1
|
Zahir Z, Khan F, Hall BD. Sulfate and Dissolved Organic Carbon Concentrations Drive Distinct Microbial Community Patterns in Prairie Wetland Ponds. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70069. [PMID: 39871445 PMCID: PMC11772329 DOI: 10.1111/1758-2229.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO4 2-]; 37-58 mg/L) in water. As [DOC] and [SO4 2-] increased, there was an initial decline in abundance but not phylogenetic diversity. Maximum values of both abundance and phylogenetic diversity occurred between 56 and 115 mg/L [DOC] and 5,000-6,000 mg/L [SO4 2-] and decreased thereafter in ponds with 150-180 mg/L and 8,000-14,000 mg/L [DOC] and [SO4 2-], respectively. These findings confirm that environmental variables shape the microbial communities and that key microbial taxa involved in sulfur and carbon cycling dominated these ponds potentially impacting vital biogeochemical processes such as bioavailability of heavy metals, carbon sequestration, and methane emissions.
Collapse
Affiliation(s)
- Zohra Zahir
- Department of BiologyUniversity of ReginaReginaSaskatchewanCanada
| | - Faraz Khan
- Department of BiologyUniversity of ReginaReginaSaskatchewanCanada
| | - Britt D. Hall
- Department of BiologyUniversity of ReginaReginaSaskatchewanCanada
| |
Collapse
|
2
|
Mi C, Soued C, Bortolotti LE, Badiou P, Page B, Denny M, Bogard MJ. Multi-decadal impacts of effluent loading on phosphorus sorption capacity in a restored wetland. ENVIRONMENTAL RESEARCH 2025; 264:120256. [PMID: 39481793 DOI: 10.1016/j.envres.2024.120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Natural wetlands are widely used and cost-effective systems for the passive remediation of phosphorus (P)-rich surface waters from various effluent sources. Yet the long-term biogeochemical impacts of effluent loading on wetland P retention capacity are unclear. Here, we had a unique opportunity to document the spatio-temporal evolution of sediment P sorption over a ∼25-year period of constant municipal and industrial effluent loading, as part of a wetland restoration and wastewater treatment strategy in one of the largest restored wetlands in Canada. Sediment P sorption experiments across Frank Lake's three basins revealed a wide spatial variation in sorption capacity, closely linked to sediment geochemistry gradients (Ca, Fe, and Mn). Relative to a similar study ∼25 years prior, P sorption capacity has become exhausted near the effluent inlet, but remarkably, remains elevated throughout the rest of the wetland. Compared to other prairie wetlands and global aquatic ecosystems, Frank Lake has a greater capacity overall to retain P through sediment sorption. Given the paucity of long-term (multi-decade) data on wetland response to effluent loading, we provide key insights into the dynamics of wetland P cycling in human-dominated watersheds.
Collapse
Affiliation(s)
- Chenxi Mi
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; College of Water Conservancy, Shenyang Agricultural University, Shenyang, China.
| | - Cynthia Soued
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Lauren E Bortolotti
- Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada, PO Box 1160, Stonewall, MB, R0C 2Z0, Canada
| | - Pascal Badiou
- Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada, PO Box 1160, Stonewall, MB, R0C 2Z0, Canada
| | - Bryan Page
- Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada, PO Box 1160, Stonewall, MB, R0C 2Z0, Canada
| | - Mariya Denny
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Matthew J Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
3
|
Shober AL, Simpson ZP, Jarvie HP, Macrae ML, Kleinman PJA, Haygarth PM, Kulesza S, Gatiboni L, Davies J. Toward a transdisciplinary and unifying definition of legacy phosphorus. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 39648601 DOI: 10.1002/jeq2.20659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
Legacy phosphorus (P) is a concept advanced by Dr. Andrew Sharpley and colleagues that was originally applied to the persistence of anthropogenic signatures in watersheds, and it has since been adopted in a diversity of settings to help guide the science and management of P. Following Sharpley's example to develop consensus-based science, we considered contrasting perspectives on legacy P and defined legacy P as those stores within the environment that arise from historic human activity excluding "natural" or "background" geogenic sources. Legacy P is not restricted to one system or setting; it may reside in soils, sediments, biota, and water bodies. Legacy P has been estimated by fluxes (inputs minus outputs of P to a system) or, equivalently, by mass stocks (total minus geogenic). Because the origin of P in the environment cannot currently be directly quantified, we recommend that researchers report "total P" to track wider watershed P stocks and fluxes of P that include legacy P. We recognize that the definition of legacy P will continue to evolve as we continue to work toward consensus. Ultimately, the final definition of legacy P has consequences for the implementation and success of regulatory and voluntary strategies for legacy P management in agricultural systems. We support continued progress toward a consensus-backed, research-grounded definition for legacy P that is widely applicable yet useful for guiding management and policy.
