1
|
de Amaral M, Von Dentz MC, Cubas GK, de Oliveira DR, Simões LAR, Model JFA, Oliveira GT, Kucharski LC. Coping with dry spells: Investigating oxidative balance and metabolic responses in the subtropical tree frog Boana pulchella (Hylidae) during dehydration and rehydration exposure. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111728. [PMID: 39147093 DOI: 10.1016/j.cbpa.2024.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In the face of climate change, understanding the metabolic responses of vulnerable animals to abiotic stressors like anurans is crucial. Water restriction and subsequent dehydration is a condition that can threaten populations and lead to species decline. This study examines metabolic variations in the subtropical frog Boana pulchella exposed to dehydration resulting in a 40% loss of body water followed by 24 h of rehydration. During dehydration, the scaled mass index decreases, and concentrations of metabolic substrates alter in the brain and liver. The activity of antioxidant enzymes increases in the muscle and heart, emphasizing the importance of catalase in the rehydration period. Glycogenesis increases in the muscle and liver, indicating a strategy to preserve tissue water through glycogen storage. These findings suggest that B. pulchella employs specific metabolic mechanisms to survive exposure to water restriction, highlighting tissue-specific variations in metabolic pathways and antioxidant defenses. These findings contribute to a deeper understanding of anuran adaptation to water stress and emphasize the importance of further research in other species to complement existing knowledge and provide physiological tools to conservation.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maiza Cristina Von Dentz
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo Kasper Cubas
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo Reis de Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Leonardo Airton Ressel Simões
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Felipe Argenta Model
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Costanzo JP. Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica. J Comp Physiol B 2018; 189:1-15. [PMID: 30390099 DOI: 10.1007/s00360-018-1189-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
The terrestrially hibernating wood frog (Rana sylvatica) is well-known for its iconic freeze tolerance, an overwintering adaptation that has received considerable investigation over the past 35 years. Virtually, all of this research has concerned frogs indigenous to the temperate regions of its broad range within North America. However, recent investigations have shown that frogs of subarctic populations are extremely cold hardy, being capable of surviving freezing for longer periods and at much lower temperatures as compared to conspecifics from temperate regions. Their exceptional freeze tolerance is partly supported by an enhanced cryoprotectant system that uses very high levels of urea and glucose to limit ice formation, regulate metabolism, and protect macromolecules and cellular structures from freezing/thawing stresses. In the weeks before they begin hibernating, northern frogs undertake radical physiological transitions, such as depletion of fat stores and catabolism of muscle protein, that prime the cryoprotectant system by accruing urea and stockpiling glycogen from which glucose is mobilized during freezing. Concentrations of cryoprotectants ultimately achieved in Alaskan frogs when freezing occurs vary among tissues but generally are higher than those of frogs inhabiting milder climates. This review summarizes the molecular, biochemical, and physiological adaptations permitting this northern phenotype to survive the long and harsh winters of the region.
Collapse
Affiliation(s)
- Jon P Costanzo
- Department of Biology, Miami University, 45056, Oxford, OH, USA.
