1
|
Abstract
It has previously been reported that in ex vivo planar explants prepared from Xenopus laevis embryos, the intracellular pH (pHi) increases in cells of the dorsal ectoderm from stage 10.5 to 11.5 (i.e. 11-12.5 hpf). It was proposed that such increases (potentially due to H+ being extruded, sequestered, or buffered in some manner), play a role in regulating neural induction. Here, we used an extracellular ion-selective electrode to non-invasively measure H+ fluxes at eight locations around the equatorial circumference of intact X. laevis embryos between stages 9-12 (˜7-13.25 hpf). We showed that at stages 9-11, there was a small H+ efflux recorded from all the measuring positions. At stage 12 there was a small, but significant, increase in the efflux of H+ from most locations, but the efflux from the dorsal side of the embryo was significantly greater than from the other positions. Embryos were also treated from stages 9-12 with bafilomycin A1, to block the activity of the ATP-driven H+ pump. By stage 22 (24 hpf), these embryos displayed retarded development, arresting before the end of gastrulation and therefore did not display the usual anterior and neural structures, which were observed in the solvent-control embryos. In addition, expression of the early neural gene, Zic3, was absent in treated embryos compared with the solvent controls. Together, our new in vivo data corroborated and extended the earlier explant-derived report describing changes in pHi that were suggested to play a role during neural induction in X. laevis embryos.
Collapse
|
2
|
Lin LY, Yeh YH, Hung GY, Lin CH, Hwang PP, Horng JL. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol 2018; 9:649. [PMID: 29899708 PMCID: PMC5988855 DOI: 10.3389/fphys.2018.00649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 01/16/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Newman I, Chen SL, Porterfield DM, Sun J. Non-invasive flux measurements using microsensors: theory, limitations, and systems. Methods Mol Biol 2013; 913:101-17. [PMID: 22895754 DOI: 10.1007/978-1-61779-986-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Knowledge of the fluxes of ions and neutral molecules across the outer membrane or boundary of living tissues and cells is an important strand of applied molecular biology. Such fluxes can be measured non-invasively with good resolution in time and space. Two systems (MIFE™ and SIET) have been developed and have become widely used to implement this technique, and they are commercially available. This Chapter is the first comparative description of these two systems. It gives the context, the basic underlying theory, practical limitations inherent in the technique, theoretical developments, guidance on the practicalities of the technique, and the functionality of the two systems. Although the technique is strongly relevant to plant salt tolerance and other plant stresses (drought, temperature, pollutants, waterlogging), it also has rich relevance throughout biomedical studies and the molecular genetics of transport proteins.
Collapse
Affiliation(s)
- Ian Newman
- School of Mathematics and Physics, University of Tasmania, Hobart, TAS, Australia.
| | | | | | | |
Collapse
|
4
|
Wu SC, Horng JL, Liu ST, Hwang PP, Wen ZH, Lin CS, Lin LY. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 2010; 298:C237-50. [DOI: 10.1152/ajpcell.00373.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, a scanning ion-selective electrode technique (SIET) was applied to measure H+, Na+, and NH4+ gradients and apparent fluxes at specific cells on the skin of medaka larvae. Na+ uptake and NH3/NH4+ excretion were detected at most mitochondrion-rich cells (MRCs). H+ probing at MRCs revealed two group of MRCs, i.e., acid-secreting and base-secreting MRCs. Treatment with EIPA (100 μM) blocked 35% of the NH3/NH4+ secretion and 54% of the Na+ uptake, suggesting that the Na+/H+ exchanger (NHE) is involved in Na+ and NH3/NH4+ transport. Low-Na+ water (<0.001 mM) or high-NH4+ (5 mM) acclimation simultaneously increased Na+ uptake and NH3/NH4+ excretion but decreased or even reversed the H+ gradient at the skin and MRCs. The correlation between NH4+ production and H+ consumption at the skin surface suggests that MRCs excrete nonionic NH3 (base) by an acid-trapping mechanism. Raising the external NH4+ significantly blocked NH3/NH4+ excretion and Na+ uptake. In contrast, raising the acidity of the water (pH 7 to pH 6) enhanced NH3/NH4+ excretion and Na+ uptake by MRCs. In situ hybridization and real-time PCR showed that the mRNAs of the Na+/H+ exchanger ( slc9a3) and Rhesus glycoproteins ( Rhcg1 and Rhbg) were colocalized in MRCs of medaka, and their expressions were induced by low-Na+ acclimation. This study suggests a novel Na+/NH4+ exchange pathway in apical membranes of MRCs, in which a coupled NHE and Rh glycoprotein is involved and the Rh glycoprotein may drive the NHE by generating H+ gradients across apical membranes of MRCs.