Collapse
Affiliation(s)
- Amy L Shober
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Zachary P Simpson
- USDA-ARS, Sustainable Water Management Research Unit, Stoneville, Mississippi, USA
| | - Helen P Jarvie
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | - Merrin L Macrae
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | - Peter J A Kleinman
- USDA-ARS, Soil Management and Sugarbeet Research Unit, Fort Collins, Colorado, USA
| | | | - Stephanie Kulesza
- Department of Crop and Soil Sciences, NC State University, Raleigh, North Carolina, USA
| | - Luke Gatiboni
- Department of Crop and Soil Sciences, NC State University, Raleigh, North Carolina, USA
| | - Jenny Davies
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
4
|
Yu MJ, Wang XT, Wang T, Huang WQ, Lang ZD, Wang JP, Wu YH. Spatial and Seasonal Changes in Microbial Community of Hynobius amjiensis Breeding Pools in a Sphagnum-Dominated Peatland. Microorganisms 2024; 12:1344. [PMID: 39065112 PMCID: PMC11279080 DOI: 10.3390/microorganisms12071344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Peatlands deliver a variety of beneficial ecosystem services, particularly serving as habitats for a diverse array of species. Hynobius amjiensis is a critically endangered amphibian initially discovered in a Sphagnum-dominated peatland in Anji, China. The unique habitat requirements of H. amjiensis make it highly vulnerable to environmental changes. Here, we investigated the different breeding pools of H. amjiensis in the Sphagnum-dominated peatland (the type locality) for a one-year period to evaluate the interactions among the egg sacs present, water quality, and microbial communities (16S and 18S rRNA gene amplicon). The numbers of egg sacs were higher in the breeding pools located at the marginal area than those at the core area of the peatland. Similarly, the α-diversity of bacteria, fungi, and protists were lower in the core region compared to those at the edge of the peatland, perhaps due to water eutrophication. The microbial communities and water quality differed significantly among breeding pools and sampling months. The simpler microbial networks of the breeding pools in the core wetland may impact the numbers and health of the egg sacs. This study contributes to a better understanding of the effect of water quality on biodiversity in peatlands, and it can also guide regulations for wetland conservation and the protection of endangered species.
Collapse
Affiliation(s)
- Meng-Jie Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| | - Xian-Ting Wang
- Zhejiang Hynobius amjiensis Nature Reserve Management Office, Huzhou 313300, China
| | - Ting Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| | - Wei-Quan Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| | - Ze-Dong Lang
- Zhejiang Hynobius amjiensis Nature Reserve Management Office, Huzhou 313300, China
| | - Jia-Peng Wang
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Yu-Huan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| |
Collapse
|
5
|
Meng S, Peng T, Liu Y, Zhang S, Qian Z, Huang T, Xie Q, Gu JD, Hu Z. Novel insights into the synergetic degradation of pyrene by microbial communities from mangroves in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133907. [PMID: 38471380 DOI: 10.1016/j.jhazmat.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves. The bacterial communities of seven typical mangroves were enriched by pyrene, and enriched bacterial communities showed an excellent pyrene degradation capacity of > 95% (except for HK mangrove and ZJ mangrove). Devosia, Hyphomicrobium, Flavobacterium, Marinobacter, Algoriphahus, and Youhaiella all have significant positive correlations with pyrene (R>0, p < 0.05) by 16SrRNA gene sequencing and metagenomics analysis, indicated that these genera play a vital role in pyrene metabolism. Meanwhile, the functional genes were involved in pyrene degradation that was enriched in the bacterial communities, including the genes of nagAa, ndoR, pcaG, etc. Furthermore, the analyses of functional genes and binning genomes demonstrated that some bacterial communities as a unique teamwork to cooperatively participate in pyrene degradation. Interestingly, the genes related to biogeochemical cycles were enriched, such as narG , soxA, and cyxJ, suggested that bacterial communities were also helpful in maintaining the stability of the ecological environment. In addition, some novel species with pyrene-degradation potential were identified in the pyrene-degrading bacterial communities, which can enrich the resource pool of pyrene-degrading strains. Overall, this study will help develop further research strategies for pollutant removal.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China; Offshore Environmental Pollution Control Engineering Research, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