| |
Collapse
|
3
|
Wu CW, Tessier SN, Storey KB. Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica. Cell Stress Chaperones 2018; 23:1205-1217. [PMID: 29951989 PMCID: PMC6237678 DOI: 10.1007/s12192-018-0926-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Freeze tolerance is an adaptive response utilized by the wood frog Rana sylvatica to endure the sub-zero temperatures of winter. Survival of whole body freezing requires wood frogs to trigger cryoprotective mechanisms to deal with potential injuries associated with conversion of 65-70% of total body water into ice, including multiple consequences of ice formation such as cessation of blood flow and cell dehydration caused by water loss into ice masses. To understand how wood frogs defend against these stressors, we measured the expression of proteins known to be involved in the antioxidant defense and protein chaperone stress responses in brain and heart of wood frogs comparing freezing, anoxia, and dehydration stress. Our results showed that most stress proteins were regulated in a tissue- and stress-specific manner. Notably, protein levels of the cytosolic superoxide dismutase (SOD1) were upregulated by 1.37 ± 0.11-fold in frozen brain, whereas the mitochondrial SOD2 isoform rose by 1.38 ± 0.37-fold in the heart during freezing. Catalase protein levels were upregulated by 3.01 ± 0.47-fold in the brain under anoxia stress, but remained unchanged in the heart. Similar context-specific regulatory patterns were also observed for the heat shock protein (Hsp) molecular chaperones. Hsp27 protein was down-regulated in the brain across the three stress conditions, whereas the mitochondrial Hsp60 was upregulated in anoxic brain by 1.73 ± 0.38-fold and by 2.13 ± 0.57-fold in the frozen heart. Overall, our study provides a snapshot of the regulatory expression of stress proteins in wood frogs under harsh environment conditions and shows that they are controlled in a tissue- and stress-specific manner.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- BioMEMS Resource Center and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
4
|
Urea and plasma ice-nucleating proteins promoted the modest freeze tolerance in Pleske's high altitude frog Nanorana pleskei. J Comp Physiol B 2018; 188:599-610. [PMID: 29663031 DOI: 10.1007/s00360-018-1159-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
Abstract
The frog Nanorana pleskei (Dicroglossidae) is indigenous to the Qinghai-Tibetan Plateau. To identify its strategies in coping with the cold climate, we measured the hibernacula microhabitat temperature during winter. We also examined the freezing-induced and seasonal variation of several putative cryoprotectants in the heart, liver, brain, kidney and muscle, as well as ice-nucleating protein in plasma. Our results showed that N. pleskei survived exposure to temperatures as low as - 2.5 ± 0.40 °C during hibernation, which was lower than the body fluid freezing point (- 0.43 ± 0.01 °C). Experimental freezing results indicated that four of six specimens could survive 12 h of freezing at - 2 °C with 27.5 ± 2.5% of total body water as ice. Concomitantly, the water contents of all examined organs decreased after being frozen for 24 h at - 2 °C. The levels of urea in heart significantly increased from 71.05 ± 7.19 to 104.59 ± 10.11 µmol g-1, and in muscle increased from 72.23 ± 3.40 to 102.42 ± 6.24 µmol g-1 when exposed to freezing; other cryoprotectants (glucose, glycerol, and lactate) showed no significant increase in all examined tissues. In addition, urea levels were significantly higher in fall-collected frogs than summer-collected frogs in the tissues of heart, brain, kidney, and muscle. The results of differential scanning calorimetry indicated that the ice-nucleating protein was present only in cold-acclimated and fall-collected frogs' plasma. We concluded that the urea serves as a primary cryoprotectant and accumulates in anticipation of freezing in N. pleskei, coupling with the seasonal production of plasma ice-nucleating protein.
Collapse
|
5
|
Regulation of glutamate dehydrogenase (GDH) in response to whole body freezing in wood frog liver linked to differential acetylation and ADP-ribosylation. Arch Biochem Biophys 2017; 636:90-99. [DOI: 10.1016/j.abb.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 12/31/2022]
|
6
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One 2015; 10:e0117234. [PMID: 25688861 PMCID: PMC4331536 DOI: 10.1371/journal.pone.0117234] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/19/2014] [Indexed: 01/29/2023] Open
Abstract
Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to -8°C, either directly or following three cycles of freezing/thawing between -4 and 0°C, or -16°C increased the liver's synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.
Collapse
|
8
|
Rosendale AJ, Lee RE, Costanzo JP. Effect of physiological stress on expression of glucose transporter 2 in liver of the wood frog, Rana sylvatica. ACTA ACUST UNITED AC 2014; 321:566-76. [PMID: 25384572 DOI: 10.1002/jez.1885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/18/2014] [Accepted: 07/28/2014] [Indexed: 11/11/2022]
Abstract
Glucose transporters (GLUTs) have been implicated in the survival of various physiological stresses in mammals; however, little is known about the role of these proteins in stress tolerance in lower vertebrates. The wood frog (Rana sylvatica), which survives multiple winter-related stresses by copiously mobilizing hepatic glycogen stores, is an interesting subject for the study of glucose transport in amphibians. We examined the effects of several physiological stresses on GLUT2 protein and mRNA levels in the liver of R. sylvatica. Using immunoblotting techniques to measure relative GLUT2 abundance, we found that GLUT2 numbers increased in response to organismal freezing, hypoxia exposure, and glucose loading; whereas, experimental dehydration and urea loading did not affect GLUT2 abundance. GLUT2 mRNA levels, assessed using quantitative real-time polymerase chain reaction, changed in accordance with protein abundance for most stresses, indicating that transcriptional regulation of GLUT2 occurs in response to stress. Overall, hepatic GLUT2 seems to be important in stress survival in R. sylvatica and is regulated to meet the physiological need to accumulate glucose.
