1
|
Taner F, Baddal B, Theodoridis L, Petrovski S. Biofilm Production in Intensive Care Units: Challenges and Implications. Pathogens 2024; 13:954. [PMID: 39599508 PMCID: PMC11597785 DOI: 10.3390/pathogens13110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of infections amongst intensive care unit (ICU) patients is inevitably high, and the ICU is considered the epicenter for the spread of multidrug-resistant bacteria. Multiple studies have focused on the microbial diversity largely inhabiting ICUs that continues to flourish despite treatment with various antibiotics, investigating the factors that influence the spread of these pathogens, with the aim of implementing sufficient monitoring and infection control methods. Despite joint efforts from healthcare providers and policymakers, ICUs remain a hub for healthcare-associated infections. While persistence is a unique strategy used by these pathogens, multiple other factors can lead to persistent infections and antimicrobial tolerance in the ICU. Despite the recognition of the detrimental effects biofilm-producing pathogens have on ICU patients, overcoming biofilm formation in ICUs continues to be a challenge. This review focuses on various facets of ICUs that may contribute to and/or enhance biofilm production. A comprehensive survey of the literature reveals the apparent need for additional molecular studies to assist in understanding the relationship between biofilm regulation and the adaptive behavior of pathogens in the ICU environment. A better understanding of the interplay between biofilm production and antibiotic resistance within the environmental cues exhibited particularly by the ICU may also reveal ways to limit biofilm production and indivertibly control the spread of antibiotic-resistant pathogens in ICUs.
Collapse
Affiliation(s)
- Ferdiye Taner
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus;
- DESAM Research Institute, Near East University, 99138 Nicosia, Cyprus
| | - Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus;
- DESAM Research Institute, Near East University, 99138 Nicosia, Cyprus
| | - Liana Theodoridis
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (L.T.); (S.P.)
| | - Steve Petrovski
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (L.T.); (S.P.)
| |
Collapse
|
2
|
Al-Sayed MF, Tarek El-Wakad M, Hassan MA, Soliman AM, Eldesoky AS. Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study. Gels 2023; 9:gels9050414. [PMID: 37233005 DOI: 10.3390/gels9050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is a common and genuine complication in fundamentally sick patients accepting mechanical ventilation. Silver nitrate sol-gel (SN) has been proposed as a potential preventative measure against VAP. Be that as it may, the arrangement of SN with distinctive concentrations and pH values remains a basic factor influencing its effectiveness. METHODS Silver nitrate sol-gel was arranged with distinctive concentrations (0.1852%, 0.03496%, 0.1852%, and 0.01968%) and pH values (8.5, 7.0, 8.0, and 5.0) separately. The antimicrobial action of the silver nitrate and NaOH arrangements were assessed against Escherichia coli as a reference strain. The thickness and pH of the arrangements were measured, and biocompatibility tests were performed on the coating tube. The auxiliary changes in the endotracheal tube (ETT) tests after treatment were analyzed utilizing electron microscopy (SEM) and transmission electron microscopy (TEM). RESULTS The pH estimations of the diverse arrangements showed that the pH values shifted depending on the test conditions, with pH values extending from 5.0 to 8.5. The consistency estimations of the arrangements showed that the thickness values expanded as the pH values drew closer to 7.5 and diminished when the pH values went over 7.5. The antimicrobial action of the silver nitrate and NaOH arrangements were successful against Escherichia coli, with microbial checks decreasing in concentration (0.03496%, 0.1852% (pH: 8), and 0.01968%). The biocompatibility tests revealed tall cell reasonability rates, demonstrating that the coating tube was secure for therapeutic utilization and did not hurt typical cells. The SEM and TEM investigation gave visual proof of the antibacterial impacts of the silver nitrate and NaOH arrangements on the bacterial surface or interior of the bacterial cells. Moreover, the investigation revealed that a concentration of 0.03496% was the foremost successful in hindering the development of ETT bacterial colonization at the nanoscale level. CONCLUSIONS We propose that cautious control and alteration of the pH and thickness of the arrangements are essential to guaranteeing the reproducibility and quality of the sol-gel materials. The silver nitrate and NaOH arrangements may serve as a potential preventative degree against VAP in sick patients, with a concentration of 0.03496% appearing to show the most elevated viability. The coating tube may serve as a secure and viable preventative measure against VAP in sick patients. Further investigation is required to optimize the concentration and introduction time of the arrangements to maximize their adequacy in avoiding VAP in real-world clinical settings.