6
|
Wang J, Qi Z, Bennett EM. Managing mineral phosphorus application with soil residual phosphorus reuse in Canada. GLOBAL CHANGE BIOLOGY 2024; 30:e17001. [PMID: 37947299 DOI: 10.1111/gcb.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
With limited phosphorus (P) supplies, increasing P demand, and issues with P runoff and pollution, developing an ability to reuse the large amounts of residual P stored in agricultural soils is increasingly important. In this study, we investigated the potential for residual soil P to maintain crop yields while reducing P applications and losses in Canada. Using a P cycling model coupled with a soil P dynamics model, we analyzed soil P dynamics over 110 years across Canada's provinces. We found that using soil residual P may reduce mineral P demand as large as 132 Gg P year-1 (29%) in Canada, with the highest potential for reducing P applications in the Atlantic provinces, Quebec, Ontario, and British Columbia. Using residual soil P would result in a 21% increase in Canada's cropland P use efficiency. We expected that the Atlantic provinces and Quebec would have the greatest runoff P loss reduction with use of residual soil P, with the average P loss rate decreasing from 4.24 and 1.69 kg ha-1 to 3.45 and 1.38 kg ha-1 , respectively. Ontario, Manitoba, and British Columbia would experience relatively lower reductions in P loss through use of residual soil P, with the average runoff P loss rate decreasing from 0.44, 0.36, and 4.33 kg ha-1 to 0.19, 0.26, and 4.14 kg ha-1 , respectively. Our study highlights the importance of considering residual soil P as a valuable resource and its potential for reducing P pollution.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Zhiming Qi
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Elena M Bennett
- Bieler School of Environment and Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
7
|
Li Y, Wu X, Wang Y, Gao Y, Li K. A microbial flora with superior pollutant removal efficiency and its fermentation process optimization. AMB Express 2023; 13:113. [PMID: 37848696 PMCID: PMC10581995 DOI: 10.1186/s13568-023-01604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Microbial flora plays an important role in microorganism-enhanced technology. The pollutant degradation ability and viable counts of these agents are crucial to guarantee their practical application. In this study, an efficient pollutant-degrading microbial flora was screened, its medium components and culture conditions were optimized, and its effect was verified in zeolite trickling filter towers. After a 24 h culture under the optimal conditions, the viable count reached 4.76 × 109 cfu/mL, with the degradation rates of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) increased to 93.5%, 100%, 68.3%, 32.6%, and 85%, respectively. After optimizing the feeding strategy, the concentration of viable bacteria reached 5.80 × 109 cfu/mL. In the application effect verification experiment, the degradation rates of NH4+-N, TN, TP, and COD in the experimental group reached 96.69%, 75.18%, 73.82%, and 90.83%, respectively, showing a significant improvement compared to the results of the control group. The main components in the control group were Dokdonella, Brevundimonas, Alishewanella, Rhodobacter, Pseudoxanthomonas, and Thauera, whereas those in the experimental group were Dokdonella, Proteocatella, Rhodobacter, Dechlomonas, and Nitrospira. Proteocatella, Dechlomonas, and Nitrosra, which were unique to the experimental group, are common bacteria used for nitrogen and phosphorus removal. This explains the difference in the sewage treatment capacity between the two groups. This study provides an alternative sewage treatment microbial flora with a reasonable production cost and high degradation efficiency for NH4+-N, TN, TP, and COD.
Collapse
Affiliation(s)
- Yonghong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiuxiu Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yun Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingman Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Keke Li
- HeNanJinBaiHe Biotechnology Co., LTD, Anyang, 450000, Henan, China.
| |
Collapse
|
8
|
Bieroza M, Acharya S, Benisch J, ter Borg RN, Hallberg L, Negri C, Pruitt A, Pucher M, Saavedra F, Staniszewska K, van’t Veen SGM, Vincent A, Winter C, Basu NB, Jarvie HP, Kirchner JW. Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4701-4719. [PMID: 36912874 PMCID: PMC10061935 DOI: 10.1021/acs.est.2c07798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function.
