1
|
Whitehead B, Sørensen Rossen L, Zippor M, Boysen AT, Indira Chandran V, Skallerup P, Thamsborg SM, Nejsum P. Micro RNA profiles of host extracellular vesicles are modulated by Ascaris suum infection but parasite extracellular vesicle miRNAs are systemically undetectable using in-depth miRNA sequencing. Int J Parasitol 2024; 54:691-696. [PMID: 39116918 DOI: 10.1016/j.ijpara.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The intestinal helminth Ascaris lumbricoides infects over 800 million people. Infections are often chronic and immunity is not sterilizing due to host-immune modulation, therefore reinfection is common after antihelmintic treatment. We have previously demonstrated a role for Ascaris spp. extracellular vesicles (EVs) in host immune modulation but whether EVs are recognized by the adaptive immune system and are present systemically in the host remains unknown. Therefore, we employed a well-established trickle infection model in pigs to mimic natural Ascaris infection in humans. EVs were isolated from adult Ascaris suum followed by immunoblotting of EV and EV-depleted secretory fractions using plasma from infected and uninfected pigs. Next, EVs were isolated from pig plasma at day 56 post first infection and subjected to deep small RNAseq analysis. RNAs were aligned to A. suum and Sus scrofa miRNA complements to detect A. suum EVs and elucidate the host EV micro RNA (miRNA) response to infection, respectively. Infection generates robust antibody responses against A. suum EVs that is distinct from EV-depleted fractions. However, A. suum miRNAs were not detectable in EVs from the peripheral blood. Notably, host plasma-derived EV miRNA profiles showed significant changes between infected and uninfected pigs, indicating that Ascaris infection drives systemic changes in host EV composition.
Collapse
Affiliation(s)
- Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Litten Sørensen Rossen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Zippor
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anders T Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Vineesh Indira Chandran
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
2
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Ridolfi A, Conti L, Brucale M, Frigerio R, Cardellini J, Musicò A, Romano M, Zendrini A, Polito L, Bergamaschi G, Gori A, Montis C, Panella S, Barile L, Berti D, Radeghieri A, Bergese P, Cretich M, Valle F. Particle profiling of EV-lipoprotein mixtures by AFM nanomechanical imaging. J Extracell Vesicles 2023; 12:e12349. [PMID: 37855042 PMCID: PMC10585431 DOI: 10.1002/jev2.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/08/2023] [Indexed: 10/20/2023] Open
Abstract
The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.
Collapse
Affiliation(s)
- Andrea Ridolfi
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
| | - Laura Conti
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
| | - Marco Brucale
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
| | - Roberto Frigerio
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Jacopo Cardellini
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Angelo Musicò
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Miriam Romano
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Andrea Zendrini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Laura Polito
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Greta Bergamaschi
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Alessandro Gori
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Stefano Panella
- Istituto Cardiocentro TicinoEnte Ospedaliero CantonaleLuganoSwitzerland
| | - Lucio Barile
- Istituto Cardiocentro TicinoEnte Ospedaliero CantonaleLuganoSwitzerland
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Annalisa Radeghieri
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'innovazione BiomedicaPalermoItaly
| | - Marina Cretich
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Francesco Valle
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
| |
Collapse
|
4
|
Musicò A, Zenatelli R, Romano M, Zendrini A, Alacqua S, Tassoni S, Paolini L, Urbinati C, Rusnati M, Bergese P, Pomarico G, Radeghieri A. Surface functionalization of extracellular vesicle nanoparticles with antibodies: a first study on the protein corona "variable". NANOSCALE ADVANCES 2023; 5:4703-4717. [PMID: 37705771 PMCID: PMC10496878 DOI: 10.1039/d3na00280b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023]
Abstract
To be profitably exploited in medicine, nanosized systems must be endowed with biocompatibility, targeting capability, the ability to evade the immune system, and resistance to clearance. Currently, biogenic nanoparticles, such as extracellular vesicles (EVs), are intensively investigated as the platform that naturally recapitulates these highly needed characteristics. EV native targeting properties and pharmacokinetics can be further augmented by decorating the EV surface with specific target ligands as antibodies. However, to date, studies dealing with the functionalization of the EV surface with proteins have never considered the protein corona "variable", namely the fact that extrinsic proteins may spontaneously adsorb on the EV surface, contributing to determine the surface, and in turn the biological identity of the EV. In this work, we explore and compare the two edge cases of EVs modified with the antibody Cetuximab (CTX) by chemisorption of CTX (through covalent binding via biorthogonal click-chemistry) and by formation of a physisorbed CTX corona. The results indicate that (i) no differences exist between the two formulations in terms of binding affinity imparted by molecular recognition of CTX versus its natural binding partner (epidermal growth factor receptor, EGFR), but (ii) significant differences emerge at the cellular level, where CTX-EVs prepared by click chemistry display superior binding and uptake toward target cells, very likely due to the higher robustness of the CTX anchorage.