Collapse
Affiliation(s)
- Manar Fathy Al-Sayed
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
- Department of Biomedical Engineering, Higher Technological Institute, Cairo 11511, Egypt
| | | | - Mohammed A Hassan
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
| | - Ahmed M Soliman
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
| | - Amal S Eldesoky
- Department of Biomedical Engineering, Higher Technological Institute, Cairo 11511, Egypt
| |
Collapse
|
3
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
4
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
5
|
Latorre MC, Pérez-Granda MJ, Savage PB, Alonso B, Martín-Rabadán P, Samaniego R, Bouza E, Muñoz P, Guembe M. Endotracheal tubes coated with a broad-spectrum antibacterial ceragenin reduce bacterial biofilm in an in vitro bench top model. J Antimicrob Chemother 2021; 76:1168-1173. [PMID: 33544817 DOI: 10.1093/jac/dkab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. OBJECTIVES We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). METHODS We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. RESULTS The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0-3.3 × 102) versus 3.32 × 109 (6.6 × 108-3.8 × 109), P < 0.001; 0.0 (0.0-5.4 × 103) versus 1.32 × 106 (2.3 × 103-5.0 × 107), P < 0.001; and 8.1 × 105 (8.5 × 101-1.4 × 109) versus 2.7 × 108 (8.6 × 106-1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5-not applicable (NA)] versus 87.9 (60.5-NA), P = 0.05; 9.1 (6.7-NA) versus 62.6 (42.0-NA), P = 0.05; and 97.7 (94.6-NA) versus 187.3 (43.9-NA), P = 0.827. CONCLUSIONS We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.
Collapse
Affiliation(s)
- María Consuelo Latorre
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Jesús Pérez-Granda
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Beatriz Alonso
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Martín-Rabadán
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES, (CB06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Confocal Laser Scanning Microscopy Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES, (CB06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES, (CB06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
6
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Photoinactivation of Staphylococci with 405 nm Light in a Trachea Model with Saliva Substitute at 37 °C. Healthcare (Basel) 2021; 9:healthcare9030310. [PMID: 33799642 PMCID: PMC7998829 DOI: 10.3390/healthcare9030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023] Open
Abstract
The globally observed rise in bacterial resistance against antibiotics has increased the need for alternatives to antibiotic treatments. The most prominent and important pathogen bacteria are the ESKAPE pathogens, which include among others Staphylococcus aureus, Klebsiella pneumoniae and Acinetobacter baumannii. These species cause ventilator-associated pneumonia (VAP), which accounts for 24% of all nosocomial infections. In this study we tested the efficacy of photoinactivation with 405 nm violet light under conditions comparable to an intubated patient with artificial saliva for bacterial suspension at 37 °C. A technical trachea model was developed to investigate the visible light photoinactivation of Staphylococcus carnosus as a non-pathogen surrogate of the ESKAPE pathogen S. aureus (MRSA). The violet light was coupled into the tube with a fiber optic setup. The performed tests proved, that photoinactivation at 37 °C is more effective with a reduction of almost 3 log levels (99.8%) compared to 25 °C with a reduction of 1.2 log levels. The substitution of phosphate buffered saline (PBS) by artificial saliva solution slightly increased the efficiency during the experimental course. The increased efficiency might be caused by a less favorable environment for bacteria due to for example the ionic composition.
