1
|
Gurrieri E, Carradori G, Roccuzzo M, Pancher M, Peroni D, Belli R, Trevisan C, Notarangelo M, Huang WQ, Carreira ASA, Quattrone A, Jenster G, Hagen TLMT, D'Agostino VG. CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells. J Biomed Sci 2024; 31:92. [PMID: 39402557 PMCID: PMC11475557 DOI: 10.1186/s12929-024-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications. METHODS In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors. RESULTS Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies. CONCLUSIONS This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.
Collapse
Affiliation(s)
- Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Carradori
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michael Pancher
- High Throughput Screening and High Content Analysis Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Daniele Peroni
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Romina Belli
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Caterina Trevisan
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Notarangelo
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Wen-Qiu Huang
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Agata S A Carreira
- Laboratory of Genomic Screening, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Guido Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
2
|
Cone AS, Zhou Y, McNamara RP, Eason AB, Arias GF, Landis JT, Shifflett KW, Chambers MG, Yuan R, Willcox S, Griffith JD, Dittmer DP. CD81 fusion alters SARS-CoV-2 Spike trafficking. mBio 2024; 15:e0192224. [PMID: 39140770 PMCID: PMC11389398 DOI: 10.1128/mbio.01922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused the biggest public health crises in recent history. Many expect future coronavirus introductions into the human population. Hence, it is essential to understand the basic biology of these viruses. In natural infection, the SARS-CoV-2 Spike (S) glycoprotein is co-expressed with all other viral proteins, which modify cellular compartments to maximize virion assembly. By comparison, most of S is degraded when the protein is expressed in isolation, as in current molecular vaccines. To probe the maturation pathway of S, we redirected its maturation by fusing S to the tetraspanin protein CD81. CD81 is a defining constituent of extracellular vesicles (EVs) or exosomes. EVs are generated in large numbers by all cells, extruded into blood and lymph, and transfer cargo between cells and systemically (estimated 1012 EVs per mL plasma). EVs, like platelets, can be transfused between unrelated donors. When fusing the proline-stabilized form of strain Delta S into the flexible, large extracellular loop of CD81 rather than being degraded in the lysosome, S was extruded into EVs. CD81-S fusion containing EVs were produced in large numbers and could be isolated to high purity. Purified CD81::S EVs bound ACE2, and S displayed on individual EV was observed by cryogenic electron microscopy (EM). The CD81::S-fusion EVs were non-toxic and elicited an anti-S trimer and anti-RBD antibody response in mice. This report shows a design path to maximize viral glycoprotein assembly and release without relying on the co-expression of potentially pathogenic nonstructural viral proteins. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 pandemic caused the biggest public health crises in recent history. To understand the maturation pathway of S, we fused S to the tetraspanin protein CD81. The resulting molecule is secreted in extracellular vesicles and induces antibodies in mice. This may be a general design path for viral glycoprotein vaccines.
Collapse
Affiliation(s)
- Allaura S. Cone
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yijun Zhou
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anthony. B. Eason
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriel F. Arias
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T. Landis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle W. Shifflett
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith G. Chambers
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Runjie Yuan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Xiang H, Bao C, Chen Q, Gao Q, Wang N, Gao Q, Mao L. Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release. J Zhejiang Univ Sci B 2024; 25:633-655. [PMID: 39155778 PMCID: PMC11337091 DOI: 10.1631/jzus.b2300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 08/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
Collapse
Affiliation(s)
- Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Nan Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China.
| |
Collapse
|
4
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
5
|
Huang X, Li A, Xu P, Yu Y, Li S, Hu L, Feng S. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles. J Nanobiotechnology 2023; 21:184. [PMID: 37291577 DOI: 10.1186/s12951-023-01952-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising platform for gene delivery owing to their natural properties and phenomenal functions, being able to circumvent the significant challenges associated with toxicity, problematic biocompatibility, and immunogenicity of the standard approaches. These features are of particularly interest for targeted delivery of the emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. However, the current efficiency of EV-meditated transport of CRISPR/Cas components remains insufficient due to numerous exogenous and endogenous barriers. Here, we comprehensively reviewed the current status of EV-based CRISPR/Cas delivery systems. In particular, we explored various strategies and methodologies available to potentially improve the loading capacity, safety, stability, targeting, and tracking for EV-based CRISPR/Cas system delivery. Additionally, we hypothesise the future avenues for the development of EV-based delivery systems that could pave the way for novel clinically valuable gene delivery approaches, and may potentially bridge the gap between gene editing technologies and the laboratory/clinical application of gene therapies.
Collapse
Affiliation(s)
- Xiaowen Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Peng Xu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China.
