1
|
Mokni-Tlili S, Markowicz A, Sułowicz S, Hamdi H. Culture-based and molecular investigation of antibiotic and metal resistance in a semi-arid agricultural soil repeatedly amended with urban sewage sludge. ENVIRONMENTAL RESEARCH 2024; 263:120182. [PMID: 39426453 DOI: 10.1016/j.envres.2024.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Unsustainable agricultural intensification and climate change effects have caused chronic soil depletion in most arid and semi-arid croplands. As such, the land application of urban sewage sludge (USS) has been regulated in several countries as an alternative soil conditioner with recycling benefits. However, the risks of multi-contamination have made its agricultural reuse debatable. Accordingly, this study explored the long-term the impact of repetitive USS applications with increasing rates (0, 40, 80, and 120 t ha-1 year-1) on a sandy soil properties. A special focus was on the spread of antibiotic-resistant bacteria, metal-resistant bacteria and corresponding resistance genes in soil (ARB, MRB, ARGs and MRGs, respectively). The outcomes showed a dose-dependent variation of different soil parameters including the increase of heavy metal content and total heterotrophic bacteria (THB) up to the highest sludge application rate. Besides, the two last sludge lots applied in fall 2019 and 2020 contained cultivable ARB for all addressed antibiotics at much higher counts than in corresponding treated soils. Interestingly, the average index of antibiotic resistance (ARB/THB) increased in the USS used in fall 2020 compared to 2019 (from 6.2% to 9.4%). This indicates that factors such as fluctuations in wastewater quality, treatments operations, and extensive antibiotic use following the outbreak of the COVID-19 pandemic in early 2020 could have caused this variation. The molecular assessment of bacterial resistance resulted in the identification of three ARGs (mefA, sul1 and sul2), one MRG (czcA) and one integron (intI1). This might have implications on resistance co-selection, which can pose a threat to human health via contaminated crops.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Water Research and Technology Centre, University of Carthage, P.O Box 273, Tunisia
| | - Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Melash AA, Bogale AA, Bytyqi B, Nyandi MS, Ábrahám ÉB. Nutrient management: as a panacea to improve the caryopsis quality and yield potential of durum wheat ( Triticum turgidum L.) under the changing climatic conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1232675. [PMID: 37701803 PMCID: PMC10493400 DOI: 10.3389/fpls.2023.1232675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
The increasing human population and the changing climate, which have given rise to frequent drought spells, pose a serious threat to global food security, while identification of high-yielding drought-tolerant genotypes coupled with nutrient management remains a proficient approach to cope with these challenges. An increase in seasonal temperature, recurring drought stress, and elevated atmospheric CO2 are alarmingly affecting durum wheat production, productivity, grain quality, and the human systems it supports. An increase in atmospheric carbon dioxide can improve wheat grain yield in a certain amount, but the right amount of nutrients, water, and other required conditions should be met to realize this benefit. Nutrients including nitrogen, silicon, and sulfur supply could alleviate the adverse effects of abiotic stress by enhancing antioxidant defense and improving nitrogen assimilation, although the effects on plant tolerance to drought stress varied with nitrogen ionic forms. The application of sewage sludge to durum wheat also positively impacts its drought stress tolerance by triggering high accumulation of osmoregulators, improving water retention capacity in the soil, and promoting root growth. These beneficial effect of nutrients contribute to durum wheat ability to withstand and recover from abiotic stress conditions, ultimately enhance its productivity and resilience. While these nutrients can provide benefits when applied in appropriate amounts, their excessive use can lead to adverse environmental consequences. Advanced technologies such as precision nutrient management, unmanned aerial vehicle-based spraying, and anaerobic digestion play significant roles in reducing the negative effects associated with nutrients like sewage sludge, zinc, nanoparticles and silicon fertilizers. Hence, nutrient management practices offer significant potential to enhance the caryopsis quality and yield potential of durum wheat. Through implementing tailored nutrient management strategies, farmers, breeders, and agronomists can contribute to sustainable durum wheat production, ensuring food security and maintaining the economic viability of the crop under the changing climatic conditions.
