1
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Sarma A. Biological importance and pharmaceutical significance of keratin: A review. Int J Biol Macromol 2022; 219:395-413. [DOI: 10.1016/j.ijbiomac.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
|
3
|
Abstract
Competition for space drives many marine propagules to colonize the external surfaces of other marine organisms, a phenomenon known as epibiosis. Epibiosis appears to be a universal phenomenon among sea turtles and an extensive body of scientific literature exists describing sea turtle-epibiont interactions. When viewed in isolation, however, these epibiont “species lists” provide limited insights into the factors driving patterns in taxonomic diversity on a global scale. We conducted an exhaustive literature review to collate information on sea turtle-epibiont interactions into a global database. As studies involving meio- and micro-epibionts, as well as plants, are limited, we exclusively focused on animal, macro-epibionts (>1 mm). We identified 304 studies that included a combined total of 1,717 sea turtle-epibiont interactions involving 374 unique epibiont taxa from 23 Higher Taxon categories (full Phylum or select phyla differentiated by Subphylum/Class/Subclass). We found that loggerhead turtles hosted the highest taxonomic richness (262 epibiont taxa) and diversity, including representative taxa from 21 Higher Taxon categories, followed by hawksbill, green, olive ridley, leatherback, Kemp’s ridley, and flatback turtles. In addition, the taxonomic richness for all turtle species except leatherbacks was projected to increase with additional studies. We found that taxonomic richness not only varies between species but also between well-studied populations of loggerhead turtles. Lastly, we assessed biases in the current literature and identified knowledge gaps for certain species (e.g., Kemp’s ridleys and flatbacks), life stages (e.g., juveniles), habitats (e.g., oceanic habitats), and geographic regions (e.g., central Pacific, east Atlantic, and east Indian oceans). Our hope is that this database will serve as a foundational platform for future studies investigating global patterns of the diversity, ecological function, and evolutionary origins of sea turtle epibiosis.
Collapse
|
4
|
Alibardi L. Development, structure, and protein composition of the corneous beak in turtles. Anat Rec (Hoboken) 2021; 304:2703-2725. [PMID: 33620157 DOI: 10.1002/ar.24604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 01/28/2023]
Abstract
The beak or rhamphotheca in turtles is a horny lamina that replaces the teeth. Its origin, development, structure, and protein composition are here presented. At mid-development stages, the epidermis of the maxilla and mandible gives rise to placodes that enlarge and merge into laminae through an intense cell proliferation. In these expanding laminae, the epidermis gives rise to 5-8 layers of embryonic epidermis where coarse filaments accumulate for the initial keratinization of cells destined to be sloughed before hatching. Underneath the embryonic epidermis of the beak numerous layers of spindle-shaped beta-cells are produced while they are absent in other skin regions. Beta-cells contain hard corneous material and give rise to the corneous layer of the beak whose external layers desquamate due to wearing and mechanical abrasion. Beta-catenin is present in nuclei of proliferating keratinocytes of the germinal layer likely responding to a wnt signal, but also is part of the adhesive junctions located among beak keratinocytes. The thick corneous layer is made of mature corneocytes connected one to another along their irregular perimeter by an unknown cementing material and junctional remnants. Immunolabeling shows that the main components of the horny beak are Corneous Beta Proteins (CBPs) of 10-15 kDa which genes are located in the Epidermal Differentiation Complex (EDC) of the turtle genome. Specific CBPs, in addition to a lower amount of Intermediate Filament Keratins, accumulate in the horny beak. Compaction of the main proteins with other unknown, minor proteins give rise to the hard corneous material of the beak.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Alibardi L. Development, structure, and protein composition of reptilian claws and hypotheses of their evolution. Anat Rec (Hoboken) 2020; 304:732-757. [PMID: 33015957 DOI: 10.1002/ar.24515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 11/06/2022]
Abstract
Here, we review the development, morphology, genes, and proteins of claws in reptiles. Claws likely form owing to the inductive influence of phalangeal mesenchyme on the apical epidermis of developing digits, resulting in hyperproliferation and intense protein synthesis in the dorsal epidermis, which forms the unguis. The tip of claws results from prevalent cell proliferation and distal movement along most of the ungueal epidermis in comparison to the ventral surface forming the subunguis. Asymmetrical growth between the unguis and subunguis forces beta-cells from the unguis to rotate into the apical part of the subunguis, sharpening the claw tip. Further sharpening occurs by scratching and mechanical wearing. Ungueal keratinocytes elongate, form an intricate perimeter and cementing junctions, and remain united impeding desquamation. In contrast, thin keratinocytes in the subunguis form a smooth perimeter, accumulate less corneous beta proteins (CBPs) and cysteine-poor intermediate filament (IF)-keratins, and desquamate. In addition to prevalent glycine-cysteine-tyrosine rich CBPs, special cysteine-rich IF-keratins are also synthesized in the claw, generating numerous SS bonds that harden the thick and compact corneous material. Desquamation and mechanical wear at the tip ensure that the unguis curvature remains approximately stable over time. Reptilian claws are likely very ancient in evolution, although the unguis differentiated like the outer scale surface of scales, while the subunguis might have derived from the inner scale surface. The few hair-like IF-keratins synthesized in reptilian claws indicate that ancestors of sauropsids and mammals shared cysteine-rich IF-keratins. However, the number of these keratins remained low in reptiles, while new types of CBPs function to strengthen claws.