Collapse
Affiliation(s)
- Magdalena Bieroza
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Suman Acharya
- Department
of Environment and Genetics, School of Agriculture, Biomedicine and
Environment, La Trobe University, Albury/Wodonga Campus, Victoria 3690, Australia
| | - Jakob Benisch
- Institute
for Urban Water Management, TU Dresden, Bergstrasse 66, Dresden 01068, Germany
| | | | - Lukas Hallberg
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Camilla Negri
- Environment
Research Centre, Teagasc, Johnstown Castle, Wexford Y35 Y521, Ireland
- The
James
Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
- School
of
Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6AB, United Kingdom
| | - Abagael Pruitt
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Matthias Pucher
- Institute
of Hydrobiology and Aquatic Ecosystem Management, Vienna University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, Vienna 1180, Austria
| | - Felipe Saavedra
- Department
for Catchment Hydrology, Helmholtz Centre
for Environmental Research - UFZ, Theodor-Lieser-Straße 4, Halle (Saale) 06120, Germany
| | - Kasia Staniszewska
- Department
of Earth and Atmospheric Sciences, University
of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Sofie G. M. van’t Veen
- Department
of Ecoscience, Aarhus University, Aarhus 8000, Denmark
- Envidan
A/S, Silkeborg 8600, Denmark
| | - Anna Vincent
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Carolin Winter
- Environmental
Hydrological Systems, University of Freiburg, Friedrichstraße 39, Freiburg 79098, Germany
- Department
of Hydrogeology, Helmholtz Centre for Environmental
Research - UFZ, Permoserstr.
15, Leipzig 04318, Germany
| | - Nandita B. Basu
- Department
of Civil and Environmental Engineering and Department of Earth and
Environmental Sciences, and Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Helen P. Jarvie
- Water Institute
and Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James W. Kirchner
- Department
of Environmental System Sciences, ETH Zurich, Zurich CH-8092, Switzerland
- Swiss
Federal Research Institute WSL, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
9
|
Hu M, Sardans J, Yan R, Wu H, Ni R, Peñuelas J, Tong C. Substantial increase in P release following conversion of coastal wetlands to aquaculture ponds from altered kinetic exchange and resupply capacity. WATER RESEARCH 2023; 230:119586. [PMID: 36638741 DOI: 10.1016/j.watres.2023.119586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The reclamation of wetlands and its subsequent conversion to aquaculture may alter regional nutrient (im)mobilization and cycling, although direct assessments of phosphorus (P) cycling and its budget balance following wetland conversion are currently scarce. Here, parallel field experiments were conducted to investigate and compare the availability and mobilization mechanisms of P from natural coastal wetlands and the adjacent converted aquaculture ponds based on high-resolution diffusive gradient in thin films (DGT) and dialysis (HR-Peeper) techniques and the DGT-induced fluxes in sediments (DIFS) model. The study found that the conversion of wetland to pond strongly reduced the sediment P pool by changing its forms and distribution. High-resolution data showed that concentrations of labile P and soluble reactive P across the sediment-water profiles were markedly enhanced by the converted aquaculture pond, although they exhibited large spatiotemporal heterogeneity. Moreover, the synchronous distribution of labile P, iron (Fe) and sulfur (S) across profiles in coastal wetlands indicated that the dissolution of Fe (III) oxyhydroxide-phosphate complexes coupled with sulfate reduction were the main mechanisms regulating sediment P mobilization in coastal areas. However, the converted aquaculture pond weakened or even reversed this dependence by decoupling the Fe-S-P reactions by changing the sediment structure and nutrient balance. Substantial increases in labile P, Fe and S fluxes in the pond suggested the conversion of wetland to aquaculture facilitated the internal release of P, Fe and S from sediment into water. The high resupply parameter (R) and desorption rate (k-1) combined with low response time (Tc) in the pond, as fitted by DIFS model, indicated the strong resupply capacity and fast kinetic exchange of sediment P across the sediment-water interface, which is consistent with the high P diffusion fluxes recorded in the pond. It was concluded that converted aquaculture ponds act as an important source of P release in coastal areas, potentially exacerbating water quality degradation and eutrophication. Specific initiatives and actions are therefore urgently needed to alleviate the internal P-loading during aquaculture.
