1
|
Relyea R, Mattes B, Schermerhorn C, Shepard I. Freshwater salinization and the evolved tolerance of amphibians. Ecol Evol 2024; 14:e11069. [PMID: 38481759 PMCID: PMC10933534 DOI: 10.1002/ece3.11069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 11/02/2024] Open
Abstract
The increasing salinization of freshwaters is a growing environmental issue as a result of mining, agriculture, climate change, and the application of de-icing salts in regions that experience ice and snow. Due to narrow osmotic limits, many freshwater species are particularly susceptible to salinization, but it is possible that repeated exposures over time could favor the evolution of increased salt tolerance. Using collected nine populations of larval wood frogs (Rana sylvatica) as eggs from ponds and wetlands with close proximity to roads and spanning a wide gradient of salt concentrations. In the first experiment, we used a time-to-death experiment to examine the salt tolerance. In a second experiment, we examined whether population differences in salt tolerance were associated with trade-offs in growth, development, or behavior in the presence of control water or a sublethal salt concentration. We found that populations collected from ponds with low and intermediate salt concentrations exhibited similar tolerance curves over a 96-h exposure. However, the population from a pond with the highest salt concentration exhibited a much higher tolerance. We also found population differences in growth, development, and activity level among the populations, but these were not associated with population differences in tolerance. In addition, the sublethal concentration of salt had no impact on growth and development, but it did cause a reduction in tadpole activity across the populations. Collectively, these results provide further evidence that some species of freshwater organisms can evolve tolerance to increasing salinization, although it may only occur under relatively high concentrations and without trade-offs in growth, development, or behavior.
Collapse
Affiliation(s)
- Rick Relyea
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Brian Mattes
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Candace Schermerhorn
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Isaac Shepard
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| |
Collapse
|
2
|
Increasing salinity stress decreases the thermal tolerance of amphibian tadpoles in coastal areas of Taiwan. Sci Rep 2022; 12:9014. [PMID: 35637243 PMCID: PMC9151724 DOI: 10.1038/s41598-022-12837-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractGlobal warming is the main cause for the rise of both global temperatures and sea-level, both major variables threatening biodiversity. Rising temperatures threaten to breach the thermal limits of organisms while rising sea-level threatens the osmotic balance of coastal animals through habitat salinization. However, variations in thermal tolerance under different salinity stresses have not yet been thoroughly studied. In this study, we assessed the critical thermal maxima (CTmax) of amphibian tadpoles in different salinity conditions. We collected tadpoles of Duttaphrynus melanostictus, Fejervarya limnocharis and Microhyla fissipes from coastal areas and housed them in freshwater, low, and high salinity treatments for 7 days of acclimation. The CTmax, survival rate, and development rate of tadpoles in high salinity treatments were significantly lower than that of the two other treatments. Our results indicate that physiological performances and heat tolerances of tadpoles are negatively affected by salinization. Maximum entropy models showed that CTmax and sea-level rise are predicted to negatively affect the distribution of the three focal species. The present results suggest that global warming can lead to negative dual-impacts on coastal animals because of reduced thermal tolerances at elevated salinity. The impacts of global warming on anurans in coastal areas and other habitats impacted by salinization may be more severe than predicted and it is likely to cause similar dual-impacts on other ectotherms.
Collapse
|
3
|
Lorrain-Soligon L, Robin F, Rousseau P, Jankovic M, Brischoux F. Slight variations in coastal topography mitigate the consequence of storm-induced marine submersion on amphibian communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145382. [PMID: 33736409 DOI: 10.1016/j.scitotenv.2021.145382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The rise in sea-level and the increase in frequency and intensity of extreme weather events (i.e., storms and associated surges) are expected to strongly impact coastal areas. The gradual impacts of sea-level rise may allow species to display adaptive responses to overcome environmental changes. In contrast, the abruptness of marine submersions during extreme weather events can induce changes that may exceed the ability of species to respond to brutally changing environments. Yet, site-specific topographical features may buffer the expected detrimental effects of marine submersions on wildlife. In order to test such topographical effects, we examined the long-term consequences of a major marine submersion (storm Xynthia) on the amphibian communities of two French Atlantic coastal wetlands that slightly differ in their topography and, thus, their susceptibility to marine submersion. Amphibians were monitored on 64 ponds for up to 13 years, using acoustic and visual methods, in conjunction with environmental parameters (e.g., pond topology, vegetation, salinity). We found that the amphibian communities at the two neighboring sites displayed different responses to the marine submersion linked to storm Xynthia. As predicted, slight differences in local topography induced strong differences in local magnitude of the landward marine surge, influencing salinization dynamics and associated consequences on wildlife (amphibians). The different species responses show that amphibian richness can recover to that of pre-storm conditions, but with significant changes in the composition of the community. Our results suggest that amphibian presence post-submersion in coastal wetlands results from an interaction between species traits (e.g., tolerance to elevated salinity), site-specific topography, and environmental parameters. Finally, our study emphasizes that relatively modest landscaping management may be critical to allow wildlife to successfully recover after a marine submersion.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France.
