1
|
Stocker RF. The olfactory pathway of adult and larval Drosophila: conservation or adaptation to stage-specific needs? Ann N Y Acad Sci 2009; 1170:482-6. [PMID: 19686182 DOI: 10.1111/j.1749-6632.2009.03896.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tracing of olfactory projections based on odorant receptor expression has led to an almost complete receptor-to-glomerulus map in adult Drosophila. While most of the glomeruli may be involved in processing of food odors, others appear to be more specialized, for example, responding to CO(2) or to pheromonal cues. Recent studies have shed light on signal processing in the antennal lobe and in higher centers. Newly detected cholinergic excitatory local interneurons in the antennal lobe appear to provide substrates for the broad odor tuning properties of projection neurons. In the mushroom bodies, projection neurons establish an intricate divergence-convergence network with their target cells, allowing complex modes of signal transfer. In the lateral horn, projection neurons innervating candidate pheromone glomeruli appear to segregate from those innervating "normal" glomeruli. Hence, pheromone and food information may be handled by separate channels, consistent with discrete behavioral meanings of the two kinds of signals. The olfactory pathway of the larva shares the general layout of its adult counterpart, with a number of simplifications. The presence of only 21 glomeruli suggests a reduction of primary olfactory "dimensions" compared to adults. The existence of a pheromone-sensing subsystem is unlikely. Larval glomeruli are targets of single, unique sensory neurons rather than being sites of convergence as in the adult. Projection neuron outputs are restricted to single glomeruli in the mushroom body. Their target cells either innervate one or several of them creating substrates for elementary odor coding and coincidence detection. In conclusion, olfactory discrimination capacities of the larva are very likely reduced, consistent with the requirements of a substrate feeder.
Collapse
|
2
|
Gerber B, Stocker RF, Tanimura T, Thum AS. Smelling, tasting, learning: Drosophila as a study case. Results Probl Cell Differ 2009; 47:139-185. [PMID: 19145411 DOI: 10.1007/400_2008_9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding brain function is to account for how the sensory system is integrated with the organism's needs to organize behaviour. We review what is known about these processes with regard to chemosensation and chemosensory learning in Drosophila. We stress that taste and olfaction are organized rather differently. Given that, e.g., sugars are nutrients and should be eaten (irrespective of the kind of sugar) and that toxic substances should be avoided (regardless of the kind of death they eventually cause), tastants are classified into relatively few behavioural matters of concern. In contrast, what needs to be done in response to odours is less evolutionarily determined. Thus, discrimination ability is warranted between different kinds of olfactory input, as any difference between odours may potentially be or become important. Therefore, the olfactory system has a higher dimensionality than gustation, and allows for more sensory-motor flexibility to attach acquired behavioural 'meaning' to odours. We argue that, by and large, larval and adult Drosophila are similar in these kinds of architecture, and that additionally there are a number of similarities to vertebrates, in particular regarding the cellular architecture of the olfactory pathway, the functional slant of the taste and smell systems towards classification versus discrimination, respectively, and the higher plasticity of the olfactory sensory-motor system. From our point of view, the greatest gap in understanding smell and taste systems to date is not on the sensory side, where indeed impressive advances have been achieved; also, a satisfying account of associative odour-taste memory trace formation seems within reach. Rather, we lack an understanding as to how sensory and motor formats of processing are centrally integrated, and how adaptive motor patterns actually are selected. Such an understanding, we believe, will allow the analysis to be extended to the motivating factors of behaviour, eventually leading to a comprehensive account of those systems which make Drosophila do what Drosophila's got to do.