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
6
|
Xu Z, Wang Y, Sun M, Zhou Y, Cao J, Zhang H, Xuan X, Zhou J. Proteomic analysis of extracellular vesicles from tick hemolymph and uptake of extracellular vesicles by salivary glands and ovary cells. Parasit Vectors 2023; 16:125. [PMID: 37046327 PMCID: PMC10100430 DOI: 10.1186/s13071-023-05753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that are important mediators of intercellular communication. Arthropods transport nutrients, signaling molecules, waste and immune factors to all areas of the body via the hemolymph. Little is known about tick hemolymph EVs. METHODS Hemolymph was collected from partially fed Rhipicephalus haemaphysaloides and Hyalomma asiaticum ticks by making an incision with a sterile scalpel in the middle (between the femur and metatarsus) of the first pair of legs, which is known as leg amputation. EVs were isolated from hemolymph by differential centrifugation and characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Proteins extracted from the hemolymph EVs were analyzed by 4D label-free proteomics. The EVs were also examined by western blot and immuno-electron microscopy analysis. Intracellular incorporation of PHK26-labeled EVs was tested by adding labeled EVs to tick salivary glands and ovaries, followed by fluorescence microscopy. RESULTS In this study, 149 and 273 proteins were identified by 4D label-free proteomics in R. haemaphysaloides and H. asiaticum hemolymph EVs, respectively. TEM and NTA revealed that the sizes of the hemolymph EVs from R. haemaphysaloides and H. asiaticum were 133 and 138 nm, respectively. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses of identified proteins revealed pathways related to binding, catalytic and transporter activity, translation, transport and catabolism, signal transduction and cellular community. The key EV marker proteins RhCD9, RhTSG101, Rh14-3-3 and RhGAPDH were identified using proteomics and western blot. The presence of RhFerritin-2 in tick hemolymph EVs was confirmed by western blot and immuno-electron microscopy. We demonstrated that PKH26-labeled hemolymph EVs are internalized by tick salivary glands and ovary cells in vitro. CONCLUSIONS The results suggest that tick EVs are secreted into, and circulated by, the hemolymph. EVs may play roles in the regulation of tick development, metabolism and reproduction.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Meng Sun
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
7
|
Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:655-681. [PMID: 36277506 PMCID: PMC9586594 DOI: 10.1080/14686996.2022.2133342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-bound vesicles which encapsulate bioactive molecules, such as nucleic acids, proteins, and lipids. They mediate intercellular communication through transporting internally packaged molecules, making them attractive therapeutics carriers. Over the last decades, a significant amount of research has implied the potential of EVs servings as drug delivery vehicles for nuclear acids, proteins, and small molecular drugs. However, several challenges remain unresolved before the clinical application of EV-based therapeutics, including lack of specificity, stability, biodistribution, storage, large-scale manufacturing, and the comprehensive analysis of EV composition. Technical development is essential to overcome these issues and enhance the pre-clinical therapeutic effects. In this review, we summarize the current advancements in EV engineering which demonstrate their therapeutic potential.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|
9
|
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, Li L, Fu B, Liu X. Biological Features of Extracellular Vesicles and Challenges. Front Cell Dev Biol 2022; 10:816698. [PMID: 35813192 PMCID: PMC9263222 DOI: 10.3389/fcell.2022.816698] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| |
Collapse
|
10
|
Esmaeili A, Alini M, Baghaban Eslaminejad M, Hosseini S. Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context. Stem Cell Res Ther 2022; 13:129. [PMID: 35346367 PMCID: PMC8960087 DOI: 10.1186/s13287-022-02806-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are advanced therapeutic strategies that can be used to efficiently treat diseases. Promising features of EVs include their innate therapeutic properties and ability to be engineered as targeted drug delivery systems. However, regulation of EV uptake is one challenge of EV therapy that must be overcome to achieve an efficient therapeutic outcome. Numerous efforts to improve the factors that affect EV uptake include the selection of a cell source, cell cultivation procedure, extraction and purification methods, storage, and administration routes. Limitations of rapid clearance, targeted delivery, and off-targeting of EVs are current challenges that must be circumvented. EV engineering can potentially overcome these limitations and provide an ideal therapeutic use for EVs. In this paper, we intend to discuss traditional strategies and their limitations, and then review recent advances in EV engineering that can be used to customize and control EV uptake for future clinical applications.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Hercher D, Nguyen MQ, Dworak H. Extracellular vesicles and their role in peripheral nerve regeneration. Exp Neurol 2021; 350:113968. [PMID: 34973963 DOI: 10.1016/j.expneurol.2021.113968] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injuries often result in sensory and motor dysfunction in respective parts of the body. Regeneration after peripheral nerve injuries is a complex process including the differentiation of Schwann cells, recruiting of macrophages, blood vessel growth and axonal regrowth. Extracellular vesicles (EVs) are considered to play a pivotal role in intercellular communication and transfer of biological information. Specifically, their bioactivity and ability to deliver cargos of various types of nucleic acids and proteins have made them a potential vehicle for neurotherapeutics. However, production, characterization, dosage and targeted delivery of EVs still pose challenges for the clinical translation of EV therapeutics. This review summarizes the current knowledge of EVs in the context of the healthy and injured peripheral nerve and addresses novel concepts for modification of EVs as therapeutic agents for peripheral nerve regeneration.
Collapse
Affiliation(s)
- David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Mai Quyen Nguyen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helene Dworak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|