Collapse
|
8
|
Oliveira VC, Macedo AP, Melo LDR, Santos SB, Hermann PRS, Silva-Lovato CH, Paranhos HFO, Andrade D, Watanabe E. Bacteriophage Cocktail-Mediated Inhibition of Pseudomonas aeruginosa Biofilm on Endotracheal Tube Surface. Antibiotics (Basel) 2021; 10:78. [PMID: 33467548 PMCID: PMC7830274 DOI: 10.3390/antibiotics10010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Although different strategies to control biofilm formation on endotracheal tubes have been proposed, there are scarce scientific data on applying phages for both removing and preventing Pseudomonas aeruginosa biofilms on the device surface. Here, the anti-biofilm capacity of five bacteriophages was evaluated by a high content screening assay. We observed that biofilms were significantly reduced after phage treatment, especially in multidrug-resistant strains. Considering the anti-biofilm screens, two phages were selected as cocktail components, and the cocktail's ability to prevent colonization of the endotracheal tube surface was tested in a dynamic biofilm model. Phage-coated tubes were challenged with different P. aeruginosa strains. The biofilm growth was monitored from 24 to 168 h by colony forming unit counting, metabolic activity assessment, and biofilm morphology observation. The phage cocktail promoted differences of bacterial colonization; nonetheless, the action was strain dependent. Phage cocktail coating did not promote substantial changes in metabolic activity. Scanning electron microscopy revealed a higher concentration of biofilm cells in control, while tower-like structures could be observed on phage cocktail-coated tubes. These results demonstrate that with the development of new coating strategies, phage therapy has potential in controlling the endotracheal tube-associated biofilm.
Collapse
Affiliation(s)
- Viviane C. Oliveira
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Ana P. Macedo
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Luís D. R. Melo
- Centre of Biological Engineering—CEB, University of Minho, 4710-057 Braga, Portugal; (L.D.R.M.); (S.B.S.)
| | - Sílvio B. Santos
- Centre of Biological Engineering—CEB, University of Minho, 4710-057 Braga, Portugal; (L.D.R.M.); (S.B.S.)
| | - Paula R. S. Hermann
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
- Department of Nursing, University of Brasília, Distrito Federal, Brasília 72220-275, Brazil
| | - Cláudia H. Silva-Lovato
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Helena F. O. Paranhos
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil; (A.P.M.); (C.H.S.-L.); (H.F.O.P.)
| | - Denise Andrade
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, São Paulo 14040-904, Brazil; (V.C.O.); (P.R.S.H.); (D.A.)
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto, São Paulo 14040-904, Brazil
| |
Collapse
|
9
|
Pérez-Granda MJ, Alonso B, Zavala R, Latorre MC, Hortal J, Samaniego R, Bouza E, Muñoz P, Guembe M. Selective digestive decontamination solution used as "lock therapy" prevents and eradicates bacterial biofilm in an in vitro bench-top model. Ann Clin Microbiol Antimicrob 2020; 19:44. [PMID: 32972419 PMCID: PMC7513905 DOI: 10.1186/s12941-020-00387-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Most preventing measures for reducing ventilator-associated pneumonia (VAP) are based mainly on the decolonization of the internal surface of the endotracheal tubes (ETTs). However, it has been demonstrated that bacterial biofilm can also be formed on the external surface of ETTs. Our objective was to test in vitro the efficacy of selective digestive decontamination solution (SDDs) onto ETT to prevent biofilm formation and eradicate preformed biofilms of three different microorganisms of VAP. Methods We used an in vitro model in which we applied, at the subglottic space of ETT, biofilms of either P. aeruginosa ATCC 15442, or E. coli ATCC 25922, or S. aureus ATCC 29213, and the SDDs at the same time (prophylaxis) or after 72 h of biofilm forming (treatment). ETT were incubated during 5 days with a regimen of 2 h-locks. ETT fragments were analyzed by sonication and confocal laser scanning microscopy to calculate the percentage reduction of cfu and viable cells, respectively. Results Median (IQR) percentage reduction of live cells and cfu/ml counts after treatment were, respectively, 53.2% (39.4%—64.1%) and 100% (100%–100.0%) for P. aeruginosa, and 67.9% (46.7%–78.7%) and 100% (100%–100.0%) for E. coli. S. aureus presented a complete eradication by both methods. After prophylaxis, there were absence of live cells and cfu/ml counts for all microorganisms. Conclusions SDDs used as “lock therapy” in the subglottic space is a promising prophylactic approach that could be used in combination with the oro-digestive decontamination procedure in the prevention of VAP.