| | - Frédéric Robin
- LPO France, Fonderies Royales, 17300 Rochefort, France; Réserve naturelle de Moëze-Oléron, LPO, Plaisance, 17780 Saint-Froult, France; Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340 Yves, France.
| | - Pierre Rousseau
- Réserve naturelle de Moëze-Oléron, LPO, Plaisance, 17780 Saint-Froult, France.
| | - Marko Jankovic
- Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340 Yves, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France.
| |
Collapse
|
4
|
Tornabene BJ, Breuner CW, Hossack BR. Relative Toxicity and Sublethal Effects of NaCl and Energy-Related Saline Wastewaters on Prairie Amphibians. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105626. [PMID: 32992088 DOI: 10.1016/j.aquatox.2020.105626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Increasing salinity in freshwater environments is a growing problem due both to the negative influences of salts on ecosystems and their accumulation and persistence in environments. Two major sources of increased salinity from sodium chloride salts (NaCl) are saline wastewaters co-produced during energy production (herein, wastewaters) and road salts. Effects of road salts have received more attention, but legacy contamination from wastewaters is widespread in some regions and spills still occur. Amphibians are sensitive to contaminants, including NaCl, because of their porous skin and osmoregulatory adaptations to freshwater. However, similarities and differences between effects of wastewaters and road salts have not been investigated. Therefore, we investigated the relative influence of wastewaters and NaCl at equivalent concentrations of chloride on three larval amphibian species that occur in areas with increased salinity. We determined acute toxicity and growth effects on Boreal Chorus Frogs (Pseudacris maculata), Northern Leopard Frogs (Rana pipiens), and Barred Tiger Salamanders (Ambystoma mavortium). We posited that wastewaters would have additive effects on amphibians compared to NaCl because wastewaters often have additional toxic heavy metals and other contaminants. For NaCl, toxicity was higher for frogs than the salamander. Toxicity of wastewaters was also similar between chorus and leopard frogs. Only chorus frog survival was lower when exposed to wastewater compared to NaCl. Mass and length of leopard and chorus frog larvae decreased with increasing salinity after only 96 hours of exposure but did not for tiger salamanders. Size of leopard frogs was lower when exposed to NaCl compared to wastewater. However, growth effects were similar between wastewater and NaCl for chorus frogs. Taken together, our results suggest that previous studies on effects of road salt could inform future studies and management of wastewater-contaminated ecosystems, and vice versa. Nevertheless, effects of road salts and wastewaters may be context-, species-, and trait-specific and require further investigations. The negative influence of salts on imperiled amphibians underscores the need to restore landscapes with increased salinity and reduce future salinization of freshwater ecosystems.
Collapse
Affiliation(s)
- Brian J Tornabene
- Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, 32 Campus Drive, Missoula, MT, 59812, United States.
| | - Creagh W Breuner
- Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, 32 Campus Drive, Missoula, MT, 59812, United States
| | - Blake R Hossack
- Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, 32 Campus Drive, Missoula, MT, 59812, United States; U.S. Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT, 59812, United States
| |
Collapse
|
5
|
Salinity Tolerance and Brackish Habitat Utilization in the Common Australian Frog Crinia signifera. J HERPETOL 2020. [DOI: 10.1670/19-048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Welch AM, Bralley JP, Reining AQ, Infante AM. Developmental Stage Affects the Consequences of Transient Salinity Exposure in Toad Tadpoles. Integr Comp Biol 2020; 59:1114-1127. [PMID: 31225593 DOI: 10.1093/icb/icz109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Development can play a critical role in how organisms respond to changes in the environment. Tolerance to environmental challenges can vary during ontogeny, with individual- and population-level impacts that are associated with the timing of exposure relative to the timing of vulnerability. In addition, the life history consequences of different stressors can vary with the timing of exposure to stress. Salinization of freshwater ecosystems is an emerging environmental concern, and habitat salinity can change rapidly due, for example, to storm surge, runoff of road deicing salts, and rainfall. Elevated salinity can increase the demands of osmoregulation in freshwater organisms, and amphibians are particularly at risk due to their permeable skin and, in many species, semi-aquatic life cycle. In three experiments, we manipulated timing and duration of exposure to elevated salinity during larval development of southern toad (Anaxyrus terrestris) tadpoles and examined effects on survival, larval growth, and timing of and size at metamorphosis. Survival was reduced only for tadpoles exposed to elevated salinity early in development, suggesting an increase in tolerance as development proceeds; however, we found no evidence of acclimation to elevated salinity. Two forms of developmental plasticity may help to ameliorate costs of transient salinity exposure. With early salinity exposure, the return to freshwater was accompanied by a period of rapid compensatory growth, and metamorphosis ultimately occurred at a similar age and size as freshwater controls. By contrast, salinity exposure later in development led to earlier metamorphosis at reduced size, indicating an acceleration of metamorphosis as a mechanism to escape salinity stress. Thus, the consequences of transient salinity exposure were complex and were mediated by developmental state. Salinity stress experienced early in development resulted in acute costs but little long-lasting effect on survivors, while exposures later in development resulted in sublethal effects that could influence success in subsequent life stages. Overall, our results suggest that elevated salinity is more likely to affect southern toad larvae when experienced early during larval development, but even brief sublethal exposure later in development can alter life history in ways that may impact fitness.