Collapse
Affiliation(s)
- B Gerber
- Universität Würzburg, Biozentrum, Am Hubland, Würzburg, 97074, Germany.
| | | | | | | |
Collapse
|
3
|
Genomic and functional studies of Drosophila sex hierarchy regulated gene expression in adult head and nervous system tissues. PLoS Genet 2008; 3:e216. [PMID: 18039034 PMCID: PMC2082469 DOI: 10.1371/journal.pgen.0030216] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 10/12/2007] [Indexed: 11/19/2022] Open
Abstract
The Drosophila sex determination hierarchy controls all aspects of somatic sexual differentiation, including sex-specific differences in adult morphology and behavior. To gain insight into the molecular-genetic specification of reproductive behaviors and physiology, we identified genes expressed in the adult head and central nervous system that are regulated downstream of sex-specific transcription factors encoded by doublesex (dsx) and fruitless (fru). We used a microarray approach and identified 54 genes regulated downstream of dsx. Furthermore, based on these expression studies we identified new modes of DSX-regulated gene expression. We also identified 90 and 26 genes regulated in the adult head and central nervous system tissues, respectively, downstream of the sex-specific transcription factors encoded by fru. In addition, we present molecular-genetic analyses of two genes identified in our studies, calphotin (cpn) and defective proboscis extension response (dpr), and begin to describe their functional roles in male behaviors. We show that dpr and dpr-expressing cells are required for the proper timing of male courtship behaviors. The fruit fly Drosophila is an excellent model system to use to understand the molecular-genetic basis of male courtship behavior, as the potential for this behavior is specified by a well-understood genetic regulatory hierarchy, called the sex determination hierarchy. The sex hierarchy consists of a pre-mRNA splicing cascade that culminates in the production of sex-specific transcription factors, encoded by doublesex (dsx) and fruitless (fru). dsx specifies all the anatomical differences between the sexes, and fru is required for all aspects of male courtship behavior. In this study, we measure gene expression differences between males and females, and between sex hierarchy mutants and wild-type animals, to identify genes that underlie the differences between males and females. We have performed these studies on adult head and nervous system tissues, as these tissues are important for establishing the potential for behaviors. We have identified several genes regulated downstream of dsx and fru and more extensively characterized two genes that are more highly expressed in males. One gene regulated downstream of dsx is expressed in the retina and is known to have a function in visual transduction. The other gene, regulated downstream of fru, plays a role in the timing of male courtship behavior.
Collapse
|
4
|
Thorne N, Amrein H. Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons. J Comp Neurol 2008; 506:548-68. [PMID: 18067151 DOI: 10.1002/cne.21547] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Members of the Drosophila gustatory receptor (Gr) gene family are generally expressed in chemosensory neurons and are known to mediate the perception of sugars, bitter substrates, CO(2), and pheromones. The Gr gene family consists of 68 members, many of which are organized in gene clusters of up to six genes, yet only expression of about 15 Gr genes has been characterized in detail prior to this study. Here we describe the first comprehensive expression analysis of six highly conserved Gr genes, Gr28a and Gr28b.a to Gr28b.e. Four of these Gr genes are not only expressed in the characteristic pattern associated with previously analyzed Gr genes-chemosensory neurons of the gustatory and olfactory system-but several other types of sensory neurons and neurons in the brain. Specifically, we show that several of the Gr28 genes are expressed in abdominal multidendritic neurons, putative hygroreceptive neurons of the arista, neurons associated with the Johnston's organ, peripheral proprioceptive neurons in the legs, neurons in the larval and adult brain, and oenocytes. Thus, our findings suggest that some Gr genes are utilized in nongustatory roles in the nervous system and tissues involved in proprioception, hygroreception, and other sensory modalities. It is also possible that the Gr28 genes have chemosensory roles in the detection of internal ligands.