Collapse
|
6
|
Alibardi L. Cell proliferation, adhesion, and differentiation of keratinocytes in the developing beak and egg-tooth of the turtle Emydura macquarii. PROTOPLASMA 2020; 257:1433-1445. [PMID: 32533364 DOI: 10.1007/s00709-020-01518-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The development of the beak in turtles is poorly known. Beak development has been analyzed by immunofluorescent methods for studying cell proliferation and localization of specific proteins. The flat two-layered epidermis covering the turtle embryo at mid stage of development becomes columnar in the oral region and is associated with an increase of mesenchymal density as in placodes. Using 5BrdU, an intense cell proliferation is observed in the oral and epidermal cells covering the maxilla and mandibular bones, probably stimulated by the underlying mesenchyme in continuation with maxillary and mandibular bones. Expansion and fusion of these placodes give rise to the corneous beak. Beta catenin, mainly junctional but also sparsely detected in nuclei of the germinal layer of the beak epithelium, maintains united the differentiating keratinocytes that form a stratified corneous epithelium. This is initially composed of some layers of large cells that accumulate intermediate filament keratins (IFKs) and give rise to a keratinized embryonic epidermis destined to slough around hatching. The following corneocytes accumulate IFKs but mainly type I/II corneous beta proteins (CBPs) and form a corneous beak. These CBPs appear present with lower intensity in the beak than in the shell, but the higher intensity obtained with a general antibody against CBPs indicates that other CBPs contribute to the composition and stiffness of beak corneous material. The egg-tooth in continuation with the stratum corneum of the maxillary beak develops from a localized proliferation and comprises a thick embryonic epidermis accumulating IFKs under which large beta-cells connected by adhesion proteins accumulate CBPs contributing to hardening of this temporary organ.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
7
|
Alibardi L. Differential cell proliferation and differentiation in developing and growing claws of turtles and alligator determine their shape. ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna Bologna Italy
| |
Collapse
|
8
|
Alibardi L. Corneous beta proteins of the epidermal differentiation complex (EDC) form large part of the corneous material of claws and rhamphothecae in turtles. PROTOPLASMA 2020; 257:1123-1138. [PMID: 32166360 DOI: 10.1007/s00709-020-01494-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The presence of specific protein types in claws and beaks of turtles is poorly known. The present immunological study describes the localization of some of the main corneous beta proteins (CBPs) coded in the epidermal differentiation complex of turtles. Three antibodies here utilized revealed that glycine-, cysteine-, tyrosine-, and valine-rich CBPs are present in differentiating keratinocytes of the beak and of the dorsal (unguis) and ventral (sub-unguis) sides of the claw in different species, semi-aquatic and terrestrial. These proteins provide mechanical resilience to the horny material of claws and beaks through the formation of numerous -S-S- bonds and also hydrophobicity that contributes to preserve wearing of the horny material. The thicker corneous layer of the unguis is made of elongated and partially merged corneocytes, and no or few cells desquamate superficially. Unknown junctional proteins may contribute to maintain corneocytes connected one to another. In contrast, corneocytes of the sub-unguis show an elongated but lenticular shape and form a looser corneous layer whose cells remain separate and desquamate superficially. This suggests that other specific corneous proteins are present in the unguis in comparison with the sub-unguis to determine this different compaction. The wearing process present in the sub-unguis creates a loss of tissue that may favor the slow by continuous apical migration of corneocytes from the unguis into the initial part of the sub-unguis. Beak corneocytes form a compact corneous layer like the unguis but numerous superficial cells desquamate on both outer (epidermal) and inner (oral) sides.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, L.A., Dipartimento di Biologia, via Selmi 3, Univ Bologna, 40126, Bologna, Italy.
| |
Collapse
|
9
|
Buenfil-Rojas AM, Alvarez-Legorreta T, Cedeño-Vazquez JR, Rendón-von Osten J, González-Jáuregui M. Distribution of metals in tissues of captive and wild Morelet's crocodiles and the potential of metallothioneins in blood fractions as a biomarker of metal exposure. CHEMOSPHERE 2020; 244:125551. [PMID: 32050345 DOI: 10.1016/j.chemosphere.2019.125551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The distribution of Hg, Cd, Cu, and Zn in keratinized tissues, blood fractions, and excretory organs, and MTs in blood fractions and excretory organs was determined in captive, semicaptive, and wild Morelet's crocodiles and they were compared to select the most useful non-destructive tissues for the monitoring of metal exposure and to assess the potential of MTs as a biomarker. Our results indicate blood plasma, claws, and caudal scutes altogether are suitable tissues for xenobiotic metals exposure, with concentrations in blood plasma being an indicator of recent exposure, whereas concentrations in claws and caudal scutes are indicators of chronic exposure. Results in keratinized tissues suggest they are an important detoxification strategy in crocodiles, and claws presented the highest concentrations of metals in both captive (Hg = 0.44 ± 0.23 μg g-1, Cd = 11.10 ± 5.89 μg g-1, Cu = 45.98 ± 23.18 μg g-1, Zn = 124.75 ± 75.84 μg g-1) and wild populations (Hg = 1.31 ± 0.32 μg g-1, Cd = 26.47 ± 21.15 μg g-1, Cu = 191.75 ± 165.91 μg g-1, Zn = 265.81 ± 90.62 μg g-1). Thus, they are an appropriate tool for assessing metal exposure in populations where scutes clipping as a marking technique is not allowed, and their collection is less complicated than with other tissues. MTs are a suitable biomarker in blood plasma, whereas in erythrocytes detoxification processes might depend on hemoglobin, rather than MTs. Future studies should consider the implementation of these tools for the monitoring of wild populations.
