1
|
HIMES KATHERINEE, KLUKAS KATHLEENA, FAHRBACH SUSANE, MESCE KARENA. Hormone-dependent expression of fasciclin II during ganglionic migration and fusion in the ventral nerve cord of the moth Manduca sexta. J Comp Neurol 2008; 509:319-39. [PMID: 18481278 PMCID: PMC3710118 DOI: 10.1002/cne.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ventral nerve cord of holometabolous insects is reorganized during metamorphosis. A prominent feature of this reorganization is the migration of subsets of thoracic and abdominal larval ganglia to form fused compound ganglia. Studies in the hawkmoth Manduca sexta revealed that pulses of the steroid hormone 20-hydroxyecdysone (20E) regulate ganglionic fusion, but little is known about the cellular mechanisms that make migration and fusion possible. To test the hypothesis that modulation of cell adhesion molecules is an essential component of ventral nerve cord reorganization, we used antibodies selective for either the transmembrane isoform of the cell adhesion receptor fasciclin II (TM-MFas II) or the glycosyl phosphatidylinositol-linked isoform (GPI-MFas II) to study cell adhesion during ganglionic migration and fusion. Our observations show that expression of TM-MFas II is regulated temporally and spatially. GPI-MFas II was expressed on the surface of the segmental ganglia and the transverse nerve, but no evidence was obtained for regulation of GPI-MFas II expression during metamorphosis of the ventral nerve cord. Manipulation of 20E titers revealed that TM-MFas II expression on neurons in migrating ganglia is regulated by hormonal events previously shown to choreograph ganglionic migration and fusion. Injections of actinomycin D (an RNA synthesis inhibitor) or cycloheximide (a protein synthesis inhibitor) blocked ganglionic movement and the concomitant increase in TM-MFas II, suggesting that 20E regulates transcription of TM-MFas II. The few neurons that showed TM-MFas II immunoreactivity independent of endocrine milieu were immunoreactive to an antiserum specific for eclosion hormone (EH), a neuropeptide regulator of molting.
Collapse
Affiliation(s)
- KATHERINE E. HIMES
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota 55108
| | - KATHLEEN A. KLUKAS
- Departments of Entomology and Neuroscience, University of Minnesota, Saint Paul, Minnesota 55108
| | - SUSAN E. FAHRBACH
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
| | - KAREN A. MESCE
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota 55108
- Departments of Entomology and Neuroscience, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
2
|
Miller JE, Levine RB. Steroid hormone activation of wandering in the isolated nervous system of Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:1049-62. [PMID: 16788816 DOI: 10.1007/s00359-006-0143-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 05/17/2006] [Accepted: 05/21/2006] [Indexed: 02/02/2023]
Abstract
Steroid hormones modulate motor circuits in both vertebrates and invertebrates. The insect Manduca sexta, with its well-characterized developmental and endocrinological history, is a useful model system in which to study these effects. Wandering is a stage-specific locomotor behavior triggered by the steroid hormone 20-hydroxyecdysone (20E), consisting of crawling and burrowing movements as the animal searches for a pupation site. This study was undertaken to determine whether the wandering motor pattern is activated by direct action of 20E on the CNS. 20E acts on the isolated larval nervous system to induce a fictive motor pattern showing features of crawling and burrowing. The latency of the response to 20E is long, suggestive of a genomic mechanism of action. The abdominal motoneurons or segmental pattern generating circuits are unlikely to be the primary targets of 20E action in inducing fictive wandering. Exposure of the segmental ganglia alone to hormone did not evoke fictive wandering. Therefore, as suggested by an earlier study, the likely site of 20E action is within the brain.