Collapse
Affiliation(s)
- Minjie Hu
- Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Wetland Ecosystem Research Station of Minjiang Estuary, National Forestry and Grassland Administration, Fuzhou 350215, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain; Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics. Faculty of Science. King Abdulaziz University, P.O. Box 80257, Jeddah 21589 Saudi Arabia
| | - Ruibing Yan
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hui Wu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ranxu Ni
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Chuan Tong
- Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Wetland Ecosystem Research Station of Minjiang Estuary, National Forestry and Grassland Administration, Fuzhou 350215, China.
| |
Collapse
|
10
|
Allen DJ, Farrell M, Huang J, Plush S, Mosley LM. Artificial aeration of an overloaded constructed wetland improves hypoxia but does not ameliorate high nitrogen loads. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116625. [PMID: 36356541 DOI: 10.1016/j.jenvman.2022.116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
High organic loadings to constructed wetlands can result in water quality issues such as low dissolved oxygen and high ammonium concentrations, with artificial aeration a potential mitigation option. This study compared baseline (no aeration - NA), continuous aeration (CA), and intermittent aeration (IA) conditions to improve water quality in a tertiary treatment free water surface constructed wetland (FWS CW) with night time hypoxia/anoxia, and high nutrient concentrations. The response variables included dissolved oxygen (DO), total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total phosphorus (TP), phosphate (PO43--P), and dissolved organic carbon (DOC). In situ aeration and monitoring was performed from April to June 2021 in a large, field-scale FWS CW, the Laratinga wetlands Mount Barker, South Australia. The results demonstrated that DO increased by an average 2.11 mg L-1 from NA to CA during the night and 1.26 mg L-1 and 1.84 mg L-1 from NA to IA during the night and day respectively when averaging over the basins. The C/N ratio was very low and there was no significant influence of DO on DOC concentrations. There was no significant difference in TN concentrations with the application of aeration aside from a decrease in the channel at night from NA to IA, and an increase in NH4+-N resulted under IA compared with NA in Basin 1 and 2 during the day. This implies that the N loadings exceeded the wetland's ability to complete nutrient conversions at a rate that aligns with input rate. The concentrations of NO3--N increased at night under CA and IA treatments suggesting that some nitrification was promoted, or there was inhibition of dissimilatory nitrate reduction to ammonium. The concentrations of TP and PO43--P significantly increased with the aeration compared with no aeration, however there was no difference between the aeration treatments. This suggested that increased sediment resuspension during aeration increased P in the water. There was no change in DOC with the application of aeration. Overall, the DO increased with aeration application and may be able to better support the wetland ecology; however, the Laratinga wetland is overloaded and the capacity of the wetland to effectively transform and remove nutrients is inhibited, even with the application of artificial aeration.
Collapse
Affiliation(s)
- Danielle J Allen
- School of Biological Sciences, University of Adelaide, Kaurna Country, Urrbrae, South Australia 5064, Australia; CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia 5064, Australia
| | - Mark Farrell
- CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia 5064, Australia
| | - Jianyin Huang
- Scarce Resources and Circular Economy (ScaRCE) University of South Australia, Mawson Lakes Blvd, Kaurna Country, Mawson Lakes, South Australia 5095, Australia
| | - Simon Plush
- Mount Barker District Council, 6 Dutton Road, Peramangk Country, Mount Barker, South Australia 5251, Australia
| | - Luke M Mosley
- School of Biological Sciences, University of Adelaide, Kaurna Country, Urrbrae, South Australia 5064, Australia; School of Agriculture Food and Wine, University of Adelaide, Kaurna Country, Urrbrae, South Australia 5064, Australia.
