1
|
Bankir L, Crambert G, Vargas-Poussou R. The SLC6A18 Transporter Is Most Likely a Na-Dependent Glycine/Urea Antiporter Responsible for Urea Secretion in the Proximal Straight Tubule: Influence of This Urea Secretion on Glomerular Filtration Rate. Nephron Clin Pract 2024:1-27. [PMID: 38824912 DOI: 10.1159/000539602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Urea is the major end-product of protein metabolism in mammals. In carnivores and omnivores, a large load of urea is excreted daily in urine, with a concentration that is 30-100 times above that in plasma. This is important for the sake of water economy. Too little attention has been given to the existence of energy-dependent urea transport that plays an important role in this concentrating activity. SUMMARY This review first presents functional evidence for an energy-dependent urea secretion that occurs exclusively in the straight part of the proximal tubule (PST). Second, it proposes a candidate transmembrane transporter responsible for this urea secretion in the PST. SLC6A18 is expressed exclusively in the PST and has been identified as a glycine transporter, based on findings in SLC6A18 knockout mice. We propose that it is actually a glycine/urea antiport, secreting urea into the lumen in exchange for glycine and Na. Glycine is most likely recycled back into the cell via a transporter located in the brush border. Urea secretion in the PST modifies the composition of the tubular fluid in the thick ascending limb and, thus, contributes, indirectly, to influence the "signal" at the macula densa that plays a crucial role in the regulation of the glomerular filtration rate (GFR) by the tubulo-glomerular feedback. KEY MESSAGES Taking into account this secondary active secretion of urea in the mammalian kidney provides a new understanding of the influence of protein intake on GFR, of the regulation of urea excretion, and of the urine-concentrating mechanism.
Collapse
Affiliation(s)
- Lise Bankir
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Rosa Vargas-Poussou
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
- Service de Médecine Génomique des Maladies Rares, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, MARHEA, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
2
|
Feugere L, Scott VF, Rodriguez-Barucg Q, Beltran-Alvarez P, Wollenberg Valero KC. Thermal stress induces a positive phenotypic and molecular feedback loop in zebrafish embryos. J Therm Biol 2021; 102:103114. [PMID: 34863478 DOI: 10.1016/j.jtherbio.2021.103114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Aquatic organisms must cope with both rising and rapidly changing temperatures. These thermal changes can affect numerous traits, from molecular to ecological scales. Biotic stressors are already known to induce the release of chemical cues which trigger behavioural responses in other individuals. In this study, we infer whether fluctuating temperature, as an abiotic stressor, may similarly induce stress-like responses in individuals not directly exposed to the stressor. To test this hypothesis, zebrafish (Danio rerio) embryos were exposed for 24 h to fluctuating thermal stress, to medium in which another embryo was thermally stressed before ("stress medium"), and to a combination of these. Growth, behaviour, expression of molecular markers, and of whole-embryo cortisol were used to characterise the thermal stress response and its propagation between embryos. Both fluctuating high temperature and stress medium significantly accelerated development, by shifting stressed embryos from segmentation to pharyngula stages, and altered embryonic activity. Importantly, we found that the expression of sulfide:quinone oxidoreductase (SQOR), the antioxidant gene SOD1, and of interleukin-1β (IL-1β) were significantly altered by stress medium. This study illustrates the existence of positive thermal stress feedback loops in zebrafish embryos where heat stress can induce stress-like responses in conspecifics, but which might operate via different molecular pathways. If similar effects also occur under less severe heat stress regimes, this mechanism may be relevant in natural settings as well.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Victoria F Scott
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom; Energy and Environment Institute, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Quentin Rodriguez-Barucg
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Pedro Beltran-Alvarez
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
3
|
Williams TA, Bernier NJ. Corticotropin-releasing factor protects against ammonia neurotoxicity in isolated larval zebrafish brains. J Exp Biol 2020; 223:jeb211540. [PMID: 31988165 DOI: 10.1242/jeb.211540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 08/26/2023]
Abstract