Collapse
Affiliation(s)
- Natasha Thorne
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
5
|
Inoshita T, Tanimura T. Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc Natl Acad Sci U S A 2006; 103:1094-9. [PMID: 16415164 PMCID: PMC1347963 DOI: 10.1073/pnas.0502376103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Indexed: 11/18/2022] Open
Abstract
Water perception is important for insects, because they are particularly vulnerable to water loss because their body size is small. In Drosophila, gustatory receptor neurons are located at the base of the taste sensilla on the labellum, tarsi, and wing margins. One of the gustatory receptor neurons in typical sensilla is known to respond to water. To reveal the neural mechanisms of water perception in Drosophila, it is necessary to identify water receptor neurons and their projection patterns. We used a Gal4 enhancer trap strain in which GAL4 is expressed in a single gustatory receptor neuron in each sensillum on the labellum. We investigated the function of these neurons by expressing the upstream activating sequence transgenes, shibire(ts1), tetanus toxin light chain, or diphtheria toxin A chain. Results from the proboscis extension reflex test and electrophysiological recordings indicated that the GAL4-expressing neurons respond to water. We show here that the water receptor neurons project to a specific region in the subesophageal ganglion, thus revealing the water taste sensory map in Drosophila.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Biology, Graduate School of Sciences, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan
| | | |
Collapse
|
6
|
Kimura KI, Ote M, Tazawa T, Yamamoto D. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 2005; 438:229-33. [PMID: 16281036 DOI: 10.1038/nature04229] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/12/2005] [Indexed: 11/09/2022]
Abstract
The Drosophila fruitless (fru) gene product Fru has been postulated to be a neural sex determination factor that directs development of the central nervous system (CNS), thereby producing male-typical courtship behaviour and inducing male-specific muscle. Male-specific Fru protein is expressed in small groups of neurons scattered throughout the CNS of male, but not female, Drosophila. Collectively, these observations suggest that Fru 'masculinizes' certain neurons, thereby establishing neural substrates for male-typical behaviour. However, specific differences between neurons resulting from the presence or absence of Fru are unknown. Previous studies have suggested that Fru might result in sexual differences in the CNS at the functional level, as no overt sexual dimorphism in CNS structure was discernible. Here we identify a subset of fru-expressing interneurons in the brain that show marked sexual dimorphism in their number and projection pattern. We also demonstrate that Fru supports the development of neurons with male-specific dendritic fields, which are programmed to die during female development as a result of the absence of Fru. Thus, Fru expression can produce a male-specific neural circuit, probably used during heterosexual courtship, by preventing cell death in identifiable neurons.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Iwamizawa Campus, Hokkaido University of Education, Iwamizawa 068-8642, Japan.
| | | | | | | |
Collapse
|
7
|
Abstract
The sense of taste is essential for the survival of virtually all animals. Considered a 'primitive sense' and present in the form of chemotaxis in many bacteria, taste is also a sense of sophistication in humans. Regardless, taste behavior is a crucial activity for the world's most abundant (insects) and most successful (mammals) inhabitants, providing a means of discrimination between nutrient-rich substrates, such as sugars and amino acids, from harmful, mostly bitter-tasting chemicals present in many plants. In this review, we present an update on progress in understanding taste perception in the model fruit fly Drosophila melanogaster. An introduction to the fly's taste system will be presented first, followed by a description of relevant behavioral assays developed to quantify taste perception at the organismal level and a short overview of electrophysiological studies performed on taste cells. The focal point will be the recent molecular-genetic investigations of the gustatory receptor (Gr) genes, which is complemented by a comparison between Drosophila and mammalian taste perception and transduction. Finally, we provide a perspective on the future of Drosophila taste research, including three specific proposals that seem uniquely applicable to this exquisite model system and cannot, at least currently, be pursued elsewhere.
Collapse
Affiliation(s)
- Hubert Amrein
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
8
|
Thorne N, Chromey C, Bray S, Amrein H. Taste perception and coding in Drosophila. Curr Biol 2004; 14:1065-79. [PMID: 15202999 DOI: 10.1016/j.cub.2004.05.019] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 04/26/2004] [Accepted: 04/29/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND Discrimination between edible and contaminated foods is crucial for the survival of animals. In Drosophila, a family of gustatory receptors (GRs) expressed in taste neurons is thought to mediate the recognition of sugars and bitter compounds, thereby controlling feeding behavior. RESULTS We have characterized in detail the expression of eight Gr genes in the labial palps, the fly's main taste organ. These genes fall into two distinct groups: seven of them, including Gr66a, are expressed in 22 or fewer taste neurons in each labial palp. Additional experiments show that many of these genes are coexpressed in partially overlapping sets of neurons. In contrast, Gr5a, which encodes a receptor for trehalose, is expressed in a distinct and larger set of taste neurons associated with most chemosensory sensilla, including taste pegs. Mapping the axonal targets of cells expressing Gr66a and Gr5a reveals distinct projection patterns for these two groups of neurons in the brain. Moreover, tetanus toxin-mediated inactivation of Gr66a- or Gr5a-expressing cells shows that these two sets of neurons mediate distinct taste modalities-the perception of bitter (caffeine) and sweet (trehalose) taste, respectively. CONCLUSION Discrimination between two taste modalities-sweet and bitter-requires specific sets of gustatory receptor neurons that express different Gr genes. Unlike the Drosophila olfactory system, where each neuron expresses a single olfactory receptor gene, taste neurons can express multiple receptors and do so in a complex Gr gene code that is unique for small sets of neurons.