| |
Collapse
|
11
|
Wang L, Wu X, Song H, An J, Dong B, Wu Y, Wang Y, Li B, Liu Q, Yu W. Influence of Potamogeton crispus harvesting on phosphorus composition of Lake Yimeng. Sci Rep 2022; 12:17616. [PMID: 36271245 PMCID: PMC9587033 DOI: 10.1038/s41598-022-22484-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Harvesting is an important method used to control the overproduction of Potamogeton crispus in lakes. A three-year comparative field study was performed in a eutrophic lake (harvested area) and its connected lake (non-harvested area) to determine the effects of harvesting on the phosphorus (P) composition and environmental factors in the water and sediment. Results revealed that harvesting significantly reduced the dissolved total P and dissolved organic P (DOP) and increased the alkaline phosphatase activity and particulate P (PP) in the water. No significant differences were detected in the water total P (TP), soluble reactive P, chlorophyll-a, pH, and dissolved oxygen between the harvested and non-harvested areas. Sediment TP and organic P (OP) were significantly reduced in the harvested area. Harvesting changed the P composition in the water. In the non-harvested area, P was mainly formed by DOP (40%) in the water body, while in the harvested area, PP was the main water component (47%). Harvesting increased the proportion of inorganic P (IP) in the sediment and decreased the proportion of OP. In the water, the IP to TP ratio in the non-harvested and harvested areas were 58.26% and 63.51%, respectively. Our results showed that harvesting changed the P composition in the water and sediment. In the harvesting of submerged vegetation, our results can serve as a reference for the management of vegetation-rich lakes.
Collapse
Affiliation(s)
- Lizhi Wang
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Xiyuan Wu
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Hongli Song
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Juan An
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Bin Dong
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Yuanzhi Wu
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Yun Wang
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Bao Li
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Qianjin Liu
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| | - Wanni Yu
- grid.410747.10000 0004 1763 3680Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005 China
| |
Collapse
|
12
|
Jarvie HP, Macrae ML, Anderson M, Celmer-Repin D, Plach J, King SM. River metabolic fingerprints and regimes reveal ecosystem responses to enhanced wastewater treatment. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:811-825. [PMID: 35980320 DOI: 10.1002/jeq2.20401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Although many studies have examined how improvements in wastewater treatment impact river nutrient concentrations and loads, there has been much less focus on measuring river metabolism to evaluate the wider aquatic ecosystem benefits of reducing nutrient inputs to rivers. The objectives of this study were to evaluate the effects of enhanced wastewater treatment (nitrification) on river metabolism in the Grand River, Canada's largest river draining into Lake Erie. Metabolic fingerprints and regimes (calculated from high-frequency dissolved oxygen [DO] measurements) were used to visualize whole-river ecosystem functional responses to these wastewater treatment upgrades. There was a 60% reduction in ecosystem respiration during summer, in response to reductions in effluent total ammonia inputs, causing a shift from net heterotrophy to net autotrophy, and contraction of river metabolic fingerprints. This resulted in major improvements in summer DO concentrations, with reductions in the percentage of days during summer that DO minima fell below water-quality guidelines for protection of aquatic early life stages, from 88% to ≤16%. The results also point to potential cascading impacts on coupled phosphorus and nitrogen cycles, which may generate further improvements in river water quality. During the summer, high rates of river metabolism and nutrient retention may result in measured water-column nutrient concentrations potentially underestimating nutrient pressures. This study also demonstrates the value of combining river metabolism with nutrient monitoring for a more holistic understanding of the role of nutrients in river ecosystem health and function.
Collapse
Affiliation(s)
- Helen P Jarvie
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Water Institute, Univ. of Waterloo, Ontario, N2L 3G1, Canada
| | - Merrin L Macrae
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Water Institute, Univ. of Waterloo, Ontario, N2L 3G1, Canada
| | - Mark Anderson
- Grand River Conservation Authority, 400 Clyde Rd., Cambridge, ON, N1R 5W6, Canada
| | - Dominika Celmer-Repin
- Water Services Division, Wastewater Operations, Regional Municipality of Waterloo, Kitchener, Ontario, N2G 4J3, Canada
| | - Janina Plach
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Stephen M King
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Campus, Didcot, OX11 0QX, UK
| |
Collapse
|
13
|
Liao R, Song P, Wang J, Hu J, Li Y, Li S. Development of water quality management strategies based on multi-scale field investigation of nitrogen distribution: a case study of Beiyun River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56511-56524. [PMID: 35338467 DOI: 10.1007/s11356-022-19835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Accurately quantifying the distribution of nitrogen (N) contaminants in a river ecosystem is an essential prerequisite for developing scientific water quality management strategy. In this study, we have conducted a series of field investigations along the Beiyun River to collect samples from multiple scales, including surface water, riverbed sediments, vadose zone, and aquifer, for evaluating the spatial distribution of N; besides, column simulation experiments were carried out to characterize the transport behavior of N in riverbed sediments. The surface water of the Beiyun River was detected to be eutrophic because of its elevated total N concentration, which is 33 times of the threshold value causing the potential eutrophication. The hydrodynamic dispersion coefficient (D) of riverbed sediments was estimated by CXTFIT 2.1, demonstrating that the D of upstream section was lower than that of midstream and downstream sections (Dupstream < Dmidstream < Ddownstream), with the estimated annual N leaching volume of 130,524, 241,776, and 269,808 L/(m2·a), respectively. The average total N concentration in vadose zone and aquifer of upstream Sect. (297.88 mg/kg) was obviously lower than that of midstream Sect. (402.62 mg/kg) and downstream Sect. (447.02 mg/kg). Based on multi-scale investigation data, subsequently, water quality management strategies have been achieved, that is, limiting the discharge of N from the midstream and downstream banks to the river and setting up the impermeable layer in the downstream reaches to reduce infiltration. The findings of this study are of great significance for the improvement of river environmental quality and river management.