The physiological roles of corticotropin-releasing factor (CRF) have recently been extended to cytoprotection. Here, to determine whether CRF is neuroprotective in fish, the effects of CRF against high environmental ammonia (HEA)-mediated neurogenic impairment and cell death were investigated in zebrafish. In vivo, exposure of 1 day post-fertilization (dpf) embryos to HEA only reduced the expression of the determined neuron marker neurod1 In contrast, in 5 dpf larvae, HEA increased the expression of nes and sox2, neural progenitor cell markers, and reduced the expression of neurog1, gfap and mbpa, proneuronal cell, radial glia and oligodendrocyte markers, respectively, and neurod1 The N-methyl-d-aspartate (NMDA) receptor inhibitor MK801 rescued the HEA-induced reduction in neurod1 in 5 dpf larvae but did not affect the HEA-induced transcriptional changes in other neural cell types, suggesting that hyperactivation of NMDA receptors specifically contributes to the deleterious effects of HEA in determined neurons. As observed in vivo, HEA exposure elicited marked changes in the expression of cell type-specific markers in isolated 5 dpf larval brains. The addition of CRF reversed the in vitro effects of HEA on neurod1 expression and prevented an HEA-induced increase in cell death. Finally, the protective effects of CRF against HEA-mediated neurogenic impairment and cell death were prevented by the CRF type 1 receptor selective antagonist antalarmin. Together, these results provide novel evidence that HEA has developmental time- and cell type-specific neurotoxic effects, that NMDA receptor hyperactivation contributes to HEA-mediated impairment of determined neurons, and that CRF has neuroprotective properties in the larval zebrafish brain.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
4
|
Tinoco A, Sárria MP, Loureiro A, Parpot P, Espiña B, Gomes AC, Cavaco-Paulo A, Ribeiro A. BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Zimmer AM, Wright PA, Wood CM. Ammonia and urea handling by early life stages of fishes. ACTA ACUST UNITED AC 2018; 220:3843-3855. [PMID: 29093184 DOI: 10.1242/jeb.140210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
6
|
Williams TA, Bonham LA, Bernier NJ. High environmental ammonia exposure has developmental-stage specific and long-term consequences on the cortisol stress response in zebrafish. Gen Comp Endocrinol 2017; 254:97-106. [PMID: 28958860 DOI: 10.1016/j.ygcen.2017.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022]
Abstract
The capacity for early life environmental stressors to induce programming effects on the endocrine stress response in fish is largely unknown. In this study we determined the effects of high environmental ammonia (HEA) exposure on the stress response in larval zebrafish, assessed the tolerance of embryonic and larval stages to HEA, and evaluated whether early life HEA exposure has long-term consequences on the cortisol response to a novel stressor. Exposure to 500-2000μM NH4Cl for 16h did not affect the gene expression of corticotropin-releasing factor (CRF) system components in 1day post-fertilization (dpf) embryos, but differentially increased crfa, crfb and CRF binding protein (crfbp) expression and stimulated both dose- and time-dependent increases in the whole body cortisol of 5dpf larvae. Pre-acclimation to HEA at 1dpf did not affect the cortisol response to a subsequent NH4Cl exposure at 5dpf. In contrast, pre-acclimation to HEA at 5dpf caused a small but significant reduction in the cortisol response to a second NH4Cl exposure at 10dpf. While continuous exposure to 500-2000μM NH4Cl between 0 and 5dpf had a modest effect on mean survival time, exposure to 400-1000μM NH4Cl between 10 and 14dpf decreased mean survival time in a dose-dependent manner. Moreover, pre-acclimation to HEA at 5dpf significantly decreased the risk of mortality to continuous NH4Cl exposure between 10 and 14dpf. Finally, while HEA at 1dpf did not affect the cortisol stress response to a novel vortex stressor at 5dpf, the same HEA treatment at 5dpf abolished vortex stressor-induced increases in whole body cortisol at 10 and 60dpf. Together these results show that the impact of HEA on the cortisol stress response during development is life-stage specific and closely linked to ammonia tolerance. Further, we demonstrate that HEA exposure at the larval stage can have persistent effects on the capacity to respond to stressors in later life.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Luke A Bonham
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
7
|
Cox AG, Hwang KL, Brown KK, Evason K, Beltz S, Tsomides A, O'Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DY, Goessling W. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 2016; 18:886-896. [PMID: 27428308 PMCID: PMC4990146 DOI: 10.1038/ncb3389] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
The Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signalling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumour formation. Transcriptomic and metabolomic profiling identify that Yap1 reprograms glutamine metabolism. Yap1 directly enhances glutamine synthetase (glul) expression and activity, elevating steady-state levels of glutamine and enhancing the relative isotopic enrichment of nitrogen during de novo purine and pyrimidine biosynthesis. Genetic or pharmacological inhibition of GLUL diminishes the isotopic enrichment of nitrogen into nucleotides, suppressing hepatomegaly and the growth of liver cancer cells. Consequently, Yap-driven liver growth is susceptible to nucleotide inhibition. Together, our findings demonstrate that Yap1 integrates the anabolic demands of tissue growth during development and tumorigenesis by reprogramming nitrogen metabolism to stimulate nucleotide biosynthesis.