Collapse
Affiliation(s)
- Natasha Thorne
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 252 CARL Building/Research Drive, Durham, NC 27710 USA
| | | | | | | |
Collapse
|
9
|
Stocker RF. Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression, and central connectivity. Microsc Res Tech 2001; 55:284-96. [PMID: 11754508 DOI: 10.1002/jemt.1178] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review intends to integrate recent data from the Drosophila olfactory system into an up-to-date account of the neuronal basis of olfaction. It focuses on (1) an electron microscopic study that mapped a large proportion of fruitfly olfactory sensilla, (2) large-scale electrophysiological recordings that allowed the classification of the odor response spectra of a complete set of sensilla, (3) the identification and expression patterns of candidate odorant receptors in the olfactory tissues, (4) central projections of neurons expressing a given odorant receptor, (5) an improved glomerular map of the olfactory center, and (6) attempts to exploit the larval olfactory system as a model of reduced cellular complexity. These studies find surprising parallels between the olfactory systems of flies and mammals, and thus underline the usefulness of the fruitfly as an olfactory model system. Both in Drosophila and in mammals, odorant receptor neurons appear to express only one type of receptor. Neurons expressing a given receptor are scattered in the olfactory tissues but their afferents converge onto a few target glomeruli only. This suggests that in both phyla, the periphery is represented in the brain as a chemotopic map. The major difference between mammals and fruitflies refers to the numbers of receptors, neurons, and glomeruli, which are largely reduced in the latter, and particularly in larvae. Yet, if activated in a combinatorial fashion, even this small set of elements could allow discrimination between a vast array of odorants.
Collapse
Affiliation(s)
- R F Stocker
- Department of Biology and Program in Neuroscience, University of Fribourg, Rue du Musée 10, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
10
|
Laissue P, Reiter C, Hiesinger P, Halter S, Fischbach K, Stocker R. Three-dimensional reconstruction of the antennal lobe inDrosophila melanogaster. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4%3c543::aid-cne7%3e3.0.co;2-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Laissue P, Reiter C, Hiesinger P, Halter S, Fischbach K, Stocker R. Three-dimensional reconstruction of the antennal lobe inDrosophila melanogaster. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4<543::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 1994; 275:3-26. [PMID: 8118845 DOI: 10.1007/bf00305372] [Citation(s) in RCA: 666] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano- and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.
Collapse
Affiliation(s)
- R F Stocker
- Institute of Zoology, University of Fribourg, Switzerland
| |
Collapse
|
13
|
Merritt DJ, Murphey RK. Projections of leg proprioceptors within the CNS of the fly Phormia in relation to the generalized insect ganglion. J Comp Neurol 1992; 322:16-34. [PMID: 1430308 DOI: 10.1002/cne.903220103] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously reported a modality-specific layering of leg sensory axons in the CNS of the flies Phormia regina and Drosophila melanogaster with tactile and gustatory axons projecting into a ventral layer and the proprioceptive hair plate axons into an intermediate layer. Here the description is expanded to include the afferent projections of campaniform sensilla on the legs and wings of Phormia. The leg campaniform sensilla produce a number of patterns of projections within an intermediate layer of their ganglion, some of which project intersegmentally into the other thoracic ganglia. One of these patterns is shared by the hair plate sense organs. Selected wing campaniform sensilla were also stained and showed that there is little or no overlap between the projections of leg and wing campaniform sensilla. Similarities with the arrangement of campaniform sensilla and their central processes in Drosophila melanogaster are discussed. To apply the results of this study to a broader range of insects we provide an atlas of the fly CNS and compare it with the locust, which has been the model for much insect neuroanatomy and neurophysiology.