Collapse
Affiliation(s)
- Renkuan Liao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Peng Song
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jia Wang
- Water Environment Research Institute, Beijing Enterprises Water Group Limited (BEWG), Beijing, 100102, People's Republic of China
| | - Jieyun Hu
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yunkai Li
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Shuqin Li
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
14
|
Allen DJ, Farrell M, Huang J, Reynolds C, Rupasinghe M, Mosley LM. Long-term water quality response to increased hydraulic loadings in a field-scale free water surface constructed wetland treating domestic effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114858. [PMID: 35287082 DOI: 10.1016/j.jenvman.2022.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
There is limited understanding of how constructed wetland (CW) water quality may change over time in response to increased wastewater nutrient and hydraulic loadings. We evaluated long-term water quality trends and drivers for a full-scale (8.19 ha) free water surface CW that was developed in 2001 for the treatment of increasing amounts of pre-treated domestic wastewater from the township of Mount Barker, South Australia. Water quality parameter concentrations and loads, hydraulic loadings rates, trend direction assessments (TDAs), and water quality parameter removal efficiencies were analysed over the study period. The wetland received an annual average loading rate of 947, 19644, 31039, 18140, 2985, and 807 kg year-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively and removed on average 8%, 72%, 73%, 78%, 12% and -246% of these loadings respectively. The average influent concentrations for the study period were 2.6, 42.3, 40.6, 35.9, 9.0, and 1.9 mg L-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively. Average concentration removal rates over the study period were 50%, 39%, 40%, 15%, -216% and -600.5% for TN, NH4-N, TKN-N, NOx-N, BOD5 and TP respectively, suggesting that nitrogen was only partly assimilated by the wetland and it was a source of organic material and phosphorus. Using seasonally and inflow rate adjusted data, TDAs predicted virtually certain increases in TN, NH4-N, and TKN-N influent concentrations over time, a decline in NOx-N, no trend in BOD5, and a possible decreasing trend in TP. The inflow explained variance accounted for approximately 50% of the variation in TN, NH4-N and TKN-N effluent concentrations. Annual removal efficiencies of N declined with increasing hydraulic loads, and hydraulic loading rates varied with management practices. Seasonal analysis showed that N removal was greater during summer and lower in winter. Due to local population growth and various management practices, hydraulic loading is variable and has often exceeded design targets. Our findings indicate the long-term performance of CWs need to be closely monitored, as water quality can deteriorate due to increased hydraulic loadings.
Collapse
Affiliation(s)
- Danielle J Allen
- School of Biological Sciences, University of Adelaide, Kaurna Country, Urrbrae, South Australia, 5064, Australia; CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia, 5064, Australia
| | - Mark Farrell
- CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia, 5064, Australia
| | - Jianyin Huang
- Scarce Resources and Circular Economy (ScaRCE) University of South Australia, Mawson Lakes Blvd, Kaurna Country, Mawson Lakes, South Australia, 5095, Australia
| | - Chris Reynolds
- Mount Barker District Council, 6 Dutton Road, Peramangk Country, Mount Barker, South Australia, 5251, Australia
| | - Madhawa Rupasinghe
- Mount Barker District Council, 6 Dutton Road, Peramangk Country, Mount Barker, South Australia, 5251, Australia
| | - Luke M Mosley
- School of Biological Sciences, University of Adelaide, Kaurna Country, Urrbrae, South Australia, 5064, Australia.