Collapse
Affiliation(s)
- Angelo Musicò
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
| | - Rossella Zenatelli
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
| | - Miriam Romano
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
| | - Andrea Zendrini
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
| | - Silvia Alacqua
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
| | - Selene Tassoni
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
| | - Lucia Paolini
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia 25123 Brescia Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
- National Center for Gene Therapy and Drugs Based on RNA Technology - CN3 Padova Italy
| | - Giuseppe Pomarico
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia Viale Europa 11 25123 Brescia Italy
- CSGI, Center for Colloid and Surface Science 50019 Florence Italy
| |
Collapse
|
5
|
Kelwick RJR, Webb AJ, Heliot A, Segura CT, Freemont PS. Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e90. [PMID: 38938277 PMCID: PMC11080881 DOI: 10.1002/jex2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid-membrane nanoparticles that are shed or secreted by many different cell types. The EV research community has rapidly expanded in recent years and is leading efforts to deepen our understanding of EV biological functions in human physiology and pathology. These insights are also providing a foundation on which future EV-based diagnostics and therapeutics are poised to positively impact human health. However, current limitations in our understanding of EV heterogeneity, cargo loading mechanisms and the nascent development of EV metrology are all areas that have been identified as important scientific challenges. The field of synthetic biology is also contending with the challenge of understanding biological complexity as it seeks to combine multidisciplinary scientific knowledge with engineering principles, to build useful and robust biotechnologies in a responsible manner. Within this context, cell-free systems have emerged as a powerful suite of in vitro biotechnologies that can be employed to interrogate fundamental biological mechanisms, including the study of aspects of EV biogenesis, or to act as a platform technology for medical biosensors and therapeutic biomanufacturing. Cell-free gene expression (CFE) systems also enable in vitro protein production, including membrane proteins, and could conceivably be exploited to rationally engineer, or manufacture, EVs loaded with bespoke molecular cargoes for use in foundational or translational EV research. Our pilot data herein, also demonstrates the feasibility of cell-free EV engineering. In this perspective, we discuss the opportunities and challenges for accelerating EV research and healthcare applications with cell-free synthetic biology.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Alexander J. Webb
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Amelie Heliot
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | | | - Paul S. Freemont
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
- The London BiofoundryImperial College Translation & Innovation HubLondonUK
- UK Dementia Research Institute Care Research and Technology CentreImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
6
|
Le LHM, Steele JR, Ying L, Schittenhelm RB, Ferrero RL. A new isolation method for bacterial extracellular vesicles providing greater purity and improved proteomic detection of vesicle proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e84. [PMID: 38938280 PMCID: PMC11080860 DOI: 10.1002/jex2.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 06/29/2024]
Abstract
Contaminants within cell culture media often co-isolate with eukaryotic extracellular vesicles (EVs) thus affecting their biological properties. It has yet to be investigated if this is also true for bacterial EVs (BEVs), especially for organisms grown in complex culture media containing animal-derived products. To address this question, we isolated BEVs from the fastidious bacterium Helicobacter pylori grown in either standard Brain Heart Infusion (BHI) medium or BHI depleted of animal-derived products (D-BHI). We show that BEVs prepared from bacteria grown in D-BHI medium have similar morphologies, size ranges and yields to those prepared from standard medium. Similarly, no differences were found in the ability of H. pylori BEVs to induce IL-8 responses in epithelial cells. However, H. pylori BEVs prepared from D-BHI medium were of higher purity than those prepared from standard medium. Importantly, proteomic analyses detected 3.4-fold more H. pylori proteins and 10-fold fewer bovine-derived proteins in BEV samples prepared from D-BHI rather than the standard method. Fifty-seven H. pylori proteins were uniquely detected in BEV samples prepared from D-BHI. In conclusion, we have described an improved method for BEV isolation. Furthermore, we demonstrate how animal-derived products in bacteriological culture media may adversely affect proteomic analyses of BEVs.