Collapse
Affiliation(s)
- Shu-Chen Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Jiun-Lin Horng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China; and
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China; and
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, College of Marine Science and Division of Marine Biotechnology, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | - Chan-Shing Lin
- Department of Marine Biotechnology and Resources, College of Marine Science and Division of Marine Biotechnology, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| |
Collapse
|
5
|
McLamore E, Porterfield D, Banks M. Non-invasive self-referencing electrochemical sensors for quantifying real-time biofilm analyte flux. Biotechnol Bioeng 2009; 102:791-9. [DOI: 10.1002/bit.22128] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Horng JL, Lin LY, Hwang PP. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 2009; 296:C682-92. [PMID: 19211913 DOI: 10.1152/ajpcell.00576.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is important to maintain internal pH homeostasis in biological systems. In our previous studies, H(+)-ATPase-rich (HR) cells were found to be responsible for proton secretion in the skin of zebrafish embryos during development. In this study, zebrafish embryos were exposed to acidic and basic waters to investigate the regulation of HR cell acid secretion during pH disturbances. Our results showed that the function of HR cells on the skin of zebrafish embryos can be upregulated in pH 4 water not only by increasing the cell number but also by enlarging the acid-secreting function of single cells. We also identified an "alveolar-type" apical opening under scanning electron microscopy observations of the apical membrane of HR cells, and the density and size of the alveolar type of apical openings were also increased in pH 4 water. p63 and PCNA immunostaining results also showed that additional HR cells in pH 4 water may be differentiated not only from ionocyte precursor cells but also newly proliferating epithelial stem cells.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
7
|
Shih TH, Horng JL, Hwang PP, Lin LY. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 2008; 295:C1625-32. [DOI: 10.1152/ajpcell.00255.2008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mechanism of ammonia excretion in freshwater teleosts is not well understood. In this study, scanning ion-selective electrode technique was applied to measure H+and NH4+fluxes in specific cells on the skin of zebrafish larvae. NH4+extrusion was relatively high in H+pump-rich cells, which were identified as the H+-secreting ionocyte in zebrafish. Minor NH4+extrusion was also detected in keratinocytes and other types of ionocytes in larval skin. NH4+extrusion from the skin was tightly linked to acid secretion. Increases in the external pH and buffer concentration (5 mM MOPS) diminished H+and NH4+gradients at the larval surface. Moreover, coupled decreases in NH4+and H+extrusion were found in larvae treated with an H+-pump inhibitor (bafilomycin A1) or H+-pump gene ( atp6v1a) knockdown. Knockdown of Rhcg1 with morpholino-oligonucleotides also decreased NH4+excretion. This study demonstrates ammonia excretion in epithelial cells of larval skin through an acid-trapping mechanism, and it provides direct evidence for the involvement of the H+pump and an Rh glycoprotein (Rhcg1) in ammonia excretion.
Collapse
|
8
|
Limon A, Reyes-Ruiz JM, Eusebi F, Miledi R. Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus. Proc Natl Acad Sci U S A 2007; 104:15526-30. [PMID: 17881566 PMCID: PMC2000508 DOI: 10.1073/pnas.0706773104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC(50) values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins.
Collapse
Affiliation(s)
- Agenor Limon
- *Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550
| | | | - Fabrizio Eusebi
- Dipartimento di Fisiologia Umana & Farmacologia, Universita' di Roma “Sapienza,” and Neuromed Via Atinese 18, I86077 Isernia, Italy
| | - Ricardo Miledi
- *Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550
- Instituto de Neurobiología, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, 76230, México
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Lin LY, Horng JL, Kunkel JG, Hwang PP. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 2006; 290:C371-8. [PMID: 16148031 DOI: 10.1152/ajpcell.00281.2005] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian kidney excretes its metabolic acid load through the proton-transporting cells, intercalated cells, in the distal nephron and collecting duct. Fish excrete acid through external organs, gill, or skin; however, the cellular function is still controversial. In this study, molecular and electrophysiological approaches were used to identify a novel cell type secreting acid in skin of zebrafish ( Danio rerio) larvae. Among keratinocytes covering the larval surface, novel proton-secreting ionocytes, proton pump (H+-ATPase)-rich cells, were identified to generate strong outward H+flux. The present work demonstrates for the first time, with a noninvasive technique, H+-secreting cells in an intact animal model, the zebrafish, showing it to be a suitable model in which to study the functions of vertebrate transporting epithelia in vivo.