| |
Collapse
|
15
|
Ecological Role of Bacteria Involved in the Biogeochemical Cycles of Mangroves Based on Functional Genes Detected through GeoChip 5.0. mSphere 2022; 7:e0093621. [PMID: 35019668 PMCID: PMC8754168 DOI: 10.1128/msphere.00936-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mangroves provide a variety of ecosystem services and contribute greatly to the global biogeochemical cycle. Microorganisms play important roles in biogeochemical cycles and maintain the dynamic balance of mangroves. However, the roles of bacteria in the biogeochemical cycles of mangroves and their ecological distribution and functions remain largely uncharacterized. This study thus sought to analyze and compare the ecological distributions and potential roles of bacteria in typical mangroves using 16S rRNA gene amplicon sequencing and GeoChip. Interestingly, the bacterial community compositions were largely similar in the studied mangroves, including Shenzhen, Yunxiao, Zhanjiang, Hainan, Hongkong, Fangchenggang, and Beihai mangroves. Moreover, gamma-proteobacterium_uncultured and Woeseia were the most abundant microorganisms in the mangroves. Furthermore, most of the bacterial communities were significantly correlated with phosphorus levels (P < 0.05; −0.93 < R < 0.93), suggesting that this nutrient is a vital driver of bacterial community composition. Additionally, GeoChip analysis indicated that the functional genes amyA, narG, dsrA, and ppx were highly abundant in the studied mangroves, suggesting that carbon degradation, denitrification, sulfite reduction, and polyphosphate degradation are crucial processes in typical mangroves. Moreover, several genera were found to synergistically participate in biogeochemical cycles in mangroves. For instance, Neisseria, Ruegeria, Rhodococcus, Desulfotomaculum, and Gordonia were synergistically involved in the carbon, nitrogen, and sulfur cycles, whereas Neisseria and Treponema were synergistically involved in the nitrogen cycle and the sulfur cycle. Taken together, our findings provide novel insights into the ecological roles of bacteria in the biogeochemical cycles of mangroves. IMPORTANCE Bacteria have important functions in biogeochemical cycles, but studies on their function in an important ecosystem, mangroves, are still limited. Here, we investigated the ecological role of bacteria involved in biogeochemical cycles in seven representative mangroves of southern China. Furthermore, various functional genes from bacteria involved in biogeochemical cycles were identified by GeoChip 5.0. The functional genes associated with the carbon cycle (particularly carbon degradation) were the most abundant, suggesting that carbon degradation is the most active process in mangroves. Additionally, some high-abundance bacterial populations were found to synergistically mediate key biogeochemical cycles in the mangroves, including Neisseria, Pseudomonas, Treponema, Desulfotomaculum, and Nitrosospira. In a word, our study gives novel insights into the function of bacteria in biogeochemical cycles in mangroves.
Collapse
|
16
|
Sediment and Nutrient Retention in Ponds on an Agricultural Stream: Evaluating Effectiveness for Diffuse Pollution Mitigation. WATER 2021. [DOI: 10.3390/w13121640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The creation of ponds and wetlands has the potential to alleviate stream water quality impairment in catchments affected by diffuse agricultural pollution. Understanding the hydrological and biogeochemical functioning of these features is important in determining their effectiveness at mitigating pollution. This study investigated sediment and nutrient retention in three connected (on-line) ponds on a lowland headwater stream by sampling inflowing and outflowing concentrations during base and storm flows. Sediment trapping devices were used to quantify sediment and phosphorus accumulations within ponds over approximately monthly periods. The organic matter content and particle size composition of accumulated sediment were also measured. The ponds retained dissolved nitrate, soluble reactive phosphorus and suspended solids during baseflows. During small to moderate storm events, some ponds were able to reduce peak concentrations and loads of suspended solids and phosphorus; however, during large magnitude events, resuspension of deposited sediment resulted in net loss. Ponds filtered out larger particles most effectively. Between August 2019 and March 2020, the ponds accumulated 0.306 t ha−1 sediment from the 30 ha contributing area. During this period, total sediment accumulations in ponds were estimated to equal 7.6% of the suspended flux leaving the 340 ha catchment downstream. This study demonstrates the complexity of pollutant retention dynamics in on-line ponds and highlights how their effectiveness can be influenced by the timing and magnitude of events.
Collapse
|