Collapse
Affiliation(s)
- Anteneh Agezew Melash
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
- Department of Horticulture, College of Agriculture and Environmental Science, Debark University, Debark, Ethiopia
| | - Amare Assefa Bogale
- Institute of Crop Production, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bekir Bytyqi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Muhoja Sylivester Nyandi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Éva Babett Ábrahám
- Faculty of Agricultural, Food Sciences and Environmental Management, Institute of Crop Sciences, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Effects of Sewage Sludge Application on Plant Growth and Soil Characteristics at a Pinus sylvestris var. mongolica Plantation in Horqin Sandy Land. FORESTS 2022. [DOI: 10.3390/f13070984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The application of domestic sewage sludge (SS) may affect plant growth and soil quality through altering nutrient availability. However, the effect of SS application on the plant–soil system in sandy soils is poorly understood. In this study, we established SS application treatment plots (SL, 25 t ha−1) and control treatment plots without sewage sludge application (CK, 0 t ha−1). SS was applied to the soil surface of a Mongolian pine (Pinus sylvestris var. mongolica) plantation in Horqin Sandy Land, Inner Mongolia, China, to assess its potential effects on plants and soil. We analyzed tree growth performances (tree height, basal diameter, and diameter at breast height), understory traits (species diversity, coverage, and aboveground biomass), soil physical and chemical parameters (nutrient content, dissolved organic carbon, soil water content, bulk density, pH), and proxies of ecosystem services (soil organic carbon and total nitrogen stocks). The results showed that SS addition not only significantly increased soil nutrient contents, but also markedly enhanced aboveground productivity and plant coverage. Specifically, SS addition decreased soil bulk density and increased concentrations of soil organic carbon, total nitrogen, and total phosphorus and mineral nitrogen, and it also increased soil carbon and nitrogen stocks. Furthermore, the addition of SS significantly increased soil dissolved organic carbon contents and enhanced the fluorescence intensities of dissolved organic carbon components (humic acid-like and UV fulvic acid-like) in the topsoil (0–5 cm). This study provides evidence that SS is an acceptable, and possibly preferred organic fertilizer for improving the soil quality and tree–grass growth of Mongolian pine plantations.
Collapse
|
4
|
Abstract
Wastelands of the mining industry are among the largest of disturbed areas that demand revitalization. To reduce environmental impact and to better manage these geo-resources, the formation of sustainable plant and soil complexes and the restoration of self-recovery soil function are critical points. The successful return of vegetative cover at post-mining sites requires eliminating the deficiency of organic matter. For this, we assessed the usability of non-traditional ameliorants to provide a better understanding of benefits from mutual dependencies of environmental resources. To prevent losses and to close resource cycles, we studied the applicability of wastewater sludge from the pulp and paper (SPP) industry as an amendment to counteract soil degradation and rehabilitate human-disturbed lands. Waste rock limestone, beresite, and phosphogypsum substrates of post-mining sites were used in vitro for the application of sludge and peat mixture and consequent grass seeding. The formed vegetative cover was analyzed to compare the germination and biomass growth on reconstructed soils. We assessed the efficiency of ameliorant combinations by two approaches: (1) the traditional technique of cutting-off plant material to measure the obtained plant biomass, and, (2) digital image analysis for RGB-processed photographs of the vegetative cover (r2 = 0.75–0.95). The effect of SPP on plant cover biomass and grass height showed similar results: land rehabilitation with the formation of a 20 cm soil layer on mine waste dumps was environmentally suitable with an SPP:soil ratio of 1:3. However, excessive application (ratio 1:1 of SPP to the soil) negatively affected seed germination and plant vegetation.