Collapse
Affiliation(s)
- María Jesús Pérez-Granda
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain
| | - Beatriz Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, Madrid, 28007, Spain.
| | - Ricardo Zavala
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Consuelo Latorre
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Javier Hortal
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,Confocal Laser Scanning Microscopy Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Emilio Bouza
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, Madrid, 28007, Spain.
| |
Collapse
|
10
|
Seitz AP, Schumacher F, Baker J, Soddemann M, Wilker B, Caldwell CC, Gobble RM, Kamler M, Becker KA, Beck S, Kleuser B, Edwards MJ, Gulbins E. Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia. J Mol Med (Berl) 2019; 97:1195-1211. [PMID: 31222488 PMCID: PMC6647234 DOI: 10.1007/s00109-019-01800-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP. KEY MESSAGES: Novel dip-coating method to coat plastic surfaces with lipids. Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface. Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms. Sphingosine coatings of endotracheal tubes induce killing of pathogens. Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Aaron P Seitz
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way ML 0558, Cincinnati, OH, 45267, USA.
| | - Fabian Schumacher
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jennifer Baker
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way ML 0558, Cincinnati, OH, 45267, USA
| | - Matthias Soddemann
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Charles C Caldwell
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way ML 0558, Cincinnati, OH, 45267, USA.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, 45229, USA
| | - Ryan M Gobble
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way ML 0558, Cincinnati, OH, 45267, USA
| | - Markus Kamler
- Thoracic Transplantation, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Sascha Beck
- Orthopedic Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Michael J Edwards
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way ML 0558, Cincinnati, OH, 45267, USA
| | - Erich Gulbins
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way ML 0558, Cincinnati, OH, 45267, USA. .,Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
11
|
Suzuki H, Matsuo K, Okamoto M, Nakata H, Sakamoto H, Fujita M. Perioperative changes in oral bacteria number in patients undergoing cardiac valve surgery. J Oral Sci 2019; 61:526-528. [DOI: 10.2334/josnusd.18-0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hitomi Suzuki
- Department of Dentistry and Oral-Maxillofacial Surgery, School of Medicine, Fujita Health University
- Division of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences
- Department of Dentistry and Oral-Maxillofacial Surgery, Fujita Health University Hospital
| | - Koichiro Matsuo
- Department of Dentistry and Oral-Maxillofacial Surgery, School of Medicine, Fujita Health University
| | - Mieko Okamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, School of Medicine, Fujita Health University
| | - Haruka Nakata
- Department of Dentistry and Oral-Maxillofacial Surgery, School of Medicine, Fujita Health University
- Division of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences
- Department of Dentistry and Oral-Maxillofacial Surgery, Fujita Health University Hospital
| | - Hitomi Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Fujita Health University Hospital
| | - Mirai Fujita
- Department of Dentistry and Oral-Maxillofacial Surgery, Fujita Health University Hospital
| |
Collapse
|
12
|
Muramatsu K, Matsuo K, Kawai Y, Yamamoto T, Hara Y, Shimomura Y, Yamashita C, Nishida O. Comparison of wiping and rinsing techniques after oral care procedures in critically ill patients during endotracheal intubation and after extubation: A prospective cross-over trial. Jpn J Nurs Sci 2018; 16:80-87. [PMID: 29947119 DOI: 10.1111/jjns.12217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/07/2018] [Accepted: 04/03/2018] [Indexed: 11/28/2022]
Abstract
AIM Endotracheal intubation of critically ill patients increases the risk of aspiration pneumonia, which can be reduced by regular oral care. However, the rinsing of the residual oral contaminants after mechanical cleaning carries the risk of aspirating the residue during the intubation period. Removing the contaminants by wiping with mouth wipes could be an alternative to rinsing with water because of no additional fluid. This study tested: (i) the amount of oral bacteria during endotracheal intubation and after extubation; and (ii) the changes in the bacterial count during oral care procedures. METHODS Thirty-five mechanically ventilated patients in the intensive care unit were enrolled. The amount of bacteria on the dorsal tongue surface was counted before and following oral care and then after the elimination of contaminants either by rinsing with water and suctioning or by wiping with mouth wipes. The oral bacterial amount was compared statistically between the intubation and extubation status and among set time points during the oral care procedure. RESULTS The oral bacterial count was significantly decreased after extubation. During the oral care procedure, the oral bacterial amount was significantly lower after eliminating the contaminants either by rinsing or wiping, with no remarkable difference between the elimination techniques. CONCLUSIONS The findings suggest that the oral bacterial amount is elevated during endotracheal intubation, which could increase the risk of aspiration pneumonia. The significant reduction in the bacterial count by wiping indicates that it might be a suitable alternative to rinsing for mechanically ventilated patients.