Collapse
Affiliation(s)
- Allison M Welch
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - Jordan P Bralley
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - Ashlyn Q Reining
- South Carolina Governor's School for Science and Mathematics, Hartsville, SC 29550, USA
| | | |
Collapse
|
7
|
Plenderleith TL, Johnstone CD, Reina RD, Chapple DG. Density is more important than predation risk for predicting growth and developmental outcomes in tadpoles of spotted tree frog, Litoria spenceri
(Dubois 1984). AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Richard D. Reina
- School of Biological Sciences; Monash University; Clayton Victoria 3800 Australia
| | - David G. Chapple
- School of Biological Sciences; Monash University; Clayton Victoria 3800 Australia
| |
Collapse
|
8
|
Mangahas RS, Murray RL, McCauley SJ. Chronic Exposure to High Concentrations of Road Salt Decreases the Immune Response of Dragonfly Larvae. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Gallo AC, Brasileiro CA, DE Barros FC, DE Carvalho JE. Thermal and salinity effects on locomotor performance of Thoropa taophora tadpoles (Anura, Cycloramphidae). Integr Zool 2019; 15:40-54. [PMID: 31149773 DOI: 10.1111/1749-4877.12405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that environmental temperature influences several biological functions of ectotherms, notably in amphibians. The high permeability of anuran skin, associated with the effect of elevated environmental temperature, potentiates the dehydration process and this combination may restrict locomotor performance. Thoropa taophora is an endemic species from the Atlantic Rainforest whose tadpoles are semiterrestrial and predominantly diurnal, and are found in rocky seashores where they are exposed to sea spray and high temperatures. In this study we investigated how temperature and salinity conditions affect the locomotor performance in Thoropa taophora tadpoles. We also assessed how different osmotic concentrations affect the activity of the metabolic pathways that support muscle function. We measured the sprint speed of tadpoles of various sizes at different temperatures and salinities in the field. We also measured the activity of the enzymes pyruvate kinase (PK), lactate dehydrogenase (LDH) and citrate synthase (CS) in different temperatures and osmotic concentrations, and calculated the thermal sensitivity and the activity constants for each osmolality. Our results showed that, in general, sprint speed decreased with increasing temperature and salinity. However, whereas the effect of increased salinity was similar in smaller and larger tadpoles, increased temperature had a higher negative impact on sprint speed of larger tadpoles, thus indicating low thermal sensitivity of small tadpoles. PK and LDH thermal sensitivities and LDH constant of activity decreased as the osmolality increased. In conclusion, the locomotor capacity of tadpoles was decreased by temperature and salinity, which may be related to a decrease in anaerobic metabolism both in terms of sensitivity and total energy turnover through enzymatic activity. We discuss the ecological consequences, including the potential impacts on predator escape behavior promoted by changes in metabolism and locomotor performance in an early stage of development of this species.