Collapse
Affiliation(s)
- A M Buenfil-Rojas
- Environmental Biotechnology, Department of Sustainability Sciences, El Colegio de la Frontera Sur, Av. Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico
| | - T Alvarez-Legorreta
- Environmental Biotechnology, Department of Sustainability Sciences, El Colegio de la Frontera Sur, Av. Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico.
| | - J R Cedeño-Vazquez
- Systematics, Ecology and Management of Aquatic Resources, Department of Systematics and Aquatic Ecology, El Colegio de la Frontera Sur. Av. Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico
| | - J Rendón-von Osten
- Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Cssampeche, 24029, Campeche, Mexico
| | - M González-Jáuregui
- Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Cssampeche, 24029, Campeche, Mexico
| |
Collapse
|
10
|
Alibardi L. Immunolocalization of corneous beta proteins of the Epidermal Differentiation Complex in the developing claw of the alligator. Ann Anat 2020; 231:151513. [PMID: 32229243 DOI: 10.1016/j.aanat.2020.151513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022]
Abstract
Knowledge on the sharpness, mechanical and hydration resistance of the corneous material of claws requires information on its constituent proteins. The present immunohistochemical study has localized some of the main corneous beta proteins (CBPs, formerly termed beta-keratins) indicated to be present in alligator claws only by genomic data. Using specific antibodies we show the immunolocalization of representative claws CBPs of the Epidermal Differentiation Complex (Beta A1 group) during late stages of claw development in alligator. Intense but asymmetric proliferation, revealed by 5BrdU-immunolabeling, determines the formation of a curved dorsal part (unguis) and a linear ventral part (sub-unguis). The large beta-cells generated in the unguis and their packing into a solid corneous layer occur before thinner beta-cells appear in the sub-unguis. In the latter, CBPs are also immune-detected but with less intensity compared to the unguis, and corneocytes remain separated and desquamate. It is suggested that at the tip of the developing claw beta-corneocytes move downward into the initial part of the sub-unguis. This circular movement contributes to sharpen the claw as these cells fully cornify and are desquamated from the sub-unguis. Corneocytes of the unguis contain 10-16 kDa proline-serine-rich proteins that also possess high percentages of glycine, cysteine, tyrosine, valine and leucine. Cysteines likely give rise to numerous SS bonds in the constituent hard horny material, tyrosine contribute to packing proteins into a dense horny material while glycine, valine and leucine increase the hydrophobic property of claws in these water-adapted predators.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Italy.
| |
Collapse
|
11
|
Robinson NJ, Lazo-Wasem EM, Butler BO, Lazo-Wasem EA, Zardus JD, Pinou T. Spatial distribution of epibionts on olive ridley sea turtles at Playa Ostional, Costa Rica. PLoS One 2019; 14:e0218838. [PMID: 31490927 PMCID: PMC6730992 DOI: 10.1371/journal.pone.0218838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/22/2019] [Indexed: 12/02/2022] Open
Abstract
There is a wealth of published information on the epibiont communities of sea turtles, yet many of these studies have exclusively sampled epibionts found only on the carapace. Considering that epibionts may be found on almost all body-surfaces and that it is highly plausible to expect different regions of the body to host distinct epibiont taxa, there is a need for quantitative information on the spatial variation of epibiont communities on turtles. To achieve this, we measured how total epibiont abundance and biomass on olive ridley turtles Lepidochelys olivacea varies among four body-areas of the hosts (n = 30). We showed that epibiont loads on olive ridleys are higher, both in terms of number and biomass, on the skin than they are on the carapace or plastron. This contrasts with previous findings for other hard-shelled sea turtles, where epibionts are usually more abundant on the carapace or plastron. Moreover, the arguably most ubiquitous epibiont taxon for other hard-shelled sea turtles, the barnacle Chelonibia spp., only occurred in relatively low numbers on olive ridleys and the barnacles Stomatolepas elegans and Platylepas hexastylos are far more abundant. We postulate that these differences between the epibiont communities of different sea turtle taxa could indicate that the carapaces of olive ridley turtles provide a more challenging substratum for epibionts than do the hard shells of other sea turtles. In addition, we conclude that it is important to conduct full body surveys when attempting to produce a holistic qualitative or quantitative characterization of the epibiont communities of sea turtles.
Collapse
Affiliation(s)
- Nathan J. Robinson
- The Leatherback Trust, Goldring-Gund Marine Biology Station, Playa Grande, Guanacaste, Costa Rica
- Cape Eleuthera Institute, The Cape Eleuthera Island School, Cape Eleuthera, Eleuthera, The Bahamas
- * E-mail:
| | - Emily M. Lazo-Wasem
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Brett O. Butler
- Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70¬–399, Ciudad de México CP, México
| | - Eric A. Lazo-Wasem
- Division of Invertebrate Zoology, Peabody Museum of Natural History, Yale University, New Haven, Connecticut, United States of America
| | - John D. Zardus
- Department of Biology, The Citadel, Charleston, South Carolina, United States of America
| | - Theodora Pinou
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, Connecticut, United States of America
| |
Collapse
|
12
|
Ferreira FS, Brito SV, Coutinho HDM, Souza EP, Almeida WO, Alves RRN. Vertebrates as a Bactericidal Agent. ECOHEALTH 2018; 15:619-626. [PMID: 29922961 DOI: 10.1007/s10393-018-1345-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
In Brazil, although a large number of animals are used in traditional medicine (at least 354 species), information about their biological activities is scarce. In this context, the objective of this study was to evaluate the bactericidal potential of zootherapeutic by-products from animals used in Brazilian traditional medicine and discuss the ecological and cultural consequences of such practices. The species analyzed were: Tupinambis merianae (skin), Iguana iguana (skin and body fat), Crotalus durissus (skin and body fat), Boa constrictor (skin), Euphractus sexcinctus (body fat) and Coendou prehensilis (quills). Experiments were performed with standard clinical strains of Escherichia coli (EC-ATCC10536) and Staphylococcus aureus (SA-ATCC 25923). For the microbiological assay, the zootherapeutics were evaluated using serial microdilutions. The results indicate that none of the samples possess inhibitory activity against standard bacterial strains. The in vitro ineffectiveness of the analyzed products demonstrate a necessity for new pharmacological research that encompass a large number of species of medicinal animals as well as highlight the importance of zootherapy in the context of plans for animal conservation.