Collapse
Affiliation(s)
- Keita Muramatsu
- Department of Intensive Care Unit Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Koichiro Matsuo
- Department of Dentistry and Oral-Maxillofacial Surgery, Fujita Health University, Toyoake, Japan
| | - Yusuke Kawai
- Department of Intensive Care Unit Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Tsukasa Yamamoto
- Department of Intensive Care Unit Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, Toyoake, Japan
| | - Yasuyo Shimomura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, Toyoake, Japan
| | - Chizuru Yamashita
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, Toyoake, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
13
|
Endotracheal Tube Biofilm and its Impact on the Pathogenesis of Ventilator-Associated Pneumonia. ACTA ACUST UNITED AC 2018; 4:50-55. [PMID: 30581995 PMCID: PMC6294989 DOI: 10.2478/jccm-2018-0011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Ventilator-associated pneumonia (VAP) is a common and serious nosocomial infection in mechanically ventilated patients and results in high mortality, prolonged intensive care unit- (ICU) and hospital-length of stay and increased costs. In order to reduce its incidence, it is imperative to better understand the involved mechanisms and to identify the source of infection. The role of the endotracheal tube (ET) in VAP pathogenesis became more prominent over the last decades, along with extensive research dedicated to medical device-related infections and biofilms. ET biofilm formation is an early and constant process in intubated patients. New data regarding its temporal dynamics, composition, germ identification and consequences enhance knowledge about VAP occurrence, microbiology, treatment response and recurrence. This paper presents a structured analysis of the medical literature to date, in order to outline the role of ET biofilm in VAP pathogenesis and to review recommended methods to identify ET biofilm microorganisms and to prevent or decrease VAP incidence.
Collapse
|
14
|
Batista OMA, Monteiro RM, Machado MB, Ferreira AM, Valle ARMDC, Watanabe E, Madeiro MZDA, Moura MEB. Cateter urinário: o tempo de exposição e calibre podem influenciar na formação de biofilme? ACTA PAUL ENFERM 2018. [DOI: 10.1590/1982-0194201800074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Objetivo: Avaliar a influência do tempo de exposição e calibre na formação de biofilme em cateteres urinários de Foley (CUFs). Método: Pesquisa in vitro com amostras de fragmentos de CUFs em látex siliconizado de diferentes calibres (n° 14 e n° 16 Frenchs). A urina artificial foi confeccionada, inoculada com bactérias-padrão Staphylococcus aureus (ATCC 25923) e Pseudomonas aeruginosa (ATCC 27853) e incubada a 37 °C por 24 horas e 72 horas. As análises foram realizadas por meio de cultura (carga bacteriana) e microscopia eletrônica de varredura. Resultados: Não houve diferença na carga bacteriana dos biofilmes formados nas superfícies dos CUFs com relação aos diferentes calibres (p > 0,05). Por outro lado, o tempo de exposição (24 horas e 72 horas) foi o fator determinante para formação do biofilme de P. aeruginosa nos CUFs (p < 0,05). Conclusão: O tempo de exposição influenciou a formação do biofilme de P. aeruginosa nos CUFs, independentemente dos calibres.