Collapse
Affiliation(s)
- Antonio C Gallo
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Cinthia A Brasileiro
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Fábio Cury DE Barros
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - José Eduardo DE Carvalho
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
10
|
Lai JC, Kam YC, Lin HC, Wu CS. Enhanced salt tolerance of euryhaline tadpoles depends on increased Na+, K+-ATPase expression after salinity acclimation. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:84-91. [DOI: 10.1016/j.cbpa.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
|
11
|
Hsu WT, Wu CS, Hatch KA, Chang YM, Kam YC. Full compensation of growth in salt-tolerant tadpoles after release from salinity stress. J Zool (1987) 2017. [DOI: 10.1111/jzo.12508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- W.-T. Hsu
- Department of Life Science; Tunghai University; Taichung Taiwan
| | - C.-S. Wu
- Department of Life Science; Chinese Culture University; Taipei Taiwan
| | - K. A. Hatch
- Biology Department; Long Island University - Post; Brookville NY USA
| | - Y.-M. Chang
- Department of Ecology and Environmental Resources; National University of Tainan; Tainan Taiwan
| | - Y.-C. Kam
- Department of Life Science; Tunghai University; Taichung Taiwan
| |
Collapse
|
12
|
Chen W, Hudson CM, DeVore JL, Shine R. Sex and weaponry: The distribution of toxin-storage glands on the bodies of male and female cane toads ( Rhinella marina). Ecol Evol 2017; 7:8950-8957. [PMID: 29152190 PMCID: PMC5677481 DOI: 10.1002/ece3.2914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
The parotoid macroglands of bufonid anurans store (and can expel) large volumes of toxic secretions and have attracted detailed research. However, toxins also are stored in smaller glands that are distributed on the limbs and dorsal surface of the body. Female and male cane toads (Rhinella marina) differ in the location of toxin‐storage glands and the extent of glandular structures. Female toads store a larger proportion of their toxins in the parotoids than males as well as (to a lesser extent) in smaller glands on the forelimbs. Males have smaller and more elongate parotoids than females, but glands cover more of the skin surface on their limbs (especially hindlimbs) and dorsal surface. The delay to toxin exudation in response to electrostimulation varied among glands in various parts of the body, and did so differently in males than in females. The spatial distribution of toxin glands differs between the sexes even in toads that have been raised under standardized conditions in captivity; hence, the sexual dimorphism is due to heritable factors rather than developmentally plastic responses to ecological (e.g., habitat, predation risk) differences between the sexes. The selective advantages of this sexual dimorphism remain unclear. A priori, we might expect to see toxin widely dispersed across any part of the body likely to be contacted by a predator; and a wide distribution also would be expected if the gland secretions have other (e.g., male–male rivalry) functions. Why, then, is toxin concentrated in the parotoids, especially in female toads? That concentration may enhance the effectiveness of frontal displays to deter predation and also may facilitate the transfer of stored toxins to eggs.
Collapse
Affiliation(s)
- Wei Chen
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia.,Ecological Security and Protection Key Laboratory of Sichuan Province Mianyang Normal University Mianyang 621000 China
| | - Cameron M Hudson
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - Richard Shine
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
13
|
An UV-sensitive anuran species as an indicator of environmental quality of the Southern Atlantic Rainforest. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:174-181. [DOI: 10.1016/j.jphotobiol.2016.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/23/2022]
|
14
|
Hopkins GR, Brodie ED, Neuman-Lee LA, Mohammadi S, Brusch GA, Hopkins ZM, French SS. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian. Physiol Biochem Zool 2016; 89:322-30. [DOI: 10.1086/687292] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Kearney BD, Byrne PG, Reina RD. Short- and long-term consequences of developmental saline stress: impacts on anuran respiration and behaviour. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150640. [PMID: 26998337 PMCID: PMC4785988 DOI: 10.1098/rsos.150640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Secondary salinization has been identified as a major stressor to amphibians. Exposure to elevated salinity necessitates physiological adjustments and biochemical changes that may be energetically demanding. As such, exposure to non-lethal levels of salinity during development could potentially alter anuran metabolic rates and individual performance in both pre- and post-metamorphic life stages. We investigated the effects of non-lethal levels of salinity on metamorphic traits (time to reach metamorphosis and metamorphic mass), tadpole oxygen consumption, escape response behaviour (pre- and post-metamorphosis) and foraging ability post-metamorphosis in two native Australian frog species, the southern brown tree frog (Litoria ewingii) and the striped marsh frog (Limnodynastes peronii). We found that both Lit. ewingii and Lim. peronii exhibited differences in metamorphic traits in response to elevated salinity. Neither species showed significant change in oxygen consumption during development in response to salinity, relative to freshwater controls. Both species displayed impaired escape response behaviours in response to salinity during larval development, but flow-on effects to adult escape response behaviours and foraging performance were species-specific. Our results show that the influence of stressors during development can have consequences for anuran physiology and behaviour at multiple life stages, and emphasize the need for studies that examine the energetics of anuran responses in order to better understand the responses of biota to stressful environments.