Collapse
Affiliation(s)
- Andrew G. Cox
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Katie L. Hwang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA
| | - Kristin K. Brown
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Sebastian Beltz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Allison Tsomides
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keelin O'Connor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Dean Yimlamai
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sagar Chhangawala
- Weill Cornell Medical College and New York Presbyterian Hospital, NY
| | - Min Yuan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Evan C. Lien
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Sahar Nissim
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Akihiro Minami
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David E. Cohen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Fernando D. Camargo
- Boston Children's Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - John M. Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian Hospital, NY
| | | | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
8
|
Kumai Y, Harris J, Al-Rewashdy H, Kwong RWM, Perry SF. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water. Physiol Biochem Zool 2015; 88:137-45. [DOI: 10.1086/679628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Feldman B, Tuchman M, Caldovic L. A zebrafish model of hyperammonemia. Mol Genet Metab 2014; 113:142-7. [PMID: 25069822 PMCID: PMC4191821 DOI: 10.1016/j.ymgme.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Hyperammonemia is the principal consequence of urea cycle defects and liver failure, and the exposure of the brain to elevated ammonia concentrations leads to a wide range of neuro-cognitive deficits, intellectual disabilities, coma and death. Current treatments focus almost exclusively on either reducing ammonia levels through the activation of alternative pathways for ammonia disposal or on liver transplantation. Ammonia is toxic to most fish and its pathophysiology appears to be similar to that in mammals. Since hyperammonemia can be induced in fish simply by immersing them in water with elevated concentration of ammonia, we sought to develop a zebrafish (Danio rerio) model of hyperammonemia. When exposed to 3mM ammonium acetate (NH4Ac), 50% of 4-day old (dpf) fish died within 3hours and 4mM NH4Ac was 100% lethal. We used 4dpf zebrafish exposed to 4mM NH4Ac to test whether the glutamine synthetase inhibitor methionine sulfoximine (MSO) and/or NMDA receptor antagonists MK-801, memantine and ketamine, which are known to protect the mammalian brain from hyperammonemia, prolong survival of hyperammonemic fish. MSO, MK-801, memantine and ketamine all prolonged the lives of the ammonia-treated fish. Treatment with the combination of MSO and an NMDA receptor antagonist was more effective than either drug alone. These results suggest that zebrafish can be used to screen for ammonia-neuroprotective agents. If successful, drugs that are discovered in this screen could complement current treatment approaches to improve the outcome of patients with hyperammonemia.
Collapse
Affiliation(s)
- B Feldman
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - M Tuchman
- Children's National Medical Center, Washington DC, USA
| | - L Caldovic
- Children's National Medical Center, Washington DC, USA.
| |
Collapse
|
10
|
Caldovic L, Haskins N, Mumo A, Majumdar H, Pinter M, Tuchman M, Krufka A. Expression pattern and biochemical properties of zebrafish N-acetylglutamate synthase. PLoS One 2014; 9:e85597. [PMID: 24465614 PMCID: PMC3899043 DOI: 10.1371/journal.pone.0085597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1) catalyzes the formation of N-acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS) at the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS (zfNAGS-M) while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C). Both zfNAGS-M and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Km(app) for acetyl coenzyme A increased while the Km(app) for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under physiological conditions zebrafish NAGS catalyzes formation of N-acetylglutamate at the maximal rate.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
- Department of Integrative Systems Biology, The George Washington University, Washington D.C., United States of America
- * E-mail:
| | - Nantaporn Haskins
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
- Molecular and Cellular Biology Program, University of Maryland, College Park, Maryland, United States of America
| | - Amy Mumo
- American Society for Radiation Oncology, Fairfax, Virginia, United States of America
| | - Himani Majumdar
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
| | - Mary Pinter
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
| | - Alison Krufka
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|