1
|
Zhang X, Ma S, Naz SI, Soderblom EJ, Aliferis C, Kraus VB. Plasma extracellular vesicles carry immune system-related peptides that predict human longevity. GeroScience 2024:10.1007/s11357-024-01454-z. [PMID: 39695065 DOI: 10.1007/s11357-024-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in aging. In this National Institutes on Aging-funded study, we sought to identify circulating extracellular vesicle (EV) biomarkers indicative of longevity. The plasma EV proteome of 48 older adults (mean age 77.2 ± 1.7 years [range 72-80]; 50% female, 50% Black, 50% < 2-year survival, 50% ≥ 10-year survival) was analyzed by high-resolution mass spectrometry and flow cytometry. The ability of EV peptides to predict longevity was evaluated in discovery (n = 32) and validation (n = 16) datasets with areas under receiver operating characteristic curves (AUCs). Longevity-associated large EV (LEV) plasma subpopulations were mainly related to immune cells (HLA-ABC+, CD9+, and CD31+) and muscle cells (MCAD+ and RyR2+). Of 7960 identified plasma EV peptides (519 proteins), 46.4% were related to the immune system and 10.1% to muscle. Compared with short-lived older adults, 756 EV peptides (131 proteins) had a higher abundance, and 130 EV peptides (78 proteins) had a lower abundance in long-lived adults. Among longevity-associated peptides, 437 (58 proteins) were immune system related, and 12 (2 proteins) were muscle related. Using just three to five plasma EV peptides (mainly complement components C2-C6), we achieved high predictive accuracy for longevity (AUC range 0.91-1 in a hold-out validation dataset). Our findings suggest that immune cells produce longevity-associated plasma EVs and elucidate fundamental mechanisms regulating aging and longevity. EV longevity predictors suggest there may be merit in targeting complement pathways to extend lifespan, for instance, with any one of the multiple complement inhibitors currently available or in clinical development.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA.
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Fowler SL, Behr TS, Turkes E, O'Brien DP, Cauhy PM, Rawlinson I, Edmonds M, Foiani MS, Schaler A, Crowley G, Bez S, Ficulle E, Tsefou E, Fischer R, Geary B, Gaur P, Miller C, D'Acunzo P, Levy E, Duff KE, Ryskeldi-Falcon B. Tau filaments are tethered within brain extracellular vesicles in Alzheimer's disease. Nat Neurosci 2024:10.1038/s41593-024-01801-5. [PMID: 39572740 DOI: 10.1038/s41593-024-01801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024]
Abstract
The abnormal assembly of tau protein in neurons is a pathological hallmark of multiple neurodegenerative diseases, including Alzheimer's disease (AD). Assembled tau associates with extracellular vesicles (EVs) in the central nervous system of individuals with AD, which is linked to its clearance and prion-like propagation. However, the identities of the assembled tau species and EVs, as well as how they associate, are not known. Here, we combined quantitative mass spectrometry, cryo-electron tomography and single-particle cryo-electron microscopy to study brain EVs from individuals with AD. We found tau filaments composed mainly of truncated tau that were enclosed within EVs enriched in endo-lysosomal proteins. We observed multiple filament interactions, including with molecules that tethered filaments to the EV limiting membrane, suggesting selective packaging. Our findings will guide studies into the molecular mechanisms of EV-mediated secretion of assembled tau and inform the targeting of EV-associated tau as potential therapeutic and biomarker strategies for AD.
Collapse
Affiliation(s)
- Stephanie L Fowler
- UK Dementia Research Institute at University College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine, University of Oxford, Oxford, UK
| | - Tiana S Behr
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Isadora Rawlinson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marisa Edmonds
- UK Dementia Research Institute at University College London, London, UK
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK
| | - Ari Schaler
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA
| | - Gerard Crowley
- UK Dementia Research Institute at University College London, London, UK
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Ficulle
- UK Dementia Research Institute at University College London, London, UK
| | - Eliona Tsefou
- UK Dementia Research Institute at University College London, London, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Beth Geary
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Pallavi Gaur
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Chelsea Miller
- The Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA.