Collapse
Affiliation(s)
- Brian D. Kearney
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Phillip G. Byrne
- The Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Richard D. Reina
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Hopkins GR, Brodie ED. Occurrence of Amphibians in Saline Habitats: A Review and Evolutionary Perspective. HERPETOLOGICAL MONOGRAPHS 2015. [DOI: 10.1655/herpmonographs-d-14-00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Living up to its name? The effect of salinity on development, growth, and phenotype of the "marine" toad (Rhinella marina). J Comp Physiol B 2015; 186:205-13. [PMID: 26553545 DOI: 10.1007/s00360-015-0944-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
The highly permeable integument of amphibians renders them vulnerable to chemical characteristics of their environment, especially during the aquatic larval stage. As the cane toad (Rhinella marina, Bufonidae) invades southwards along the east coast of Australia, it is encountering waterbodies with highly variable conditions of temperature, pH, and salinity. Understanding the tolerance of toads to these conditions can clarify the likely further spread of the invader, as well as the adaptability of the species to novel environmental challenges. We measured salinity in waterbodies in the field and conducted laboratory trials to investigate the impacts of salinity on toad viability. Eggs and tadpoles from the southern invasion front tolerated the most saline conditions we found in potential spawning ponds during surveys [equivalent to 1200 ppm (3.5 % the salinity of seawater)]. Indeed, high-salinity treatments increased tadpole body sizes, accelerated metamorphosis, and improved locomotor ability of metamorphs (but did not affect metamorph morphology). At very low salinity [40 ppm (0.1 % seawater)], eggs hatched but larvae did not develop past Gosner stage 37. Our study shows that the egg and larval life stages of cane toads can tolerate wide variation in the salinity of natal ponds and that this aspect of waterbody chemistry is likely to facilitate rather than constrain continued southward expansion of the toad invasion front in eastern Australia.
Collapse
|
18
|
Courtney Jones SK, Munn AJ, Penman TD, Byrne PG. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. CONSERVATION PHYSIOLOGY 2015; 3:cov029. [PMID: 27293714 PMCID: PMC4778449 DOI: 10.1093/conphys/cov029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 05/25/2023]
Abstract
Food availability and temperature are known to trigger phenotypic change, but the interactive effects between these factors are only beginning to be considered. The aim of this study was to examine the independent and interactive effects of long-term stochastic food availability and water temperature on larval survivorship, growth and development of the striped marsh frog, Limnodynastes peronii. Larval L. peronii were reared in conditions of either constant or stochastic food availability and in water at three different temperatures (18, 22 and 26°C), and effects on survival, growth and development were quantified. Over the experimental period, larval growth rate was highest and survivorship lowest at the warmest temperature. However, changes in food availability mediated the effects of temperature, with slower larval growth and higher survivorship in stochastic food availability treatments. Tadpoles in the stochastic food availability treatments did not reach metamorphosis during the experimental period, suggesting that developmental stasis may have been induced by food restriction. Overall, these results demonstrate that changes in food availability alter the effects of water temperature on survival, growth and development. From an applied perspective, understanding how environmental factors interact to cause phenotypic change may assist with amphibian conservation by improving the number of tadpoles generated in captive breeding programmes.
Collapse
Affiliation(s)
- Stephanie K. Courtney Jones
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Adam J. Munn
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Trent D. Penman
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Ecosystem and Forest Science, University of Melbourne, Creswick, VIC 3363, Australia
| | - Phillip G. Byrne
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
19
|
Kearney BD, Byrne PG, Reina RD. Anuran developmental plasticity loss: the cost of constant salinity stress. AUST J ZOOL 2015. [DOI: 10.1071/zo15017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In animals with a complex life cycle, changes in biotic and abiotic conditions during development can alter growth and maturation rates, causing carry-over effects in postmetamorphic phenotypes. In anurans, this developmental plasticity can result in a trade-off between length of larval period and body size at metamorphosis in stressful environments. Secondary salinisation has been identified as a substantial stressor to amphibians; however, little is known about how salinity-induced developmental plasticity differs between anuran populations. We examined differences in survival, time to metamorphosis, size at metamorphosis (mass and snout–vent length) and body condition at metamorphosis in response to elevated salinity in three populations of the brown tree frog (Litoria ewingii). Significant differences in size at metamorphosis between salinity treatments were observed in tadpoles sourced from freshwater wetlands and ephemeral wetlands, with tadpoles showing a reduced mass and snout–vent length at metamorphosis in the higher-salinity treatment. There were no significant differences in metamorphic traits between salinity treatments in tadpoles sourced from a consistently brackish wetland, suggesting either an erosion of developmental plasticity in response to elevated salinity, or the magnitude of salinity required to alter developmental traits is higher in this population. Our results indicate that environmental conditions of source populations need to be considered when studying life-history adaptations in response to environmental change.
Collapse
|