Collapse
Affiliation(s)
| | | | | | | | | | - Evandro Watanabe
- Universidade de São Paulo, Brasil; Universidade de São Paulo, Brasil
| | | | | |
Collapse
|
15
|
Sousa ÁFLD, Marques DM, Monteiro RM, Queiroz AAFL, Andrade D, Watanabe E. Prevenção da formação de biofilmes em marcapassos artificiais: é viável? ACTA PAUL ENFERM 2017. [DOI: 10.1590/1982-0194201700085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Objetivo: Identificar os agentes antimicrobianos utilizados na prevenção da formação de biofilme em marcapassos artificiais. Métodos: Revisão da literatura para responder a seguinte questão: “Quais agentes antimicrobianos são usados para prevenir a formação de biofilmes em marcapassos artificiais?” As bases de dados PubMed, Web of Science, Scopus, Science Direct, Cochrane, CINAHL, Embase e LILACS foram consultadas em todos os idiomas sem restrição de tempo. Resultados: A amostra final apresentou cinco estudos primários, sendo a maioria experimental. As investigações identificaram agentes com potencial para a redução ou inibição da formação de biofilmes em marcapassos. Destacou-se a associação de agentes físico-químicos e farmacológicos aos agentes antimicrobianos. Conclusão: A prevenção da formação de biofilmes em marcapassos é viável. Os agentes mais promissores para obter este efeito foram a rifampicina, AIGIS®, a formulação aquosa neobactrim e a cobertura com trimetilsilano e oxigênio em superfícies tratadas com plasma.
Collapse
|
16
|
Role of Oral Health in Dysphagic Stroke Recovery. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016. [DOI: 10.1007/s40141-016-0135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Aguilera Xiol E, Li Bassi G, Wyncoll D, Ntoumenopoulos G, Fernandez-Barat L, Marti JD, Comaru T, De Rosa F, Rigol M, Rinaudo M, Ferrer M, Torres A. Tracheal tube biofilm removal through a novel closed-suctioning system: an experimental study. Br J Anaesth 2016; 115:775-83. [PMID: 26475806 DOI: 10.1093/bja/aev340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tracheal tube biofilm develops during mechanical ventilation. We compared a novel closed-suctioning system vs standard closed-suctioning system in the prevention of tracheal tube biofilm. METHODS Eighteen pigs, on mechanical ventilation for 76 h, with P. aeruginosa pneumonia were randomized to be tracheally suctioned via the KIMVENT* closed-suctioning system (control group) or a novel closed-suctioning system (treatment group), designed to remove tracheal tube biofilm through saline jets and an inflatable balloon. Upon autopsy, two tracheal tube hemi-sections were dissected for confocal and scanning electron microscopy. Biofilm area, maximal and minimal thickness were computed. Biofilm stage was assessed. RESULTS Sixteen animals were included in the final analysis. In the treatment and control group, the mean (sd) pulmonary burden was 3.34 (1.28) and 4.17 (1.09) log cfu gr(-1), respectively (P=0.18). Tracheal tube P. aeruginosa colonization was 5.6 (4.9-6.3) and 6.2 (5.6-6.9) cfu ml(-1) (median and interquartile range) in the treatment and control group, respectively (P=0.23). In the treatment group, median biofilm area was 3.65 (3.22-4.21) log10 μm2 compared with 4.49 (4.27-4.52) log10 μm2 in the control group (P=0.031). In the treatment and control groups, the maximal biofilm thickness was 48.3 (26.7-71.2) µm (median and interquartile range) and 88.8 (43.8-125.7) µm, respectively. The minimal thickness in the treatment and control group was 0.6 (0-4.0) µm and 23.7 (5.3-27.8) µm (P=0.040) (P=0.017). Earlier stages of biofilm development were found in the treatment group (P<0.001). CONCLUSIONS The novel CSS reduces biofilm accumulation within the tracheal tube. A clinical trial is required to confirm these findings and the impact on major outcomes.
