1
|
Predoi D, Ţălu Ş, Carmen Ciobanu S, Iconaru SL, Saraiva Matos R, Duarte da Fonseca Filho H. Exploring the physicochemical traits, antifungal capabilities, and 3D spatial complexity of hydroxyapatite with Ag +Mg 2+ substitution in the biocomposite thin films. Micron 2024; 184:103661. [PMID: 38833994 DOI: 10.1016/j.micron.2024.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
The silver/magnesium doped hydroxyapatite (AgMgHAp, Ca10-x-yAgxMgy(PO4)6(OH)2, xAg=0.05 and yMg=0.02) nanocomposites coatings were deposited on Si substrate using the dip coating technique. The resulting coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR-ATR) spectroscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The EDS analysis highlighted the presence of the constitutive elements of the silver/magnesium doped hydroxyapatite (AgMgHAp) nanocomposites coatings. The surface microtexture of the AgMgHAp was assessed by atomic force microscopy (AFM) technique. The AFM data suggested the obtaining of a uniform deposited layer comprised of equally distributed nanoconglomerates. FT-IR studies highlighted the presence of vibrational modes associated with the phosphate and hydroxyl groups. No bands associated with silver or magnesium were observed. The XPS analysis highlighted the presence of the constituent elements of hydroxyapatite (Ca 2p, P 2 s, O 1 s), as well as dopants (Ag 3d, Mg 1 s and Mg 2p). The antifungal evaluation of AgMgHAp coatings was carried out using the Candida albicans ATCC 10231 fungal strain. The results of the antifungal assay revealed that the AgMgHAp coatings exhibited a strong inhibitory antifungal activity. Furthermore, the data highlighted that the AgMgHAp inhibited the development of biofilm on their surface. The results revealed that the antifungal activity of the coating varied based on the duration of incubation. On the other hand, the data also showed that AgMgHAp nanocomposites coatings inhibited the fungal cell adhesion and development from the early stages of the incubation. In addition to morphological analysis, we additionally take advantage of AFM images to investigate and explore the domain of fractal and multifractal analysis applied to the films under evaluation. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. These results suggest the potential of AgMgHAp nanocomposite coatings as a promising solution for developing innovative antifungal devices in biomedical applications.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, Magurele 077125, Romania
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., Cluj-Napoca, Cluj 400020, Romania.
| | - Steluţa Carmen Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, Magurele 077125, Romania
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, Magurele 077125, Romania
| | - Robert Saraiva Matos
- Amazonian Materials Group, Physics Department, Federal University of Amapá (UNIFAP), Macapá, Amapá 68903-419, Brazil
| | - Henrique Duarte da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy (LSNN), Physics Department, Federal University of Amazonas - UFAM, Manaus, Amazonas 69067-005, Brazil
| |
Collapse
|
2
|
Predoi D, Iconaru SL, Ciobanu SC, Ţălu Ş, Predoi SA, Buton N, Ramos GQ, da Fonseca Filho HD, Matos RS. Synthesis, characterization, and antifungal properties of chrome-doped hydroxyapatite thin films. MATERIALS CHEMISTRY AND PHYSICS 2024; 324:129690. [DOI: 10.1016/j.matchemphys.2024.129690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
|
3
|
Mohammadi S, Rezaee S, Nia BA, Boochani A, Ţălu Ş. Investigation of microstructural, micromorphology, and surface plasmon resonance characteristics in Ni/Al, Ni/Cu, and Ni/SS thin films. Microsc Res Tech 2024; 87:1974-1983. [PMID: 38590286 DOI: 10.1002/jemt.24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
As the first boundary between the environment and the material, the surface plays an important role in their interaction with each other, therefore, the use of appropriate tools and analysis to examine the mechanical properties and morphology of surfaces has particular importance in industry and research. In this research, a thin film of nickel was deposited on metal substrates made of aluminum, copper, and steel by using the RF magnetic cathode. Then, using a non-contact atomic force microscope, the morphological properties of the nickel film with static parameters, Minkowski functionals (MF's), fractal, and multifractal were extracted to be analyzed and studied. After that, using parameters such as root mean square (RMS) roughness, skewness, and kurtosis, it was determined how the surface roughness, distribution, and probability density of particles on the film surface alters with the change of the substrate. Next, by examining and analyzing the Δα and Δf parameters obtained from the multifractal section, the morphology of the produced film on the metal substrates was investigated. Then, the change in the surface plasmon resonance (SPR) peak position is changed for the prepared film in the range of the absorption spectrum due to the substrate effect and the microstructural properties of the formed film. HIGHLIGHTS: Ni film has been deposited by Rf magnetron sputtering. The effect of metal substrates on the topography, fractality, and optical properties was studied. Minkowski functionals were used to investigate the surface morphology of the samples. Substrate's material and the topography of the formed film can changed the surface plasmon resonance position.