Collapse
Affiliation(s)
- F S Ferreira
- Universidade Federal do Vale do São Francisco, Colegiado Acadêmico de Ecologia, Senhor do Bonfim, BA, Brazil.
| | - S V Brito
- Universidade Federal do Maranhão, Centro de Ciências Agrárias e Ambientais, Chapadinha, MA, Brazil
| | - H D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, CE, Brazil
| | - E P Souza
- Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - W O Almeida
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, CE, Brazil
| | - R R N Alves
- Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| |
Collapse
|
13
|
Disulfide-bond-mediated cross-linking of corneous beta-proteins in lepidosaurian epidermis. ZOOLOGY 2017; 126:145-153. [PMID: 29129393 DOI: 10.1016/j.zool.2017.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/29/2023]
Abstract
Corneous beta-proteins (CBPs), formerly referred to as beta-keratins, are major protein components of the epidermis in lepidosaurian reptiles and are largely responsible for their material properties. These proteins have been suggested to form filaments of 3.4nm in thickness and to interact with themselves or with other proteins, including intermediate filament (IF) keratins. Here, we performed immunocytochemical labeling of CBPs in the epidermis of different lizards and snakes and investigated by immunoblotting analysis whether the reduction of disulfide bonds or protein oxidation affects the solubility and mobility of these CBPs. Immunogold labeling suggested that CBPs are partly co-localized with IF-keratins in differentiating and mature beta-cells. The chemical reduction of epidermal proteins from lizard and snake epidermis increased the abundance of CBP-immunoreactive bands in the size range of CBP monomers on Western blots. Conversely, in vitro oxidation of epidermal proteins reduced the abundance of putative CBP monomers. Some modifications in the IF-keratin range were also noted. These results strongly indicate that CBPs associate with IF-keratins and other proteins via disulfide bonds in the epidermis of lizards and snakes, which likely contributes to the resilience of the cornified beta- and alpha-layers of the lepidosaurian epidermis in live animals and after shedding.
Collapse
|
14
|
Ahmad AA, Dorrestein GM, Oh SJWY, Hsu CD. Multi-organ Metastasis of Fibrolamellar Hepatocellular Carcinoma in a Malayan Gharial (Tomistoma schlegelii). J Comp Pathol 2017; 157:80-84. [PMID: 28942308 DOI: 10.1016/j.jcpa.2017.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/14/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
Abstract
A 38-year-old Malayan gharial (Tomistoma schlegelii) with a 2-week history of anorexia was found dead and presented for post-mortem examination. Numerous white firm nodules of various sizes were found on the surface of the liver, both left and right kidneys, the spleen and the serosa of the intestinal tract. All masses had similar microscopical appearance and were diagnosed as metastasizing fibrolamellar hepatocellular carcinoma. Immunohistochemically, the tumour cells did not react with antibodies specific for pan-cytokeratin, vimentin or HepPar-1. The anti-HepPar-1 and anti-pan-cytokeratin antibodies also did not react with normal hepatocytes or exocrine pancreatic cells. This is the first description of fibrolamellar hepatocellular carcinoma with metastases in a crocodilian.
Collapse
Affiliation(s)
- A A Ahmad
- Department of Veterinary Services, Wildlife Reserve Singapore, Singapore.
| | - G M Dorrestein
- Pathology Laboratorium (NOIVBD), Zoo Veldhoven, Wintelresedijk 51, Veldhoven, The Netherlands
| | - S J W Y Oh
- Department of Veterinary Services, Wildlife Reserve Singapore, Singapore
| | - C D Hsu
- Department of Veterinary Services, Wildlife Reserve Singapore, Singapore
| |
Collapse
|
15
|
Abstract
Publication of the English-language version of Hennig's (1966)Phylogenetic Systematicsmarked a turning point in the history of inquiry into the genealogy of life. Hennig catalyzed a long overdue reevaluation of systematic theory and method that should have followed immediately upon publication of Darwin's revolutionary ideas (de Queiroz, 1988). Hennig revitalized the field by taking the Theory of Descent to the core ofsystematics(de Queiroz, 1988, 1992)—the methods for investigating life's genealogy—andtaxonomy—the methods for communicating the results of those investigations (de Queiroz and Gauthier, 1992). Unfortunately, the Darwinian revolution has yet to sweep aside all vestiges of nonevolutionary thinking in this field. To further that goal, and to provide an update of Gauthier et al. (1989), this contribution summarizes current progress in the phylogeny and taxonomy of the major clades of land-egg-laying, or amniote, vertebrates.