Collapse
Affiliation(s)
- D J Merritt
- Morrill Science Center, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
14
|
Edgecomb RS, Murdock LL. Central projections of axons from taste hairs on the labellum and tarsi of the blowfly,Phormia regina Meigen. J Comp Neurol 1992; 315:431-44. [PMID: 1373158 DOI: 10.1002/cne.903150406] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Taste hairs are located on the labellum and tarsi of blowflies. These multimodal hairs consist of four functionally distinct chemoreceptors and a mechanoreceptor. By staining selected multimodal hairs, we sought to identify the central projection patterns of multiple and single axons from those hairs. On each side of the labellum there are 11 "largest" hairs (LH). The neurons associated with the anteriormost (LH-1), posteriormost (LH-11), and one lateral (LH-6) hair on the labellum were stained selectively with cobaltous sulfide. The overall projection pattern in the central nervous system (CNS) for axons from LH-1 and LH-11 is similar and differs markedly from axons from LH-6. At least three individual axon-projection patterns were determined for each labellar hair filled, indicating a partial functional organization for axons from multimodal hairs. One identified axon, the dorsalmost axon, has terminal arborizations that do not differ with the location of its associated hair. Another axon, thicker than the others, projects to a region that is distinct from the four thin axons. Within this region the arborizations of the thick axons occupy different areas depending on the location of their associated hair. Neurons from the largest hairs on the distalmost tarsomere (D5) of each leg were also stained and consisted of one thick and four thin axons. All axons except one thin axon from tarsal D5 hairs terminate in their respective leg neuromeres. The remaining thin axon projects to the suboesophageal ganglion ipsilateral to the hair filled and terminates in the same region as a branch of the labellar dorsalmost axon. These data suggest that axonal arbors from multimodal hairs have a limited functional and somatotopic organization in the blowfly CNS.
Collapse
Affiliation(s)
- R S Edgecomb
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
15
|
Stocker RF, Lienhard MC, Borst A, Fischbach KF. Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 1990; 262:9-34. [PMID: 2124174 DOI: 10.1007/bf00327741] [Citation(s) in RCA: 337] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computer reconstruction of the antennal lobe of Drosophila melanogaster has revealed a total of 35 glomeruli, of which 30 are located in the periphery of the lobe and 5 in its center. Several prominent glomeruli are recognizable by their location, size, and shape; others are identifiable only by their positions relative to prominent glomeruli. No obvious sexual dimorphism of the glomerular architecture was observed. Golgi impregnations revealed: (1) Five of the glomeruli are exclusive targets for ipsilateral antennal input, whereas all others receive afferents from both antennae. Unilateral amputation of the third antennal segment led to a loss of about 1000 fibers in the antennal commissure. Hence, about 5/6 of the approximately 1200 antennal afferents per side have a process that extends into the contralateral lobe. (2) Afferents from maxillary palps (most likely from basiconic sensilla) project into both ipsi- and contralateral antennal lobes, yet their target glomeruli are apparently not the same as those of antennal basiconic sensilla. (3) Afferents in the antennal lobe may also stem from pharyngeal sensilla. (4) The most prominent types of interneurons with arborizations in the antennal lobe are: (i) local interneurons ramifying in the entire lobe, (ii) unilateral relay interneurons that extend from single glomeruli into the calyx and the lateral protocerebrum (LPR), (iii) unilateral interneurons that connect several glomeruli with the LPR only, (iv) bilateral interneurons that link a small number of glomeruli in both antennal lobes with the calyx and LPR, (v) giant bilateral interneurons characterized by extensive ramifications in both antennal lobes and the posterior brain and a cell body situated in the midline of the suboesophageal ganglion, and (vi) a unilateral interneuron with extensive arborization in one antennal lobe and the posterior brain and a process that extends into the thorax. These structural results are discussed in the context of the available functional and behavioral data.
Collapse
Affiliation(s)
- R F Stocker
- Institut de Zoologie, Université de Fribourg, Pérolles, Switzerland
| | | | | | | |
Collapse
|