Collapse
|
5
|
Biochar Derived from Domestic Sewage Sludge: Influence of Temperature Pyrolysis on Biochars’ Chemical Properties and Phytotoxicity. J CHEM-NY 2021. [DOI: 10.1155/2021/1818241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pyrolytic conversion of domestic sewage sludge (SS) into biochar is a promising method to reduce its large volume and recycle its high-value fuel gas as renewable energy and the use of its chemicals as soil fertilizers. Even though the effects of pyrolysis temperature on energy recovery have been extensively studied, little information has been found on nutrient recovery and biochar’s phytotoxicity before its reuse as a soil amendment. This study aims to investigate the ideal pyrolysis temperature that guarantees higher fertility levels as well as meeting quality standards for land disposal. Accordingly, air-dried domestic sewage sludge has been pyrolyzed at 260°C (PSS1), at 420°C (PSS2), and at 610°C (PSS3) with a residence time of 20, 40, and 60 minutes, respectively. The raw sewage sludge and the produced biochars have been analyzed to determine their volatile organic matter (VOM), mineral content (MC), nutrients’ level (total nitrogen TN, available phosphorus P, and potassium K), alkalinity (pH), and salinity (electrical conductivity EC and Na). The toxic effect of biochars derived from SS has been evaluated through the analysis of trace metals (Pb, Cr, Cd, Cu, and Zn) and their toxicity by measuring root elongation inhibition (REI). As expected, pyrolysis temperature has a significant impact on the biochars’ characteristics. This has been justified by higher VOM, TN, and P in the sewage sludge (SS) and the biochar (PSS1) produced at low temperature (260°C). However, higher pH, EC, Na, and K have been found in the biochars (PSS2 and PSS3) produced at higher temperature (420 and 610°C). The effect of pyrolysis temperature on trace metals concentrations has shown different patterns from one element to another, which indicates lower levels in the biochar (PSS2) produced at 420°C. As a result, the lowest REI has been observed in PSS2 compared to that in SS, PSS1, and PSS3, which highlights that 420°C is the ideal pyrolysis temperature for the safe reuse of SS as a soil amendment.
Collapse
|
6
|
Hechmi S, Hamdi H, Mokni-Tlili S, Ghorbel M, Khelil MN, Zoghlami IR, Benzarti S, Jellali S, Hassen A, Jedidi N. Impact of urban sewage sludge on soil physico-chemical properties and phytotoxicity as influenced by soil texture and reuse conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:973-986. [PMID: 33016480 DOI: 10.1002/jeq2.20093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Urban sewage sludge (USS) is increasingly applied to agricultural soils, but mixed results have been reported because of variations in reuse conditions. Most field trials have been conducted in cropping systems, which conceal intrinsic soil responses to sludge amendments due to the rhizosphere effect and farming practices. Therefore, the current field study highlights long-term changes in bare soil properties in strict relationship with soil texture and USS dose. Two agricultural soils (loamy sand [LS] and sandy [S]) were amended annually with increasing sludge rates up to 120 t ha-1 yr-1 for 5 yr under unvegetated conditions. Outcomes showed a USS dose-dependent variation of all studied parameters in topsoil samples. Soil salinization was the most significant risk related to excessive USS doses. Total dissolved salts (TDS) in saturated paste extracts reached the highest concentrations of 37.2 and 43.1 g L-1 in S soil and LS soil, respectively, treated with 120 t USS ha-1 yr-1 . This was also reflected by electrical conductivity of the saturated paste extract (ECe ) exceeding 4,000 µS cm-1 in both treatments. As observed for TDS, fertility indicators and bioavailable metals varied with soil texture due to the greater retention capacity of LS soil owing to higher fine fraction content. Soil phytotoxicity was estimated by the seed germination index (GI) calculated for lettuce, alfalfa, oat, and durum wheat. The GI was species dependent, indicating different degrees of sensitivity or tolerance to increasing USS rates. Lettuce germination was significantly affected by changes in soil conditions showing negative correlations with ECe and soluble metals. In contrast, treatment with USS enhanced the GI of wheat, reflecting higher salinity tolerance and a positive effect of sludge on abiotic conditions that control germination in soil. Therefore, the choice of adapted plant species is the key factor for successful cropping trials in sludge-amended soils.
Collapse
Affiliation(s)
- Sarra Hechmi
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar Univ., P.O. Box 2713, Doha, Qatar
| | - Sonia Mokni-Tlili
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Manel Ghorbel
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Mohamed Naceur Khelil
- National Institute for Research in Rural Engineering, Water and Forestry, P.O. Box 10, Ariana, 2080, Tunisia
| | - Inès Rahma Zoghlami
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
- Arid Regions Institute, Univ. of Gabès, Médenine, 4119, Tunisia
| | | | - Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos Univ., P.O. Box 31, Al-Khoud 123, Muscat, Oman
| | - Abdennaceur Hassen
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| |
Collapse
|