Collapse
|
16
|
Alibardi L. Review: cornification, morphogenesis and evolution of feathers. PROTOPLASMA 2017; 254:1259-1281. [PMID: 27614891 DOI: 10.1007/s00709-016-1019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 05/11/2023]
Abstract
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3-4-nm-thick filaments through a different mechanism from that of 8-10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10-12 kDa containing 97-105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14-16 kDa made of 122-146 amino acids), claws and beak proteins (14-17 kDa proteins of 134-164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of BIGEA, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
17
|
Alibardi L. Review: mapping epidermal beta-protein distribution in the lizard Anolis carolinensis shows a specific localization for the formation of scales, pads, and claws. PROTOPLASMA 2016; 253:1405-1420. [PMID: 26597267 DOI: 10.1007/s00709-015-0909-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The epidermis of lizards is made of multiple alpha- and beta-layers with different characteristics comprising alpha-keratins and corneous beta-proteins (formerly beta-keratins). Three main modifications of body scales are present in the lizard Anolis carolinensis: gular scales, adhesive pad lamellae, and claws. The 40 corneous beta-proteins present in this specie comprise glycine-rich and glycine-cysteine-rich subfamilies, while the 41 alpha-keratins comprise cysteine-poor and cysteine-rich subfamilies, the latter showing homology to hair keratins. Other genes for corneous proteins are present in the epidermal differentiation complex, the locus where corneous protein genes are located. The review summarizes the main sites of immunolocalization of beta-proteins in different scales and their derivatives producing a unique map of body distribution for these structural proteins. Small glycine-rich beta-proteins participate in the formation of the mechanically resistant beta-layer of most scales. Small glycine-cysteine beta-proteins have a more varied localization in different scales and are also present in the pliable alpha-layer. In claws, cysteine-rich alpha-keratins prevail over cysteine-poor alpha-keratins and mix to glycine-cysteine-rich beta-proteins. The larger beta-proteins with a molecular mass similar to that of alpha-keratins participate in the formation of the fibrous meshwork present in differentiating beta-cells and likely interact with alpha-keratins. The diverse localization of alpha-keratins, beta-proteins, and other proteins of the epidermal differentiation complex gives rise to variably pliable, elastic, or hard corneous layers in different body scales. The corneous layers formed in the softer or harder scales, in the elastic pad lamellae, or in the resistant claws possess peculiar properties depending on the ratio of specific corneous proteins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology, Geology and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
18
|
Calvaresi M, Eckhart L, Alibardi L. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. J Struct Biol 2016; 194:282-91. [DOI: 10.1016/j.jsb.2016.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 11/17/2022]
|
19
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Moldowan PD, Brooks RJ, Litzgus JD. Turtles with “teeth”: beak morphology of Testudines with a focus on the tomiodonts of Painted Turtles (Chrysemys spp.). ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-015-0288-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Alibardi L. Immunolocalization of large corneous beta-proteins in the green anole lizard (Anolis carolinensis) suggests that they form filaments that associate to the smaller beta-proteins in the beta-layer of the epidermis. J Morphol 2015. [DOI: 10.1002/jmor.20415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; Bologna Italy
| |
Collapse
|
22
|
Alibardi L. Presence of a glycine-cysteine-rich beta-protein in the oberhautchen layer of snake epidermis marks the formation of the shedding layer. PROTOPLASMA 2014; 251:1511-1520. [PMID: 24817366 DOI: 10.1007/s00709-014-0655-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
The complex differentiation of snake epidermis largely depends on the variation in the production of glycine-cysteine-rich versus glycine-rich beta-proteins (beta-keratins) that are deposited on a framework of alpha-keratins. The knowledge of the amino acid sequences of beta-proteins in the snake Pantherophis guttatus has allowed the localization of a glycine-cysteine-rich beta-protein in the spinulated oberhautchen layer of the differentiating shedding complex before molting takes place. This protein decreases in the beta-layer and disappears in mesos and alpha-layers. Conversely, while the mRNA for a glycine-rich beta-protein is highly expressed in differentiating beta-cells, the immunolocalization for this protein is low in these cells. This discrepancy between expression and localization suggests that the epitope in glycine-rich beta-proteins is cleaved or modified by posttranslational processes that take place during the differentiation and maturation of the beta-layer. The present study suggests that among the numerous beta-proteins coded in the snake genome to produce epidermal layers with different textures, the glycine-cysteine-rich beta-protein marks the shedding complex formed between alpha- and beta-layers that allows for molting while its disappearance between the beta- and alpha-layers (mesos region for scale growth) is connected to the formation of the alpha-layers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia, Geologia e Scienze Ambientali, Università di Bologna, Bologna, Italy,
| |
Collapse
|
23
|
Alibardi L. Immunogold labeling shows that glycine‐cysteine‐rich beta‐proteins are deposited in the
O
berhäutchen layer of snake epidermis in preparation to shedding. J Morphol 2014; 276:144-51. [DOI: 10.1002/jmor.20327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/30/2014] [Accepted: 09/14/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di BiologiaGeologia e Scienze AmbientaliUniversità di Bologna Italy
| |
Collapse
|
24
|
Alibardi L. Immunolocalization of alpha-keratins and associated beta-proteins in lizard epidermis shows that acidic keratins mix with basic keratin-associated beta-proteins. PROTOPLASMA 2014; 251:827-837. [PMID: 24276370 DOI: 10.1007/s00709-013-0585-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