| | | |
Collapse
|
3
|
Zhang X, Ma S, Naz SI, Soderblom EJ, Jain V, Aliferis C, Kraus VB. Immune System-Related Plasma Pathogenic Extracellular Vesicle Subpopulations Predict Osteoarthritis Progression. Int J Mol Sci 2024; 25:12504. [PMID: 39684216 DOI: 10.3390/ijms252312504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Certain molecules found on the surface or within the cargo of extracellular vesicles (EVs) are linked to osteoarthritis (OA) severity and progression. We aimed to identify plasma pathogenic EV subpopulations that can predict knee radiographic OA (rOA) progression. We analyzed the mass spectrometry-based proteomic data of plasma EVs and synovial fluid (SF) EVs from knee OA patients (n = 16, 50% female). The identified surface markers of interest were further evaluated in plasma EVs from an independent cohort of knee OA patients (n = 30, 47% female) using flow cytometry. A total of 199 peptides with significant correlation between plasma and SF EVs were identified. Of these, 41.7% were linked to immune system processes, 15.5% to inflammatory responses, and 16.7% to the complement system. Crucially, five previously identified knee rOA severity-indicating surface markers-FGA, FGB, FGG, TLN1, and AMBP-were confirmed on plasma EV subpopulations in an independent cohort. These markers' baseline frequencies on large plasma EVs predicted rOA progression with an AUC of 0.655-0.711. Notably, TLN1 was expressed in OA joint tissue, whereas FGA, FGB, FGG, and AMBP were predominantly liver derived. These surface markers define specific pathogenic EV subpopulations, offering potential OA prognostic biomarkers and novel therapeutic targets for disease modification.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27701, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27701, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
| |
Collapse
|
4
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Raju S, Turner ME, Cao C, Abdul-Samad M, Punwasi N, Blaser MC, Cahalane RM, Botts SR, Prajapati K, Patel S, Wu R, Gustafson D, Galant NJ, Fiddes L, Chemaly M, Hedin U, Matic L, Seidman M, Subasri V, Singh SA, Aikawa E, Fish JE, Howe KL. Multiomics unveils extracellular vesicle-driven mechanisms of endothelial communication in human carotid atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599781. [PMID: 38979218 PMCID: PMC11230219 DOI: 10.1101/2024.06.21.599781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background: Carotid atherosclerosis is orchestrated by cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are cell-derived nanoparticles representing a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque. Methods: EVs were enriched via size exclusion chromatography from human carotid endarterectomy samples dissected into paired plaque and marginal zones (symptomatic n=16, asymptomatic n=13). EV cargos were assessed via whole transcriptome miRNA sequencing and mass spectrometry-based proteomics. EV multi-omics were integrated with bulk and single cell RNA-sequencing (scRNA-seq) datasets to predict EV cellular origin and ligand-receptor interactions, and multi-modal biological network integration of EV-cargo was completed. EV functional impact was assessed with endothelial angiogenesis assays. Results: Carotid plaques contained more EVs than adjacent marginal zones, with differential enrichment for EV-miRNAs and EV-proteins in key atherogenic pathways. EV cellular origin analysis suggested that tissue EV signatures originated from endothelial cells (EC), smooth muscle cells (SMC), and immune cells. Integrated tissue vesiculomics and scRNA-seq indicated complex EV-vascular cell communication that changed with disease progression and plaque vulnerability (i.e., symptomatic disease). Plaques from symptomatic patients, but not asymptomatic patients, were characterized by increased involvement of endothelial pathways and more complex ligand-receptor interactions, relative to their marginal zones. Plaque-EVs were predicted to mediate communication with ECs. Pathway enrichment analysis delineated an endothelial signature with roles in angiogenesis and neovascularization - well-known indices of plaque instability. This was validated functionally, wherein human carotid symptomatic plaque EVs induced sprouting angiogenesis in comparison to their matched marginal zones. Conclusion: Our findings indicate that EVs may drive dynamic changes in plaques through EV- vascular cell communication and effector functions that typify vulnerability to rupture, precipitating symptomatic disease. The discovery of endothelial-directed angiogenic processes mediated by EVs creates new therapeutic avenues for atherosclerosis.