Collapse
Affiliation(s)
- Lena Hoang My Le
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Biomedicine Discovery Institute, Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia
| | - Joel R. Steele
- Monash Proteomics and Metabolomics FacilityDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Le Ying
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics FacilityDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Biomedicine Discovery Institute, Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
7
|
Kronenberg PA, Reinehr M, Eichenberger RM, Hasler S, Laurimäe T, Weber A, Deibel A, Müllhaupt B, Gottstein B, Müller N, Hemphill A, Deplazes P. Monoclonal antibody-based localization of major diagnostic antigens in metacestode tissue, excretory/secretory products, and extracellular vesicles of Echinococcus species. Front Cell Infect Microbiol 2023; 13:1162530. [PMID: 37009502 PMCID: PMC10061086 DOI: 10.3389/fcimb.2023.1162530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Alveolar (AE) and cystic echinococcosis (CE) are severe parasitic zoonoses caused by the larval stages of Echinococcus multilocularis and E. granulosus sensu lato, respectively. A panel of 7 monoclonal antibodies (mAbs) was selected against major diagnostic epitopes of both species. The binding capacity of the mAbs to Echinococcus spp. excretory/secretory products (ESP) was analyzed by sandwich-ELISA, where mAb Em2G11 and mAb EmG3 detected in vitro extravesicular ESP of both E. multilocularis and E. granulosus s.s. These findings were subsequently confirmed by the detection of circulating ESP in a subset of serum samples from infected hosts including humans. Extracellular vesicles (EVs) were purified, and the binding to mAbs was analyzed by sandwich-ELISA. Transmission electron microscopy (TEM) was used to confirm the binding of mAb EmG3 to EVs from intravesicular fluid of Echinococcus spp. vesicles. The specificity of the mAbs in ELISA corresponded to the immunohistochemical staining (IHC-S) patterns performed on human AE and CE liver sections. Antigenic small particles designated as ''spems'' for E. multilocularis and ''spegs'' for E. granulosus s.l. were stained by the mAb EmG3IgM, mAb EmG3IgG1, mAb AgB, and mAb 2B2, while mAb Em2G11 reacted with spems and mAb Eg2 with spegs only. The laminated layer (LL) of both species was strongly visualized by using mAb EmG3IgM, mAb EmG3IgG1, mAb AgB, and mAb 2B2. The LL was specifically stained by mAb Em2G11 in E. multilocularis and by mAb Eg2 in E. granulosus s.l. In the germinal layer (GL), including the protoscoleces, a wide staining pattern with all structures of both species was observed with mAb EmG3IgG1, mAb EmG3IgM, mAb AgB, mAb 2B2, and mAb Em18. In the GL and protoscoleces, the mAb Eg2 displayed a strong E. granulosus s.l. specific binding, while mAb Em2G11 exhibited a weak granular E. multilocularis specific reaction. The most notable staining pattern in IHC-S was found with mAb Em18, which solely bound to the GL and protoscoleces of Echinococcus species and potentially to primary cells. To conclude, mAbs represent valuable tools for the visualization of major antigens in the most important Echinococcus species, as well as providing insights into parasite-host interactions and pathogenesis.
Collapse
Affiliation(s)
- Philipp A. Kronenberg
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Marc Eichenberger
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Microbiology and Molecular Biology, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich University of Applied Sciences’ (ZHAW), Wädenswil, Switzerland
| | - Sina Hasler
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Teivi Laurimäe
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ansgar Deibel
- Department of Gastroenterology and Hepatology and Swiss HPB and Transplant Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Beat Müllhaupt
- Department of Gastroenterology and Hepatology and Swiss HPB and Transplant Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bruno Gottstein
- Institute for Infectious Diseases, Medical Faculty, University of Bern, Bern, Switzerland
| | - Norbert Müller
- Institute for Infectious Diseases, Medical Faculty, University of Bern, Bern, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Department of Gastroenterology and Hepatology and Swiss HPB and Transplant Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
White R, Sotillo J, Ancarola ME, Borup A, Boysen AT, Brindley PJ, Buzás EI, Cavallero S, Chaiyadet S, Chalmers IW, Cucher MA, Dagenais M, Davis CN, Devaney E, Duque‐Correa MA, Eichenberger RM, Fontenla S, Gasan TA, Hokke CH, Kosanovic M, Kuipers ME, Laha T, Loukas A, Maizels RM, Marcilla A, Mazanec H, Morphew RM, Neophytou K, Nguyen LT, Nolte‐‘t Hoen E, Povelones M, Robinson MW, Rojas A, Schabussova I, Smits HH, Sungpradit S, Tritten L, Whitehead B, Zakeri A, Nejsum P, Buck AH, Hoffmann KF. Special considerations for studies of extracellular vesicles from parasitic helminths: A community-led roadmap to increase rigour and reproducibility. J Extracell Vesicles 2023; 12:e12298. [PMID: 36604533 PMCID: PMC9816087 DOI: 10.1002/jev2.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.
Collapse
|
9
|
Paolini L, Monguió‐Tortajada M, Costa M, Antenucci F, Barilani M, Clos‐Sansalvador M, Andrade AC, Driedonks TAP, Giancaterino S, Kronstadt SM, Mizenko RR, Nawaz M, Osteikoetxea X, Pereira C, Shrivastava S, Boysen AT, van de Wakker SI, van Herwijnen MJC, Wang X, Watson DC, Gimona M, Kaparakis‐Liaskos M, Konstantinov K, Lim SK, Meisner‐Kober N, Stork M, Nejsum P, Radeghieri A, Rohde E, Touzet N, Wauben MHM, Witwer KW, Bongiovanni A, Bergese P. Large-scale production of extracellular vesicles: Report on the "massivEVs" ISEV workshop. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e63. [PMID: 38939213 PMCID: PMC11080784 DOI: 10.1002/jex2.63] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) large-scale production is a crucial point for the translation of EVs from discovery to application of EV-based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET-OPEN projects, "The Extracellular Vesicle Foundry" (evFOUNDRY) and "Extracellular vesicles from a natural source for tailor-made nanomaterials" (VES4US), organized a workshop entitled "massivEVs" to discuss the potential challenges for translation of EV-based products. This report gives an overview of the topics discussed during "massivEVs", the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field.
Collapse
|