The differentiation of the corneous layers of lizard epidermis has been analyzed by ultrastructural immunocytochemistry using specific antibodies against alpha-keratins and keratin associated beta-proteins (KAbetaPs, formerly indicated as beta-keratins). Both beta-cells and alpha-cells of the corneous layer derive from the same germinal layer. An acidic type I alpha-keratin is present in basal and suprabasal layers, early differentiating clear, oberhautchen, and beta-cells. Type I keratin apparently disappears in differentiated beta- and alpha-layers of the mature corneous layers. Conversely, a basic type II alpha-keratin rich in glycine is absent or very scarce in basal and suprabasal layers and this keratin likely does not pair with type I keratin to form intermediate filaments but is weakly detected in the pre-corneous and corneous alpha-layer. Single and double labeling experiments show that in differentiating beta-cells, basic KAbetaPs are added and replace type-I keratin to form the hard beta-layer. Epidermal alpha-keratins contain scarce cysteine (0.2-1.4 %) that instead represents 4-19 % of amino acids present in KAbetaPs. Possible chemical bonds formed between alpha-keratins and KAbetaPs may derive from electrostatic interactions in addition to cross-linking through disulphide bonds. Both the high content in glycine of keratins and KAbetaPs may also contribute to increase the hydrophobicy of the beta- and alpha-layers and the resistance of the corneous layer. The increase of gly-rich KAbetaPs amount and the bonds to the framework of alpha-keratins give rise to the inflexible beta-layer while the cys-rich KAbetaPs produce a pliable alpha-layer.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia, Geologia e Scienze Ambientali, University of Bologna, Bologna, Italy,
| |
Collapse
|
25
|
Alibardi L. Immunolocalization of beta-proteins and alpha-keratin in the epidermis of the soft-shelled turtle explains the lack of formation of hard corneous material. ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; via Selmi 3 40126 Bologna Italy
| |
Collapse
|
26
|
Immunoreactivity to the pre-core box antibody shows that most glycine-rich beta-proteins accumulate in lepidosaurian beta-layer and in the corneous layer of crocodilian and turtle epidermis. Micron 2014; 57:31-40. [DOI: 10.1016/j.micron.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022]
|
27
|
Alibardi L. Immunocytochemistry suggests that the prevalence of a sub-type of beta-proteins determines the hardness in the epidermis of the hard-shelled turtle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:54-63. [DOI: 10.1002/jez.b.22548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/05/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
28
|
Alibardi L. Ultrastructural immunolocalization of alpha-keratins and associated beta-proteins (beta-keratins) suggests a new interpretation on the process of hard and soft cornification in turtle epidermis. Micron 2013; 52-53:8-15. [DOI: 10.1016/j.micron.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
|
29
|
Ultrastructural immunocytochemistry for the central region of keratin associated-beta-proteins (beta-keratins) shows the epitope is constantly expressed in reptilian epidermis. Tissue Cell 2013; 45:241-52. [DOI: 10.1016/j.tice.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
|
30
|
Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L. Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:428-41. [DOI: 10.1002/jez.b.22517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- L. Dalla Valle
- Department of Biology; University of Padova; Padova; Italy
| | - F. Michieli
- Department of Biology; University of Padova; Padova; Italy
| | - F. Benato
- Department of Biology; University of Padova; Padova; Italy
| | - T. Skobo
- Department of Biology; University of Padova; Padova; Italy
| | - L. Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| |
Collapse
|
31
|
Alibardi L. Immunocytochemistry indicates that glycine-rich beta-proteins are present in the beta-layer, while cysteine-rich beta-proteins are present in beta- and alpha-layers of snake epidermis. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna 40126 Italy
| |
Collapse
|
32
|
Immunolocalization of keratin-associated beta-proteins (beta-keratins) in scales of the reptiles Sphenodon punctatus indicates that different beta-proteins are present in beta- and alpha-layers. Tissue Cell 2012; 44:378-84. [DOI: 10.1016/j.tice.2012.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
|
33
|
Alibardi L. Immunolocalization of keratin-associated beta-proteins in developing epidermis of lizard suggests that adhesive setae contain glycine-cysteine-rich proteins. J Morphol 2012; 274:97-107. [DOI: 10.1002/jmor.20081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 01/11/2023]
|
34
|
Alibardi L. Comparative immunolocalization of keratin-associated beta-proteins (beta-keratins) supports a new explanation for the cyclical process of keratinocyte differentiation in lizard epidermis. ACTA ZOOL-STOCKHOLM 2012. [DOI: 10.1111/azo.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
35
|
Alibardi L. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins. J Morphol 2012; 274:175-93. [DOI: 10.1002/jmor.20086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Alibardi L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in the regenerating lizard epidermis indicates a new process for the differentiation of the epidermis in lepidosaurians. J Morphol 2012; 273:1272-9. [DOI: 10.1002/jmor.20057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 11/08/2022]
|
37
|
ALIBARDI L, SEGALLA A, DALLA VALLE L. Distribution of Specific Keratin-Associated Beta-Proteins (Beta-Keratins) in the Epidermis of the Lizard Anolis carolinensis Helps to Clarify the Process of Cornification in Lepidosaurians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:388-403. [DOI: 10.1002/jez.b.22454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- L. ALIBARDI
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| | - A. SEGALLA
- Department of Biology; University of Padova; Padova; Italy
| | - L. DALLA VALLE
- Department of Biology; University of Padova; Padova; Italy
| |
Collapse
|
38
|
Alibardi L, Jaeger K, Valle LD, Eckhart L. Ultrastructural localization of hair keratin homologs in the claw of the lizard Anolis carolinensis. J Morphol 2010; 272:363-70. [DOI: 10.1002/jmor.10920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 08/05/2010] [Accepted: 08/24/2010] [Indexed: 11/06/2022]
|
39
|
Alibardi L, Dalla Valle L, Nardi A, Toni M. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes. J Anat 2010; 214:560-86. [PMID: 19422429 DOI: 10.1111/j.1469-7580.2009.01045.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Italy.
| | | | | | | |
Collapse
|
40
|
Dalla Valle L, Nardi A, Bonazza G, Zuccal C, Emera D, Alibardi L. Forty keratin-associated β-proteins (β-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis carolinensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:11-32. [DOI: 10.1002/jez.b.21306] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Dalla Valle L, Nardi A, Alibardi L. Isolation of a new class of cysteine-glycine-proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis. J Anat 2010; 216:356-67. [PMID: 20070430 DOI: 10.1111/j.1469-7580.2009.01192.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine-glycine-proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine-proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales.