Collapse
Affiliation(s)
- E Aguilera Xiol
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - G Li Bassi
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain University of Barcelona, Barcelona, Spain
| | - D Wyncoll
- Critical Care Unit, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - G Ntoumenopoulos
- Critical Care Unit, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom Physiotherapy Department, Guy's & St Thomas' NHS Foundation Trust, United Kingdom School of Physiotherapy, Australian Catholic University, North Sydney Campus, North Sydney, Australia
| | - L Fernandez-Barat
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - J D Marti
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - T Comaru
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - F De Rosa
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain University of Milan, Milan, Italy
| | - M Rigol
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain Department of Cardiology, Hospital Clinic, Barcelona, Spain
| | - M Rinaudo
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain
| | - M Ferrer
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain University of Barcelona, Barcelona, Spain
| | - A Torres
- Department of Pulmonary and Critical Care Medicine, Division of Animal Experimentation, Thorax Institute, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Mallorca, Spain University of Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Giri K, Yepes LR, Duncan B, Parameswaran PK, Yan B, Jiang Y, Bilska M, Moyano DF, Thompson M, Rotello VM, Prakash YS. Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Adv 2015; 5:105551-105559. [PMID: 26877871 PMCID: PMC4748853 DOI: 10.1039/c5ra16305f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacterial biofilms are associated with persistent infections that are resistant to conventional antibiotics and substantially complicate patient care. Surface engineered nanoparticles represent a novel, unconventional approach for disruption of biofilms and targeting of bacterial pathogens. Herein, we describe the role of surface charge of gold nanoparticles (AuNPs) on biofilm disruption and bactericidal activity towards Staphylococcus aureus and Pseudomonas aeruginosa which are important ventilator associated pneumonia (VAP) pathogens. In addition, we study the toxicity of charged AuNPs on human bronchial epithelial cells. While 100% positively charged AuNP surface was uniformly toxic to both bacteria and epithelial cells, reducing the extent of positive charge on the AuNP surface at moderate concentrations prevented epithelial cell toxicity. Reducing surface charge was however also less effective in killing bacteria. Conversely, increasing AuNP concentration while maintaining a low level of positivity continued to be bactericidal and disrupt the bacterial biofilm and was less cytotoxic to epithelial cells. These initial in vitro studies suggest that modulation of AuNP surface charge could be used to balance effects on bacteria vs. airway cells in the context of VAP, but the therapeutic window in terms of concentration vs. surface positive charge may be limited. Additional factors such as hydrophobicity may need to be considered in order to design AuNPs with specific, beneficial effects on bacterial pathogens and their biofilms.
Collapse
Affiliation(s)
- Karuna Giri
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1 St SW, Rochester, MN 55905
| | - Laura Rivas Yepes
- Department of Anesthesiology, Mayo Clinic, 200 1 St SW, Rochester, MN 55905; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 1 St SW, Rochester, MN 55905
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | | | - Bo Yan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ying Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Marcela Bilska
- Department of Anesthesiology, Mayo Clinic, 200 1 St SW, Rochester, MN 55905; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 1 St SW, Rochester, MN 55905
| | - Daniel F Moyano
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Mike Thompson
- Department of Anesthesiology, Mayo Clinic, 200 1 St SW, Rochester, MN 55905; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 1 St SW, Rochester, MN 55905
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, 200 1 St SW, Rochester, MN 55905; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 1 St SW, Rochester, MN 55905
| |
Collapse
|
19
|
Divan Khosroshahi N, Naserpour Farivar T, Johari P. Identification of Legionella Pneumophila in Intubated Patients With TaqMan Real Time PCR. Jundishapur J Microbiol 2015; 8:e15094. [PMID: 25834717 PMCID: PMC4377168 DOI: 10.5812/jjm.15094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 06/07/2014] [Accepted: 06/14/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Legionellaceae contains Legionella genus with over 52 species and 64 serogroups. It is one of the most important causes of respiratory disease in human. More than 30% of hospital-acquired pneumonia is caused by Legionella. Ventilator-associated pneumonia (VAP) is an infection acquired in hospital wards, particularly in intensive care unit (ICU). This disease approximately affects 9% to 20% of intubated patients. Mortality in these patients varies between 8% and 76%. Legionella is one of the important factors for infection in intubated patients. Objectives: The present study was aimed to investigate the use of molecular methods in diagnosis of infection caused by Legionella pneumophila. Materials and Methods: In this study, 109 samples of lung secretions collected from intubated patients admitted to ICU wards of four university hospitals in a three-month period were examined. Cultivation and Real time Polymerase Chain Reaction (PCR) methods were used to assess L. pneumophila colonization in these samples. Results: Eleven samples had positive results using real time PCR analysis of 16s rRNA gene fragments specific for L. pneumophila, but according to culture method on specific buffered charcoal-yeast extract medium (BCYE), no positive cases were detected. Of the total positive cases, six were males, one female and four infants. The seven adults aged 40-65 years. Conclusions: Using molecular methods in diagnosis of infection caused by L. pneumophila has a great value because of its high specificity and rapid diagnosis potency.