Collapse
Affiliation(s)
- Li-Yih Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
10
|
Rheault MR, O'Donnell MJ. Organic cation transport by Malpighian tubules ofDrosophila melanogaster: application of two novel electrophysiological methods. J Exp Biol 2004; 207:2173-84. [PMID: 15143149 DOI: 10.1242/jeb.01003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYTransport of the prototypical organic cation tetraethylammonium (TEA) by the Malpighian tubules, ureters and gut of Drosophila melanogasterwas studied using two novel electrophysiological techniques. Both techniques exploited the high selectivity of the cation exchanger potassium tetra-p-chlorophenylborate for tetraalkylammonium compounds relative to inorganic cations such as K+. In the first technique, TEA fluxes were measured using a non-invasive self-referencing TEA-selective microelectrode positioned in the unstirred layer near the surface of each tissue. TEA fluxes from bath to lumen as large as 6 pmol cm–2s–1 were measured across the lower (reabsorptive) segment of the Malpighian tubule and the ureter bathed in saline containing 0.1 mmol l–1 TEA. Corresponding bath-to-lumen fluxes across the secretory main segment of the Malpighian tubule and the posterior midgut were∼1 pmol cm–2 s–1. TEA transport by the lower Malpighian tubule was enhanced by hyperpolarization of the basolateral membrane potential and was inhibited by cimetidine, quinidine, vinblastine and verapamil. In the second technique, TEA concentration was measured using a TEA-selective microelectrode positioned in droplets of fluid secreted by Malpighian tubules set up in saline droplets under oil in a Ramsay assay. Results from the Ramsay assay confirmed the dominant role of the lower Malpighian tubule in net transepithelial secretion of TEA and inhibition of TEA transport by cimetidine. Kinetic parameters (Jmax and Kt) were determined using both approaches.
Collapse
Affiliation(s)
- Mark R Rheault
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada L8S 4K1.
| | | |
Collapse
|
11
|
Abstract
Understanding the factors that allow biological systems to reliably self-assemble consistent, highly complex, four dimensional patterns on many scales is crucial for the biomedicine of cancer, regeneration, and birth defects. The role of chemical signaling factors in controlling embryonic morphogenesis has been a central focus in modern developmental biology. While the role of tensile forces is also beginning to be appreciated, another major aspect of physics remains largely neglected by molecular embryology: electromagnetic fields and radiations. The continued progress of molecular approaches to understanding biological form and function in the post genome era now requires the merging of genetics with functional understanding of biophysics and physiology in vivo. The literature contains much data hinting at an important role for bioelectromagnetic phenomena as a mediator of morphogenetic information in many contexts relevant to embryonic development. This review attempts to highlight briefly some of the most promising (and often underappreciated) findings that are of high relevance for understanding the biophysical factors mediating morphogenetic signals in biological systems. These data originate from contexts including embryonic development, neoplasm, and regeneration.
Collapse
Affiliation(s)
- Michael Levin
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02114, USA.
| |
Collapse
|
12
|
Cavarra MS, Assef YA, Kotsias BA. Effects of ionomycin and thapsigargin on ion currents in oocytes of Bufo arenarum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 297:130-7. [PMID: 12945749 DOI: 10.1002/jez.a.10237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, two electrode voltage clamp technique was used to assess the ionic current of oocytes of the South American toad Bufo arenarum and to study the dependence of these currents on the extracellular and intracellular Ca2+ concentrations. Ca2+ chelators, ionomycin -a calcium ionophore- and thapsigargin, a blocker of the Ca2+ pump of the sarcoplasmic reticulum, were used. The main results were the following: Most oocytes showed a voltage activated rectifying conductance. Ionomycin (1 microM) increased inward and outward currents in control solution. The effect of ionomycin was blocked partially at negative potentials and was blocked completely at positive potentials in absence of extracellular Ca2+. When the oocytes were treated with thapsigargin (2 microM) or BAPTA-am, a membrane-permeant intracellular chelator in control solution (10 microM), ionomycin did not increased either inward nor outward currents. The conclusion of our experiments is that there are two sources of Ca2+ for activation of the current induced by ionomycin, the cytoplasmic stores and the extracellular space. We believe ionomycin directly translocates Ca2+ from the SER into the cytoplasm but not from the extracellular medium. Ca2+ entry probably occurs through store-operated-Ca-channels.
Collapse
Affiliation(s)
- M Soledad Cavarra
- Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, UBA, Buenos Aires and Universidad Maimónides, Buenos Aires, Argentina
| | | | | |
Collapse
|