Collapse
|
42
|
Dalla Valle L, Nardi A, Toni M, Emera D, Alibardi L. Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. J Anat 2009; 214:284-300. [PMID: 19207990 DOI: 10.1111/j.1469-7580.2008.01030.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study presents, for the first time, sequences of five beta-keratin cDNAs from turtle epidermis obtained by means of 5'- and 3'-rapid amplification of cDNA ends (RACE) analyses. The deduced amino acid sequences correspond to distinct glycine-proline-serine-tyrosine rich proteins containing 122-174 amino acids. In situ hybridization shows that beta-keratin mRNAs are expressed in cells of the differentiating beta-layers of the shell scutes. Southern blotting analysis reveals that turtle beta-keratins belong to a well-conserved multigene family. This result was confirmed by the amplification and sequencing of 13 genomic fragments corresponding to beta-keratin genes. Like snake, crocodile and avian beta-keratin genes, turtle beta-keratins contain an intron that interrupts the 5'-untranslated region. The length of the intron is variable, ranging from 0.35 to 1.00 kb. One of the sequences obtained from genomic amplifications corresponds to one of the five sequences obtained from cDNA cloning; thus, sequences of a total of 17 turtle beta-keratins were determined in the present study. The predicted molecular weight of the 17 different deduced proteins range from 11.9 to 17.0 kDa with a predicted isoelectric point of 6.8-8.4; therefore, they are neutral to basic proteins. A central region rich in proline and with beta-strand conformation shows high conservation with other reptilian and avian beta-keratins, and it is likely involved in their polymerization. Glycine repeat regions, often containing tyrosine, are localized toward the C-terminus. Phylogenetic analysis shows that turtle beta-keratins are more similar to crocodilian and avian beta-keratins than to those of lizards and snakes.
Collapse
|
43
|
Alibardi L, Toni M. Immunocytochemistry and protein analysis suggest that reptilian claws contain small high cysteine–glycine proteins. Tissue Cell 2009; 41:180-92. [DOI: 10.1016/j.tice.2008.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
44
|
Dalla Valle L, Nardi A, Gelmi C, Toni M, Emera D, Alibardi L. Beta-keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:42-57. [PMID: 18942103 DOI: 10.1002/jez.b.21241] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleotide and deduced amino acid sequences of three beta-keratins of Nile crocodile scales are presented. Using 5'- and 3'-RACE analysis, two cDNA sequences of 1 kb (Cr-gptrp-1) and 1.5 kb (Cr-gptrp-2) were determined, corresponding to 17.4 and 19.3 kDa proteins, respectively, and a pI of 8.0. In genomic DNA amplifications, we determined that the 5'-UTR of Cr-gptrp-2 contains an intron of 621 nucleotides. In addition, we isolated a third gene (Cr-gptrp-3) in genomic DNA amplifications that exhibits seven amino acid differences with Cr-gptrp-2. Genomic organization of the sequenced crocodilian beta-keratin genes is similar to avian beta-keratin genes. Deduced proteins are rich in glycine, proline, serine, and tyrosine, and contain cysteines toward the N- and C-terminal regions, likely for the formation of disulfide bonds. Prediction of the secondary structure suggests that the central core box of 20 amino acids contains two beta-strands and has 75-90% identity with chick beta-keratins. Toward the C-terminus, numerous glycine-glycine-tyrosine and glycine-glycine-leucine repeats are present, which may contribute to making crocodile scales hard. In situ hybridization shows expression of beta-keratin genes in differentiating beta-cells of epidermal transitional layers. Phylogenetic analysis of the available archosaurian and lepidosaurian beta-keratins suggests that feather keratins diversified early from nonfeather keratins, deep in archosaur evolution. However, only the complete knowledge of all crocodilian beta-keratins will confirm whether feather keratins have an origin independent of those in bird scales, which preceded the split between birds and crocodiles.
Collapse
|
45
|
Hallahan DL, Keiper-Hrynko NM, Shang TQ, Ganzke TS, Toni M, Dalla Valle L, Alibardi L. Analysis of gene expression in gecko digital adhesive pads indicates significant production of cysteine- and glycine-rich beta-keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:58-73. [DOI: 10.1002/jez.b.21242] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Alibardi L, Toni M. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis. ACTA ACUST UNITED AC 2008; 43:1-69. [DOI: 10.1016/j.proghi.2008.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
|
47
|
Alibardi L, Toni M, Dalla Valle L. Hard cornification in reptilian epidermis in comparison to cornification in mammalian epidermis. Exp Dermatol 2008; 16:961-76. [PMID: 18031455 DOI: 10.1111/j.1600-0625.2007.00609.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of reptilian hard (beta)-keratins, their nucleotide and amino acid sequence, and the organization of their genes are presented. These 13-19 kDa proteins are basic, rich in glycine, proline and serine, and different from cytokeratins. Their mRNAs are expressed in beta-cells. The central part of beta-keratins (this region has been previously termed 'core-box' and is peculiar of all sauropsid proteins) is composed of two beta-folded regions and shows a high identity with avian beta-keratins. This central part present in all beta-keratins, including feather keratins, is the site of polymerization to build the framework of beta-keratin filaments. Beta-keratins appear cytokeratin-associated proteins. Their central region might have originated in an ancestral glycine-rich protein present in stem reptiles from which beta-keratins evolved and diversified into reptiles and birds. Stem reptiles of the Carboniferous period might have possessed glycine-rich proteins derived from exons/domains corresponding to the variable, glycine-rich region of cytokeratins. Beta-keratins might have derived from a gene coding for small glycine-rich keratin-associated proteins. The glycine-rich regions evolved differently in the lineage leading to modern reptiles and birds versus that leading to mammals. In the reptilian lineage some amino acid regions produced by point mutations and amino acid changes might have given rise to originate the central beta-pleated region. The latter allowed the formation of filamentous proteins (beta-keratins) associated with intermediate filament keratins and replaced them in beta-keratin cells. In the mammalian lineage no beta-pleated region was generated in their matrix proteins, the glycine-rich keratin-associated proteins. The latter evolved as glycine-tyrosine-rich, sulphur-rich, and ultra-sulphur-rich proteins that are used for building hairs, horns and nails.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia, University of Bologna, Bologna, Italy.