Collapse
|
6
|
Pfeiffer A, Bandara G, Petersen JD, Falduto GH, Zimmerberg J, Metcalfe DD, Olivera A. Activation of the receptor KIT induces the secretion of exosome-like small extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e139. [PMID: 38938682 PMCID: PMC11080788 DOI: 10.1002/jex2.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 06/29/2024]
Abstract
The receptor tyrosine kinase (RTK) KIT and its ligand stem cell factor (SCF) are essential for human mast cell (huMC) survival and proliferation. HuMCs expressing oncogenic KIT variants secrete large numbers of extracellular vesicles (EVs). The role KIT plays in regulating EV secretion has not been examined. Here, we investigated the effects of stimulation or inhibition of KIT activity on the secretion of small EVs (sEVs). In huMCs expressing constitutively active KIT, the quantity and quality of secreted sEVs positively correlated with the activity status of KIT. SCF-mediated stimulation of KIT in huMCs or murine MCs, or of transiently expressed KIT in HeLa cells, enhanced the release of sEVs expressing exosome markers. In contrast, ligand-mediated stimulation of the RTK EGFR in HeLa cells did not affect sEV secretion. The release of sEVs induced by either constitutively active or ligand-activated KIT was remarkably decreased when cells were treated with KIT inhibitors, concomitant with reduced exosome markers in sEVs. Similarly, inhibition of oncogenic KIT signalling kinases like PI3K, and MAPK significantly reduced the secretion of sEVs. Thus, activation of KIT and its early signalling cascades stimulate the secretion of exosome-like sEVs in a regulated fashion, which may have implications for KIT-driven functions.
Collapse
Affiliation(s)
- Annika Pfeiffer
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Geethani Bandara
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Jennifer D. Petersen
- Section on Integrative BiophysicsDivision of Basic and Translational BiophysicsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
- Inherited Movement Disorders UnitNeurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Guido H. Falduto
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Joshua Zimmerberg
- Section on Integrative BiophysicsDivision of Basic and Translational BiophysicsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Dean D. Metcalfe
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Ana Olivera
- Mast Cell Biology SectionLaboratory of Allergic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
7
|
Saadeldin IM, Ehab S, Cho J. Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation. Biomark Res 2023; 11:77. [PMID: 37633948 PMCID: PMC10464313 DOI: 10.1186/s40364-023-00518-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
8
|
Petroni D, Fabbri C, Babboni S, Menichetti L, Basta G, Del Turco S. Extracellular Vesicles and Intercellular Communication: Challenges for In Vivo Molecular Imaging and Tracking. Pharmaceutics 2023; 15:1639. [PMID: 37376087 PMCID: PMC10301899 DOI: 10.3390/pharmaceutics15061639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous class of cell-derived membrane vesicles released by various cell types that serve as mediators of intercellular signaling. When released into circulation, EVs may convey their cargo and serve as intermediaries for intracellular communication, reaching nearby cells and possibly also distant organs. In cardiovascular biology, EVs released by activated or apoptotic endothelial cells (EC-EVs) disseminate biological information at short and long distances, contributing to the development and progression of cardiovascular disease and related disorders. The significance of EC-EVs as mediators of cell-cell communication has advanced, but a thorough knowledge of the role that intercommunication plays in healthy and vascular disease is still lacking. Most data on EVs derive from in vitro studies, but there are still little reliable data available on biodistribution and specific homing EVs in vivo tissues. Molecular imaging techniques for EVs are crucial to monitoring in vivo biodistribution and the homing of EVs and their communication networks both in basal and pathological circumstances. This narrative review provides an overview of EC-EVs, trying to highlight their role as messengers of cell-cell interaction in vascular homeostasis and disease, and describes emerging applications of various imaging modalities for EVs visualization in vivo.
Collapse
Affiliation(s)
- Debora Petroni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Costanza Fabbri
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|