Collapse
Affiliation(s)
- Julie E Miller
- Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
3
|
Knittel LM, Kent KS. Remodeling of an identified motoneuron during metamorphosis: hormonal influences on the growth of dendrites and axon terminals. ACTA ACUST UNITED AC 2005; 63:106-25. [PMID: 15702475 DOI: 10.1002/neu.20121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During metamorphosis of the tobacco hawkmoth Manduca sexta, the femoral depressor motoneuron (FeDe MN) undergoes remodeling of its dendrites and motor terminals. Previous studies have established that remodeling of MNs during metamorphosis is mediated by the same hormones that control metamorphosis: the ecdysteroids and juvenile hormone (JH). During the pupal stage, the ecdysteroids promote adult-specific growth of MNs in the absence of JH, but JH or its synthetic mimics can interfere with ecdysteroid-mediated growth if applied during early sensitive periods. Hence, the application of a JH mimic (JHM) either systemically or locally to a target muscle has been used to distinguish those aspects of motor-terminal remodeling that are controlled by ecdysteroid action on the CNS from those that are influenced by ecdysteroid action on the peripheral targets. Here, we have extended the analysis of central and peripheral hormonal influences on MN remodeling by injecting JHM locally into the CNS thus altering the hormonal environment of the FeDe MN soma without altering the hormonal environment of its target muscle. Our results demonstrate that adult dendritic growth and motor-terminal growth can be experimentally uncoupled, suggesting that each is regulated independently. JHM application to the CNS perturbed dendritic growth, but had no measurable impact on motor-terminal growth. Peripheral actions of ecdysteroids, therefore, appear sufficient to promote the development of adult-specific motor terminals but not the development of an adult-specific dendritic arbor.
Collapse
Affiliation(s)
- Laura M Knittel
- Department of Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, 97239, USA
| | | |
Collapse
|
4
|
Hazelett DJ, Weeks JC. Segment-specific muscle degeneration is triggered directly by a steroid hormone during insect metamorphosis. ACTA ACUST UNITED AC 2005; 62:164-77. [PMID: 15452849 DOI: 10.1002/neu.20077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During metamorphosis of the hawkmoth, Manduca sexta, some larval muscles degenerate while others are respecified for new functions. In larvae, accessory planta retractor muscles (APRMs) are present in abdominal segments 1 to 6 (A1 to A6). APRMs serve as proleg retractors in A3 to A6 and body wall muscles in A1 and A2. At pupation, all APRMs degenerate except those in A2 and A3, which are respecified to circulate hemolymph in pupae. The motoneurons that innervate APRMs, the APRs, likewise undergo segment-specific programmed cell death (PCD), as a direct, cell-autonomous response to the prepupal peak of ecdysteroids. The segment-specific patterns of APR and APRM death differ. The present study tested the hypothesis that APRM death is a direct, cell-autonomous response to the prepupal peak of ecdysteroids. Prevention of the prepupal peak prevented APRM degeneration, and replacement of the peak by infusion of 20-hydroxyecdysone restored the correct segment-specific pattern of APRM degeneration. Surgical denervation of APRMs did not perturb their segment-specific degeneration at pupation, indicating that signals from APRs are not required for the muscles' segment-specific responses to ecdysteroids. The possibility that instructive signals originate from APRMs' epidermal attachment points was tested by treating the epidermis with a juvenile hormone analog to prevent pupal development. This manipulation likewise did not alter APRM fate. We conclude that both the muscles and motoneurons in this motor system respond directly and cell-autonomously to prepupal ecdysteroids to produce a segment-specific pattern of PCD that is matched to the functional requirements of the pupal body.
Collapse
Affiliation(s)
- Dennis J Hazelett
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403-1254, USA
| | | |
Collapse
|
5
|
Duch C, Mentel T. Stage-specific activity patterns affect motoneuron axonal retraction and outgrowth during the metamorphosis of Manduca sexta. Eur J Neurosci 2003; 17:945-62. [PMID: 12653971 DOI: 10.1046/j.1460-9568.2003.02523.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the metamorphosis of holometabolous insects, most larval muscles and sensory neurons are replaced by new adult elements, whereas most motoneurons persist and are remodelled to serve new adult functions. In Manduca sexta, the formation of the anlagen of the adult dorsal longitudinal flight muscle (DLM) is characterized by retraction of axonal terminals and dendrites of persisting larval motoneurons, partial target muscle degeneration and myoblast accumulation during late larval life. Most of these structural changes have been attributed to hormonal control, not only because ecdysteroids govern metamorphosis, but also because motoneurons express ecdysteroid receptors and experimental manipulations of ecdysteroid titres perturb normal development. To test whether activity-dependent mechanisms also came into play, chronic extracellular recordings were conducted in vivo from the five future DLM motoneurons throughout the last 3 days of larval life. Motoneuron activity is regulated developmentally. The types of motoneurons recruited, the number of motor spikes and the duration of bursts change in a stereotypical fashion during different stages, indicating an internal control of motor activity. A characteristic cessation in the activity of the five future DLM motoneurons coincides in time with the retraction of their dendrites and their terminal arborizations, whereas their activation during ecdysis coincides with the onset of new outgrowth. Inducing advanced activity by stimulating the motoneurons selectively with ecdysis-like patterns results in significant outgrowth of their terminal arborizations. Therefore, steroids might act in concert with activity-dependent mechanisms during the postembryonic modifications of neuromuscular systems.