| | | | | |
Collapse
|
48
|
Dalla Valle L, Nardi A, Belvedere P, Toni M, Alibardi L. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization. Dev Dyn 2007; 236:1939-53. [PMID: 17576619 DOI: 10.1002/dvdy.21202] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Beta-keratins of reptilian scales have been recently cloned and characterized in some lizards. Here we report for the first time the sequence of some beta-keratins from the snake Elaphe guttata. Five different cDNAs were obtained using 5'- and 3'-RACE analyses. Four sequences differ by only few nucleotides in the coding region, whereas the last cDNA shows, in this region, only 84% of identity. The gene corresponding to one of the cDNA sequences has a single intron present in the 5'-untranslated region. This genomic organization is similar to that of birds' beta-keratins. Cloning and Southern blotting analysis suggest that snake beta-keratins belong to a family of high-related genes as for geckos. PCR analysis suggests a head-to-tail orientation of genes in the same chromosome. In situ hybridization detected beta-keratin transcripts almost exclusively in differentiating oberhautchen and beta-cells of the snake epidermis in renewal phase. This is confirmed by Northern blotting that showed, in this phase, a high expression of two different transcripts whereas only the longer transcript is expressed at a much lower level in resting skin. The cDNA coding sequences encoded putative glycine-proline-serine rich proteins containing 137-139 amino acids, with apparent isoelectric point at 7.5 and 8.2. A central region, rich in proline, shows over 50% homology with avian scale, claw, and feather keratins. The prediction of secondary structure shows mainly a random coil conformation and few beta-strand regions in the central region, likely involved in the formation of a fibrous framework of beta-keratins. This region was possibly present in basic reptiles that originated reptiles and birds.
Collapse
|
49
|
Alibardi L, Toni M. Characterization of keratins and associated proteins involved in the corneification of crocodilian epidermis. Tissue Cell 2007; 39:311-23. [PMID: 17707449 DOI: 10.1016/j.tice.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 11/15/2022]
Abstract
Crocodilian keratinocytes accumulate keratin and form a corneous cell envelope of which the composition is poorly known. The present immunological study characterizes the molecular weight, isoelectric point (pI) and the protein pattern of alpha- and beta-keratins in the epidermis of crocodilians. Some acidic alpha-keratins of 47-68 kDa are present. Cross-reactive bands for loricrin (70, 66, 55 kDa), sciellin (66, 55-57 kDa), and filaggrin-AE2-positive keratins (67, 55 kDa) are detected while caveolin is absent. These proteins may participate in the formation of the cornified cell membranes, especially in hinge regions among scales. Beta-keratins of 17-20 kDa and of prevalent basic pI (7.0-8.4) are also present. Acidic beta-keratins of 10-16 kDa are scarce and may represent altered forms of the original basic proteins. Crocodilian beta-keratins are not recognized by a lizard beta-keratin antibody (A68B), and by a turtle beta-keratin antibody (A685). This result indicates that these antibodies recognize specific epitopes in different reptiles. Conversely, crocodilian beta-keratins cross-react with the Beta-universal antibody indicating they share a specific 20 amino acid epitope with avian beta-keratins. Although crocodilian beta-keratins are larger proteins than those present in birds our results indicate presence of shared epitopes between avian and crocodilian beta-keratins which give good indication for the future determination of the sequence of these proteins.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia, Sezione Anatomia, Comparata, via Selmi 3, 40126, University of Bologna, 40126 Bologna, Italy.
| | | |
Collapse
|
50
|
Alibardi L, Toni M, Dalla Valle L. Expression of beta-keratin mRNAs and proline uptake in epidermal cells of growing scales and pad lamellae of gecko lizards. J Anat 2007; 211:104-16. [PMID: 17553098 PMCID: PMC2375798 DOI: 10.1111/j.1469-7580.2007.00752.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Beta-keratins form a large part of the proteins contained in the hard beta layer of reptilian scales. The expression of genes encoding glycine-proline-rich beta-keratins in normal and regenerating epidermis of two species of gecko lizards has been studied by in situ hybridization. The probes localize mRNAs in differentiating oberhautchen and beta cells of growing scales and in modified scales, termed pad lamellae, on the digits of gecko lizards. In situ localization at the ultrastructural level shows clusters of gold particles in the cytoplasm among beta-keratin filaments of oberhautchen and beta cells. They are also present in the differentiating elongation or setae of oberhautchen cells present in pad lamellae. Setae allow geckos to adhere and climb vertical surfaces. Oberhautchen and beta cells also incorporate tritiated proline. The fine localization of the beta-keratin mRNAs and the uptake of proline confirms the biomolecular data that identified glycine-proline-rich beta-keratin in differentiating beta cells of gecko epidermis. The present study also shows the presence of differentiating and metabolically active cells in both inner and outer oberhautchen/beta cells at the base of the outer setae localized at the tip of pad lamellae. The addition of new beta and alpha cells to the corneous layer near the tip of the outer setae explains the anterior movement of the setae along the apical free-margin of pad lamellae. The rapid replacement of setae ensures the continuous usage of the gecko's adhesive devices, the pad lamellae, during most of their active life.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Bologna, Italy.
| | | | | |
Collapse
|