Collapse
Affiliation(s)
- Saeedeh Mohammadi
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Sahar Rezaee
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Borhan Arghavani Nia
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Arash Boochani
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Eftekhari L, Ghasemi M. Analysing the surface morphology of annealed FTO/ZnS bilayer films: stereometric, fractal, and wettability approaches. Sci Rep 2024; 14:14262. [PMID: 38902309 PMCID: PMC11190240 DOI: 10.1038/s41598-024-65118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The surface micromorphology and roughening of the thermal evaporation-coated FTO/ZnS bilayer thin films annealed at 300, 400, 500, and 550 ∘ C for 1 h have been studied. AFM images of the prepared samples were analysed by the MountainsMap software, and the effects of the annealing temperature on the surface texture of the FTO/ZnS thin film's surface were investigated. Stereometric and advanced fractal analyses showed that the sample annealed at 500 ∘ C exhibited greater surface roughness and greater skewness and kurtosis. This film also has the most isotropic surface and exhibits the highest degree of heterogeneity. Also, despite the decrease in surface roughness with increasing temperature from 500 to 550 ∘ C , the fractal dimension tends to increase. The static water contact angle measurements indicate that the film annealed at 500 ∘ C exhibits higher hydrophobicity, which can be attributed to its greater topographic roughness. Our research indicates that the surface morphology of FTO/ZnS bilayer thin films is influenced by the annealing temperature. Changing factors such as roughness, fractality, and wettability parameters to help improve surface performance make the FTO/ZnS bilayer suitable for application in electronic and solar systems.
Collapse
Affiliation(s)
- Leila Eftekhari
- Department of Physics, Faculty of Sciences, Bu Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Mohsen Ghasemi
- Department of Physics, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
- Nanotechnology Research Institute, Shahrekord University, Shahrekord, 8818634141, Iran.
| |
Collapse
|
5
|
Chouikh F, Saoudi A, Ţălu Ş, Bouznit Y, Ghribi F, Leroy G. Dual effect to improve the electrical properties of SZO films grown by nitrogen pneumatic spray pyrolysis. Microsc Res Tech 2024; 87:876-887. [PMID: 38126943 DOI: 10.1002/jemt.24475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The principal aim of this study is to reduce considerably, via Sn doping, the resistivity of ZnO thin films prepared by simple, flexible, and cost-effective nitrogen pneumatic spray pyrolysis (NPSP) method on glass substrates at a temperature of 400°C. Different Sn content was tested (Sn/Zn = 0, 1, 3, 5 wt%) in an attempt to reduce the concentration of excessive oxygen atoms and create more free electrons. The microstructural, optical, morphological, and electrical properties of the films have been studied. The x-ray diffraction analysis demonstrated that tin-doped SZO films exhibited polycrystalline nature with a preferential orientation along (002) plane with the appearance of a new orientation (101) with the increase of Sn concentration leading then to bidirectional growth. The deposited SZO films showed an average optical transmittance of about 80% in the UV-visible region (200-800 nm) with optical band gap values at around 3.27 eV. Photoluminescence emissions of SZO samples presented three main peaks: near band edge emission, violet emission, and the blue-green emission. The surface morphology of the films obtained by scanning electron microscope (SEM) exhibited the change in morphology with increasing the Sn content. A minimum electrical resistivity value of about 17·10-3 Ω·cm was obtained for 3% SZO films. SZO films prepared by the NPSP method can be used as transparent window layer and electrodes in solar cells. RESEARCH HIGHLIGHTS: Highly oriented, conducting, and transparent Sn-doped ZnO films are successfully synthesized. The film growth orientation changed from mono-directional (002) axis to bi-directional (002) and (101) axis according to Sn doping. Ultraviolet and green emissions are noted by photoluminescence investigation. A minimum resistivity is observed for 3 wt% SZO film. The dual positive effect of the carrier gas used (N2) and Sn doping is confirmed.