Collapse
Affiliation(s)
- C Duch
- Institute of Biology, Neurobiology, Free University Berlin, Koenigin-Luise Str 28-30, 14195 Berlin, Germany.
| | | |
Collapse
|
6
|
Ball R, Xing B, Bonner P, Shearer J, Cooper RL. Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larvae. Comp Biochem Physiol A Mol Integr Physiol 2003; 134:247-55. [PMID: 12547254 DOI: 10.1016/s1095-6433(02)00243-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The larval Drosophila neuromuscular junction (NMJ) has proven to be an excellent system to test fundamental aspects of synaptic transmission, such as relationships among ion channel function, subtypes of glutamate receptors, and the functions of synaptic proteins in the presynaptic compartment. Recent advances in understanding bi-directional communication between nerves and muscles of Drosophila are helping uncover developmental as well as maintenance cues that could be applicable to all chemical synapses. The development of HL3 medium makes it possible to record synaptic responses at NMJs for prolonged periods of time. We demonstrate that media commonly used to culture CNS neurons and imaginal disks of Drosophila such as Schneider's and M3 completely block glutamatergic synaptic transmission at the NMJ. The depressed postsynaptic excitatory junction potentials (EJPs) partially recover from exposure to such media shortly after switching to the HL3 medium. Preliminary results from NMJs of filleted 3rd instar larvae for 4 days in vitro bathed in a modified HL3 medium show great promise. The resting membrane potential and the EJP amplitudes after 4 days in vitro are normal. These results demonstrate the possibility for chronic studies of developmental regulation in culture, which in some cases are impractical in the whole animal.
Collapse
Affiliation(s)
- Ryan Ball
- Department of Biology, University of Kentucky, 101 Rose Street, 40506-0225, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
7
|
Li H, Cooper RL. Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila larvae during normal and prolonged development. Neuroscience 2002; 106:193-200. [PMID: 11564429 DOI: 10.1016/s0306-4522(01)00263-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hormonal regulation in development and maintenance of synaptic transmission involves examination of both the presynaptic and postsynaptic components and a system in which the hormones can be controlled. We used the ecdysoneless heat-sensitive mutation (l(3)ecd(1)/l(3)ecd(1)) of Drosophila to provide the ability to regulate endogenous ecdysone production at various larval stages. In conjunction, we used the neuromuscular junctions of Drosophila since they offer the advantage of assessable preparations for both morphological and physiological measures. The growth in the Ib and Is motor nerve terminals and the corresponding muscle 6 in segment 4 of the larval Drosophila throughout the third instar stage in the presence of normal and a much reduced endogenous ecdysone level was investigated. Muscle 6 and the motor nerve terminals parallel in growth throughout the third instar. The nerve terminals increase in length and varicosity number, thus providing an increase in the number of synaptic release sites. The ecdysoneless larvae also show an increase in muscle size, however the Is and Ib motor nerve terminals do not mature to the extent of the wild-type ecdysone producing flies. The motor nerve terminal length is shorter with fewer numbers of varicosities per terminal. In spite of a shorter nerve terminal and fewer varicosities, with an increasing muscle fiber, the compound excitatory junctional potentials of Ib and Is in the ecdysoneless flies are larger, which is suggestive of synaptic structural modification. This study demonstrates ecdysone's role in modifying nerve terminal development and neuromuscular junction function.