Collapse
|
9
|
Identification and Expression of a Putative Facilitative Urea Transporter in Three Species of True Frogs (Ranidae): Implications for Terrestrial Adaptation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/148276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urea transporters (UTs) help mediate the transmembrane movement of urea and therefore are likely important in amphibian osmoregulation. Although UTs contribute to urea reabsorption in anuran excretory organs, little is known about the protein’s distribution and functions in other tissues, and their importance in the evolutionary adaptation of amphibians to their environment remains unclear. To address these questions, we obtained a partial sequence of a putative UT and examined relative abundance of this protein in tissues of the wood frog (Rana sylvatica), leopard frog (R. pipiens), and mink frog (R. septentrionalis), closely related species that are adapted to different habitats. Using immunoblotting techniques, we found the protein to be abundant in the osmoregulatory organs but also present in visceral organs, suggesting that UTs play both osmoregulatory and nonosmoregulatory roles in amphibians. UT abundance seems to relate to the species’ habitat preference, as levels of the protein were higher in the terrestrial R. sylvatica, intermediate in the semiaquatic R. pipiens, and quite low in the aquatic R. septentrionalis. These findings suggest that, in amphibians, UTs are involved in various physiological processes, including solute and water dynamics, and that they have played a role in adaptation to the osmotic challenges of terrestrial environments.
Collapse
|
10
|
Rosendale AJ, Philip BN, Lee RE, Costanzo JP. Cloning, characterization, and expression of glucose transporter 2 in the freeze-tolerant wood frog, Rana sylvatica. Biochim Biophys Acta Gen Subj 2014; 1840:1701-11. [DOI: 10.1016/j.bbagen.2013.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/01/2013] [Accepted: 12/09/2013] [Indexed: 01/22/2023]
|
11
|
Costanzo JP, do Amaral MCF, Rosendale AJ, Lee RE. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol 2013; 216:3461-73. [DOI: 10.1242/jeb.089342] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We investigated hibernation physiology and freeze tolerance in a population of the wood frog, Rana sylvatica, indigenous to Interior Alaska, USA, near the northernmost limit of the species' range. Winter acclimatization responses included a 233% increase in the hepatic glycogen depot that was subsidized by fat body and skeletal muscle catabolism, and a rise in plasma osmolality that reflected accrual of urea (to 106±10 μmol ml−1) and an unidentified solute (to ~73 μmol ml−1). In contrast, frogs from a cool-temperate population (southern Ohio, USA) amassed much less glycogen, had a lower uremia (28±5 μmol ml−1) and apparently lacked the unidentified solute. Alaskan frogs survived freezing at temperatures as low as −16°C, some 10–13°C below those tolerated by southern conspecifics, and endured a 2-month bout of freezing at −4°C. The profound freeze tolerance is presumably due to their high levels of organic osmolytes and bound water, which limits ice formation. Adaptive responses to freezing (−2.5°C for 48 h) and subsequent thawing (4°C) included synthesis of the cryoprotectants urea and glucose, and dehydration of certain tissues. Alaskan frogs differed from Ohioan frogs in retaining a substantial reserve capacity for glucose synthesis, accumulating high levels of cryoprotectants in brain tissue, and remaining hyperglycemic long after thawing. The northern phenotype also incurred less stress during freezing/thawing, as indicated by limited cryohemolysis and lactate accumulation. Post-glacial colonization of high latitudes by R. sylvatica required a substantial increase in freeze tolerance that was at least partly achieved by enhancing their cryoprotectant system.
Collapse
Affiliation(s)
- Jon P. Costanzo
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | - Richard E. Lee
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
12
|
|