Collapse
Affiliation(s)
- Fathi Chouikh
- Laboratory of Materials: Elaborations-Properties-Applications, Faculty of Science and Technology, Jijel University, Jijel, Algeria
| | - Ahmed Saoudi
- Department of Chemistry, Faculty of Science, M'sila University, M'sila, Algeria
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Yazid Bouznit
- Laboratory of Materials: Elaborations-Properties-Applications, Faculty of Science and Technology, Jijel University, Jijel, Algeria
- Department of Chemistry, Faculty of Science, M'sila University, M'sila, Algeria
| | - Faouzi Ghribi
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes University, Gabes, Tunisia
| | - Gerard Leroy
- Unité de Dynamique et Structure des Matériaux Moléculaire, Université du Littorale Côte d'Opale, Calais, France
| |
Collapse
|
6
|
Ghaderi A, Sabbaghzadeh J, Dejam L, Behzadi Pour G, Moghimi E, Matos RS, da Fonseca Filho HD, Țălu Ș, Salehi Shayegan A, Aval LF, Astani Doudaran M, Sari A, Solaymani S. Nanoscale morphology, optical dynamics and gas sensor of porous silicon. Sci Rep 2024; 14:3677. [PMID: 38355956 PMCID: PMC10866982 DOI: 10.1038/s41598-024-54336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
We investigated the multifaceted gas sensing properties of porous silicon thin films electrodeposited onto (100) oriented P-type silicon wafers substrates. Our investigation delves into morphological, optical properties, and sensing capabilities, aiming to optimize their use as efficient gas sensors. Morphological analysis revealed the development of unique surfaces with distinct characteristics compared to untreated sample, yielding substantially rougher yet flat surfaces, corroborated by Minkowski Functionals analysis. Fractal mathematics exploration emphasized that despite increased roughness, HF/ethanol-treated surfaces exhibit flatter attributes compared to untreated Si sample. Optical approaches established a correlation between increased porosity and elevated localized states and defects, influencing the Urbach energy value. This contributed to a reduction in steepness values, attributed to heightened dislocations and structural disturbances, while the transconductance parameter decreases. Simultaneously, porosity enhances the strength of electron‒phonon interaction. The porous silicon thin films were further tested as effective gas sensors for CO2 and O2 vapors at room temperature, displaying notable changes in electrical resistance with varying concentrations. These findings bring a comprehensive exploration of some important characteristics of porous silicon surfaces and established their potential for advanced industrial applications.
Collapse
Affiliation(s)
- Atefeh Ghaderi
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jamshid Sabbaghzadeh
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Laya Dejam
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Physics, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Ghobad Behzadi Pour
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, 18661-13118, Iran
| | - Emad Moghimi
- Faculty of Physics, Kharazmi University, Tehran, Iran
| | - Robert S Matos
- Amazonian Materials Group, Physics Department, Federal University of Amapá-UNIFAP, Macapá, Amapá, Brazil
| | - Henrique Duarte da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy, Physics Department, Federal University of Amazonas-UFAM, Manaus, Amazonas, Brazil
| | - Ștefan Țălu
- The Directorate of Research, Development and Innovation Management (DMCDI), The Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, Cluj-Napoca, 400020, Cluj County, Romania
| | - Amirhossein Salehi Shayegan
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Fekri Aval
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Astani Doudaran
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Sari
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Solaymani
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|