Collapse
Affiliation(s)
- H Li
- 101 T.H. Morgan School of Biological Sciences, University of Kentucky, Lexington, KY 40506-0225, USA
| | | |
Collapse
|
8
|
Hoffman KL, Weeks JC. Role of caspases and mitochondria in the steroid-induced programmed cell death of a motoneuron during metamorphosis. Dev Biol 2001; 229:517-36. [PMID: 11203705 DOI: 10.1006/dbio.2000.9987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Accessory planta retractor (APR) motoneurons of the hawk moth, Manduca sexta, undergo a segment-specific pattern of programmed cell death (PCD) 24 to 48 h after pupal ecdysis (PE). Cell culture experiments show that the PCD of APRs in abdominal segment 6 [APR(6)s] is a cell-autonomous response to the steroid hormone 20-hydroxyecdysone (20E) and involves mitochondrial demise and cell shrinkage. Twenty-four hours before PE, at stage W3-noon, APR(6)s require further 20E exposure and protein synthesis (as tested with cycloheximide) to undergo PCD, and death can be blocked by a broad-spectrum caspase inhibitor. By PE, death is 20E- and protein synthesis-independent and the caspase inhibitor blocks cell shrinkage but not loss of mitochondrial function. Thus, the commitment to mitochondrial demise precedes the commitment to execution events. The phenotype of necrotic cell death induced by a mitochondrial electron transfer inhibitor differs unambiguously from 20E-induced PCD. By inducing PCD pharmacologically, the readiness of APR(6)s to execute PCD was found to increase during the final larval instar. These data suggest that the 20E-induced PCD of APR(6)s includes a premitochondrial phase which includes 20E-induced synthetic events and apical caspase activity, a mitochondrial phase which culminates in loss of mitochondrial function, and a postmitochondrial phase during which effector caspases are activated and APR(6) is destroyed.
Collapse
Affiliation(s)
- K L Hoffman
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, 97403-1254, USA
| | | |
Collapse
|
9
|
Hoffman KL, Weeks JC. Programmed cell death of an identified motoneuronin vitro: Temporal requirements for steroid exposure and protein synthesis. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4695(19980605)35:3<300::aid-neu7>3.0.co;2-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Streichert LC, Pierce JT, Nelson JA, Weeks JC. Steroid hormones act directly to trigger segment-specific programmed cell death of identified motoneurons in vitro. Dev Biol 1997; 183:95-107. [PMID: 9119119 DOI: 10.1006/dbio.1996.8467] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In larvae of the hawkmoth, Manduca sexta, accessory planta retractor (APR) motoneurons undergo a segment-specific pattern of programmed cell death at pupation. APR death is triggered hormonally by the prepupal peak of the ecdysteroid, 20-hydroxyecdysone (20-HE). Previous studies found no evidence that cellular interactions regulate the segmental pattern of APR death in vivo. To test the hypothesis that 20-HE acts directly on APRs to trigger a cell-autonomous, segment-specific pattern of death, APRs were labeled with the fluorescent dyes DiI or DiA, removed from the nervous system before the prepupal peak, and placed in low-density cell culture. Physiological levels of 20-HE triggered the same segment-specific pattern of APR death in vitro as seen in vivo, both in cultures containing a single APR and in cultures containing two APRs removed from the same donor animal. The presence or absence of contact with other cells did not influence the APRs' responses to 20-HE. The death of APRs in culture was characterized by fragmentation or rounding up of the cell body and fragmentation of the neurites. These findings suggest that intrinsic segmental identity regulates whether these motoneurons live or die when exposed to a steroid hormone during development.
Collapse
Affiliation(s)
- L C Streichert
- Institute of Neuroscience, University of Oregon, Eugene 97403-1254, USA
| | | | | | | |
Collapse
|
11
|
Zakeri Z, Quaglino D, Latham T, Woo K, Lockshin RA. Programmed cell death in the tobacco hornworm, Manduca sexta: alteration in protein synthesis. Microsc Res Tech 1996; 34:192-201. [PMID: 8743407 DOI: 10.1002/(sici)1097-0029(19960615)34:3<192::aid-jemt2>3.0.co;2-s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The metamorphic death of the labial glands of the tobacco hornworm, Manduca sexta, occurs during a 4 day period during larva-to-pupa metamorphosis. The earliest changes marking the death of the cell, all occurring on the first day, are a sharp drop in protein synthesis, coupled with the selective survival or upregulation of a few messages. An early rearrangement of the rough endoplasmic reticulum is presumably related to the generalized decrease in protein synthesis. Lysosomal acid phosphatase also begins to increase very early, and ultimately the bulk of the cytoplasm is destroyed in autophagic vacuoles, but activation of lysosomes does not account for the decreased rate of synthesis. The mechanism by which most protein synthesis is depressed remains under investigation.