Collapse
Affiliation(s)
- Nader Divan Khosroshahi
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, IR Iran
| | - Taghi Naserpour Farivar
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, IR Iran
- Corresponding author: Taghi Naserpour Farivar, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, IR Iran. Tel: +98-9128801401, Fax: +98-2833324971., E-mail:
| | - Pouran Johari
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, IR Iran
| |
Collapse
|
20
|
Frota OP, Ferreira AM, Barcelos LDS, Watanabe E, Carvalho NCP, Rigotti MA. [Collection of tracheal aspirate: safety and microbiological concordance between two techniques]. Rev Esc Enferm USP 2015; 48:618-24. [PMID: 25338241 DOI: 10.1590/s0080-623420140000400007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/12/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE To evaluate the safety of the performance of the traditional and protected collection techniques of tracheal aspirate and to identify qualitative and quantitative agreement of the results of microbiological cultures between the techniques. METHOD Clinical, prospective, comparative, single-blind research. The sample was composed of 54 patients of >18 years of age, undergoing invasive mechanical ventilation for a period of ≥ 48 hours and with suspected Ventilator Associated Pneumonia. The two techniques were implemented in the same patient, one immediately after the other, with an order of random execution, according to randomization by specialized software. RESULTS No significant events occurred oxygen desaturation, hemodynamic instability or tracheobronchial hemorrhage (p<0.05) and, although there were differences in some strains, there was qualitative and quantitative agreement between the techniques (p<0.001). CONCLUSION Utilization of the protected technique provided no advantage over the traditional and execution of both techniques was safe for the patient.
Collapse
Affiliation(s)
| | | | | | - Evandro Watanabe
- College of Odontology of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
21
|
Heidari AE, Moghaddam S, Truong KK, Chou L, Genberg C, Brenner M, Chen Z. Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:126010. [PMID: 26720877 PMCID: PMC4686586 DOI: 10.1117/1.jbo.20.12.126010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/23/2015] [Indexed: 05/23/2023]
Abstract
Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients’ endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.
Collapse
Affiliation(s)
- Andrew E. Heidari
- University of California Irvine, Samueli School of Engineering, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697-2700, United States
- Beckman Laser Institute, 1002 Health Sciences Road, Irvine, California 92617, United States
| | - Samer Moghaddam
- University of California Irvine, UC Irvine Health, Pulmonology, 101, The City Drive South, Orange, California 92868, United States
| | - Kimberly K. Truong
- University of California Irvine, UC Irvine Health, Pulmonology, 101, The City Drive South, Orange, California 92868, United States
| | - Lidek Chou
- Beckman Laser Institute, 1002 Health Sciences Road, Irvine, California 92617, United States
| | - Carl Genberg
- N8 Medical, 7165 Mira Monte Circle, Las Vegas, Nevada 89120, United States
| | - Matthew Brenner
- Beckman Laser Institute, 1002 Health Sciences Road, Irvine, California 92617, United States
- University of California Irvine, UC Irvine Health, Pulmonology, 101, The City Drive South, Orange, California 92868, United States
| | - Zhongping Chen
- University of California Irvine, Samueli School of Engineering, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697-2700, United States
- Beckman Laser Institute, 1002 Health Sciences Road, Irvine, California 92617, United States
| |
Collapse
|