic acid acetylation between control and mice fed a high-fat diet were not found. High-fat diet was also associated with altered lectin-binding pattern of the mucus, with a probable shortening of oligosaccharide chains of glycoproteins. This pattern was leading to over-expression of Galβ1,3GalNAc terminal dimers (TF antigen) and GalNAc terminal residues (Tn antigen). This altered composition of mucins can be related to a defect in the process of glycosylation, or to incomplete maturation of goblet cells, and may be an early indication of preneoplastic and neoplastic changes. In conclusion, our findings confirm that a fatty-rich diet (Western-style diet) induces alteration of mucins and may be associated with colon diseases. Our investigation corroborates the usefulness of lectins histochemistry in the early diagnosis of prepathological states of the colon.
Collapse
|
9
|
Liu M, Zhu JG, Yu ZB, Song GX, Shen YH, Liu YQ, Zhu C, Qian LM. Identification of differentially expressed genes involved in transient regeneration of the neonatal C57BL/6J mouse heart by digital gene expression profiling. Mol Med Rep 2014; 9:2111-6. [PMID: 24699800 PMCID: PMC4055482 DOI: 10.3892/mmr.2014.2109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/12/2014] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has revealed that the mammalian heart possesses a measurable capacity for renewal. Neonatal mice retain a regenerative capacity over a short time-frame (≤6 days), but this capacity is lost by 7 days of age. In the present study, differential gene expression profiling of mouse cardiac tissue was performed to further elucidate the mechanisms underlying this process. The global gene expression patterns of the neonatal C57BL/6J mouse heart were examined at three key time-points (1, 6 and 7 days old) using digital gene expression analysis. In the distribution of total clean tags, high-expression tags (>100 copies) were found to be predominant, whereas low expression tags (<5 copies) occupied the majority of distinct tag distributions. In total, 306 differentially expressed genes (DEGs) were detected in cardiac tissue, with the expression levels of 115 genes upregulated and those of 191 genes downregulated in 7-day-old mice compared with expression levels in 1- and 6-day-old mice, respectively. The expression levels of five DEGs were confirmed using quantitative polymerase chain reaction. Gene ontology analysis revealed a large proportion of DEGs distributed throughout the cell, and these DEGs were associated with binding as well as catalytic, hydrolase, transferase and molecular transducer activities. Furthermore, these genes were involved in cellular, metabolic and developmental processes, as well as biological regulation and signaling pathways. Pathway analysis identified the oxidative phosphorylation pathway to be the process most significantly putatively affected by the differential expression of these genes. These data provide the basis for future analysis of the gene expression patterns that regulate the molecular mechanism of cardiac regeneration.
Collapse
Affiliation(s)
- Ming Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin-Gai Zhu
- Department of Pediatrics, Department of ICU, Nanjing Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Zhang-Bin Yu
- Department of Pediatrics, Department of ICU, Nanjing Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Gui-Xian Song
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ya-Hui Shen
- State Key Laboratory of Reproductive Medicine, Department of ICU, Nanjing Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Yao-Qiu Liu
- State Key Laboratory of Reproductive Medicine, Department of ICU, Nanjing Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chun Zhu
- Department of Pediatrics, Department of ICU, Nanjing Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Ling-Mei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
10
|
Cheville NF. Ultrastructural pathology and interorganelle cross talk in hepatotoxicity. Toxicol Pathol 2013; 41:210-26. [PMID: 23344891 DOI: 10.1177/0192623312467402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondria, endoplasmic reticulum (ER), cytoplasmic lipid droplets (CLD), and Golgi vesicles use cross talk to control hepatocyte metabolism, growth, and stress. Interpretation of ultrastructural change requires knowledge of how cross talk pathways function, how differential activation of hepatocellular signals influences organelle structure, and how organelles position themselves to become central hubs for stress responses. Mitochondria, by coupling energy production to pathways for protection, form critical platforms for innate signaling. Mitochondrial outer and inner membranes activate channels and signals to translocate peptides that drive oxidative phosphorylation, β-oxidation of fatty acids, and calcium ion (Ca(2+)) flux. In cell stress, mitochondrial signals initiate fusion and fission, reactive oxygen species (ROS) control, autophagy, apoptosis, and senescence. Specialized tethering proteins tie mitochondria to ER to support translocation of metabolites. For Ca(2+) translocation, ER pores are connected to mitochondrial voltage-dependent anion channels, and for mitochondrial fission, unique membrane proteins pull ER to mitochondria. In toxic injury, cytosolic cytokines translocate to alter metabolism. Toxic effects on ER lipid synthesis lead to Golgi vesicle reduplication and transport of perilipin and other protein cargos into CLDs. How cellular proteostasis, oxidative homeostasis, and ion balance are maintained depend upon the effectiveness of mitochondrial ROS defense responses, unfolded protein responses in mitochondria and ER, and other organelle defenses.
Collapse
Affiliation(s)
- Norman F Cheville
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50010, USA.
| |
Collapse
|