Collapse
Affiliation(s)
- Z Zakeri
- Department of Biology, Queens College, Flushing, New York 11367, USA
| | | | | | | | | |
Collapse
|
12
|
Weeks JC, Davidson SK. Influence of interganglionic interactions on steroid-mediated dendritic reorganization and death of proleg motor neurons during metamorphosis in Manduca sexta. JOURNAL OF NEUROBIOLOGY 1994; 25:535-54. [PMID: 8071659 DOI: 10.1002/neu.480250507] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Manduca sexta, the larval abdominal prolegs and their muscles degenerate at pupation. The proleg motor neurons undergo a period of dendritic regression, after which a specific subset of them dies. The surviving motor neurons undergo dendritic outgrowth during pupal-adult development, and most die after adult emergence. All of these events are regulated hormonally by ecdysteroids and juvenile hormone, but interactions of the motor neurons with other cells may potentially contribute as well. To investigate the possible influence of interganglionic neural interactions, we chronically isolated individual abdominal ganglia by severing the adjacent rostral and caudal connectives in the larval stage. Subsequent metamorphic changes in proleg motor neurons were examined in the isolated ganglia and ganglia adjacent to the isolated ganglia. Two abnormalities were observed: (1) some imprecision in the timing of motor neuron death, both at pupation and after adult emergence, and (2) the growth of ectopic neurites outside the neuropil boundaries during pupal-adult development (in ganglia with or without neuromas caused by connective transections). Other aspects of proleg motor neuron metamorphosis, including the segment-specific death of motor neurons at pupation, were the same as that in intact and sham-operated insects. Thus, interganglionic interactions appear to play a relatively minor role in the steroid-mediated metamorphic transformation of proleg motor neurons.
Collapse
Affiliation(s)
- J C Weeks
- Institute of Neuroscience, University of Oregon, Eugene 97403
| | | |
Collapse
|
13
|
Reorganization of the ventral nerve cord in the moth Manduca sexta (L.) (Lepidoptera : Sphingidae). ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0020-7322(94)90013-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Truman JW, Talbot WS, Fahrbach SE, Hogness DS. Ecdysone receptor expression in the CNS correlates with stage-specific responses to ecdysteroids during Drosophila and Manduca development. Development 1994; 120:219-34. [PMID: 8119129 DOI: 10.1242/dev.120.1.219] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In insects, the ecdysteroids act to transform the CNS from its larval to its adult form. A key gene in this response is the ecdysone receptor (EcR), which has been shown in Drosophila to code for 3 protein isoforms. Two of these isoforms, EcR-A and EcR-B1, are prominently expressed in the CNS and we have used isoform-specific antibodies to examine their fluctuations through postembryonic life. EcR expression at the onset of metamorphosis is extremely diverse but specific patterns of EcR expression correlate with distinct patterns of steroid response. Most larval neurons show high levels of EcR-B1 at the start of metamorphosis, a time when they lose larval features in response to ecdysteroids. Earlier, during the larval molts, the same cells have no detectable receptors and show no response to circulating ecdysteroids; later, during the pupal-adult transformation, they switch to EcR-A expression and respond by maturing to their adult form. During the latter period, a subset of the larval neurons hyperexpress EcR-A and these cells are fated to die after the emergence of the adult. The stem cells for the imaginal neurons show prominent EcR-B1 expression during the last larval stage correlated with their main proliferative period. Most imaginal neurons, by contrast, express only EcR-A when they subsequently initiate maturation at the start of metamorphosis. The imaginal neurons of the mushroom bodies are unusual amongst imaginal neurons in expressing the B1 isoform at the start of metamorphosis but they also show regressive changes at this time as they lose their larval axons. Imaginal neurons of the optic lobe show a delayed expression of EcR-B1 through the period when cell-cell interactions are important for establishing connections within this region of the CNS. Overall, the appearance of the two receptor isoforms in cells correlates with different types of steroid responses: EcR-A predominates when cells are undergoing maturational responses whereas EcR-B1 predominates during proliferative activity or regressive responses. The heterogeneity of EcR expression at the start of metamorphosis presumably reflects the diverse origins and requirements of the neurons that nevertheless are all exposed to a common hormonal signal.
Collapse
Affiliation(s)
- J W Truman
- Department of Zoology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
15
|
Abstract
The precocious induction in vivo and in culture of insect and amphibian metamorphosis by exogenous ecdysteroids and thyroid hormones, and its retardation or inhibition by juvenile hormone and prolactin, respectively, has allowed the analysis of such diverse processes of post-embryonic development as morphogenesis, tissue remodelling, functional reorganization, and programmed cell death. Metamorphosis in vertebrates also shares many similarities with mammalian development in the late foetal and perinatal period. This review describes the regulation of expression of some of the 'adult' gene products during metamorphosis in invertebrates and vertebrates. Recent studies on metamorphosis have revealed the important role played by auto-induction of hormone receptor genes, based on which a model will be presented to explain the activation of 'downstream' genes which give rise to the adult phenotype. It will also be argued that metamorphosis is an ideal model for analyzing some of the major mechanisms governing post-embryonic development.
Collapse
Affiliation(s)
- J R Tata
- Laboratory of Developmental Biochemistry, National Institute for Medical Research, London, UK
| |
Collapse
|
16
|
Weeks JC, Davidson SK, Debu BH. Effects of a protein synthesis inhibitor on the hormonally mediated regression and death of motoneurons in the tobacco hornworm, Manduca sexta. JOURNAL OF NEUROBIOLOGY 1993; 24:125-40. [PMID: 8419521 DOI: 10.1002/neu.480240110] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The larval-pupal transformation of Manduca sexta is accompanied by the loss of the abdominal prolegs. The proleg muscles degenerate, the dendritic arbors of proleg motoneurons regress, and a subset of the proleg motoneurons dies. The regression and death of proleg motoneurons are triggered by the prepupal peak of ecdysteroids in the hemolymph. To investigate the possible involvement of protein synthesis in these events, we gave insects repeated injections of the protein synthesis inhibitor, cycloheximide (CHX), during the prepupal peak. Examination of insects 3-5 days following CHX treatment showed that CHX inhibited the death of proleg motoneurons and the production of pupal cuticle in a dose-dependent fashion. When insects were allowed to survive for 10 days after the final CHX injection, motoneuron death and pupal cuticle production sometimes occurred belatedly, apparently in response to the ecdysteroid rise that normally triggers adult development. CHX treatments that inhibited motoneuron death were less effective in inhibiting dendritic regression in the same neurons. In another set of experiments, abdomens were isolated from the ecdysteroid-secreting glands prior to the prepupal peak, and infused with 20-hydroxyecdysone (20-HE). Single injections of CHX delivered just prior to the start of the 20-HE infusion inhibited motoneuron death and pupal cuticle production, but in the range of doses tested, did not prevent dendritic regression. Our findings suggest that protein synthesis is a required step in the steroid-mediated death of proleg motoneurons, and that dendritic regression is less susceptible to inhibition by CHX than is motoneuron death.
Collapse
Affiliation(s)
- J C Weeks
- Institute of Neuroscience, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
17
|
Prugh J, Della Croce K, Levine RB. Effects of the steroid hormone, 20-hydroxyecdysone, on the growth of neurites by identified insect motoneurons in vitro. Dev Biol 1992; 154:331-47. [PMID: 1426641 DOI: 10.1016/0012-1606(92)90072-o] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During metamorphosis in the hawkmoth, Manduca sexta, identified larval leg motoneurons survive the degeneration of their larval targets to innervate new muscles of the adult legs. The dendrites and axon terminals of these motoneurons regress at the end of the larval stage and then regrow during adult development. Previous studies have implicated the insect steroid, 20-hydroxyecdysone (20-HE), in similar examples of dendritic reorganization during metamorphosis. The present studies were undertaken to test whether 20-HE acts directly on the leg motoneurons to regulate dendritic growth. Larval leg motoneurons were labeled with a fluorescent dye to permit their identification in culture following the dissociation of thoracic ganglia at later stages of development. Leg motoneurons isolated from early pupal stage animals (just before the normal onset of dendritic regrowth) survived in vitro and grew processes regardless of whether 20-HE was added to the culture medium. The extent of process outgrowth, however, as measured by the total length of all processes and the number of branches, was significantly greater for motoneurons maintained in the presence of 20-HE. The enhancement could be blocked by the addition of a juvenile hormone analog. By contrast, larval leg motoneurons that were isolated just before the normal period of dendritic regression did not show enhanced growth of neurites in the presence of 20-HE. The results suggest that 20-HE acts directly on the leg motoneurons to regulate the growth of processes during metamorphosis.
Collapse
Affiliation(s)
- J Prugh
- Division of Neurobiology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
18
|
Levine RB, Fahrbach SE, Weeks JC. Steroid hormones and the reorganization of the nervous system during insect metamorphosis. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/1044-5765(91)90053-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|