1
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Kovac A, Goss GG. Cellular mechanisms of ion and acid-base regulation in teleost gill ionocytes. J Comp Physiol B 2024; 194:645-662. [PMID: 38761226 DOI: 10.1007/s00360-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/20/2024]
Abstract
The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.
Collapse
Affiliation(s)
- Anthony Kovac
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
3
|
Escobar-Sierra C, Cañedo-Argüelles M, Vinyoles D, Lampert KP. Unraveling the molecular mechanisms of fish physiological response to freshwater salinization: A comparative multi-tissue transcriptomic study in a river polluted by potash mining. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124400. [PMID: 38906407 DOI: 10.1016/j.envpol.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Collapse
Affiliation(s)
- Camilo Escobar-Sierra
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany.
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Dolors Vinyoles
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Kathrin P Lampert
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany
| |
Collapse
|
4
|
Breves JP, Runiewicz ER, Richardson SG, Bradley SE, Hall DJ, McCormick SD. Transcriptional regulation of esophageal, intestinal, and branchial solute transporters by salinity, growth hormone, and cortisol in Atlantic salmon. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:107-117. [PMID: 38010889 DOI: 10.1002/jez.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
In marine habitats, Atlantic salmon (Salmo salar) imbibe seawater (SW) to replace body water that is passively lost to the ambient environment. By desalinating consumed SW, the esophagus enables solute-linked water absorption across the intestinal epithelium. The processes underlying esophageal desalination in salmon and their hormonal regulation during smoltification and following SW exposure are unresolved. To address this, we considered whether two Na+ /H+ exchangers (Nhe2 and -3) expressed in the esophagus contribute to the uptake of Na+ from lumenal SW. There were no seasonal changes in esophageal nhe2 or -3 expression during smoltification; however, nhe3 increased following 48 h of SW exposure in May. Esophageal nhe2, -3, and growth hormone receptor b1 were elevated in smolts acclimated to SW for 2.5 weeks. Treatment with cortisol stimulated branchial Na+ /K+ -ATPase (Nka) activity, and Na+ /K+ /2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and nka-α1b expression. Esophageal nhe2, but not nhe3 expression, was stimulated by cortisol. In anterior intestine, cortisol stimulated nkcc2, cftr2, and nka-α1b. Our findings indicate that salinity stimulates esophageal nhe2 and -3, and that cortisol coordinates the expression of esophageal, intestinal, and branchial solute transporters to support the SW adaptability of Atlantic salmon.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | - Ellie R Runiewicz
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | | | - Serena E Bradley
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | - Daniel J Hall
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Stephen D McCormick
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Breves JP, McKay IS, Koltenyuk V, Nelson NN, Lema SC, McCormick SD. Na +/HCO 3- cotransporter 1 (nbce1) isoform gene expression during smoltification and seawater acclimation of Atlantic salmon. J Comp Physiol B 2022; 192:577-592. [PMID: 35715660 DOI: 10.1007/s00360-022-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
The life history of Atlantic salmon (Salmo salar) includes an initial freshwater phase (parr) that precedes a springtime migration to marine environments as smolts. The development of osmoregulatory systems that will ultimately support the survival of juveniles upon entry into marine habitats is a key aspect of smoltification. While the acquisition of seawater tolerance in all euryhaline species demands the concerted activity of specific ion pumps, transporters, and channels, the contributions of Na+/HCO3- cotransporter 1 (Nbce1) to salinity acclimation remain unresolved. Here, we investigated the branchial and intestinal expression of three Na+/HCO3- cotransporter 1 isoforms, denoted nbce1.1, -1.2a, and -1.2b. Given the proposed role of Nbce1 in supporting the absorption of environmental Na+ by ionocytes, we first hypothesized that expression of a branchial nbce1 transcript (nbce1.2a) would be attenuated in salmon undergoing smoltification and following seawater exposure. In two separate years, we observed spring increases in branchial Na+/K+-ATPase activity, Na+/K+/2Cl- cotransporter 1, and cystic fibrosis transmembrane regulator 1 expression characteristic of smoltification, whereas there were no attendant changes in nbce1.2a expression. Nonetheless, branchial nbce1.2a levels were reduced in parr and smolts within 2 days of seawater exposure. In the intestine, gene transcript abundance for nbce1.1 increased from spring to summer in the anterior intestine, but not in the posterior intestine or pyloric caeca, and nbce1.1 and -1.2b expression in the intestine showed season-dependent transcriptional regulation by seawater exposure. Collectively, our data indicate that tissue-specific modulation of all three nbce1 isoforms underlies adaptive responses to seawater.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ian S McKay
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Victor Koltenyuk
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Nastasia N Nelson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
6
|
Shaughnessy CA, Balfry SK, Bystriansky JS. The isosmotic point as critical salinity limit for growth and osmoregulation, but not survival, in the wolf eel Anarrhichthys ocellatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:471-480. [PMID: 35338416 DOI: 10.1007/s10695-022-01064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Members of wolf fish family Anarhichadidae have emerged as potential cold-water marine aquaculture species. This study examined growth performance and osmoregulation in juvenile wolf eel (Anarrhichthys ocellatus) held in a series of dilute salinities (30, 14, 9, and 6 ‰) over an 8-week trial. At the conclusion of the growth study, fish were sampled for analysis of gill and intestine enzyme activity, plasma ion content, and muscle moisture. Growth rate remained positive in all salinities throughout the 8-week trial. Specific growth rate was maintained above 3.0% mass day-1 at salinities of 30 and 14 ‰, but was significantly reduced at 9 (2.9% mass day-1) and 6 ‰ (2.0% mass day-1). Muscle water content increased with increasing salinity dilution (77.9% water in 30 ‰; 79.8% water in 6 ‰), and plasma osmolality (~ 320 mOsm kg-1) was maintained in salinities as dilute as 9 ‰ but was significantly lower (~ 280 mOsm kg-1) in the most dilute salinity of 6 ‰. Segmental linear regression analyses revealed that the calculated isosmotic point for wolf eel of ~ 10.6 ‰ was a critical limit for maintaining growth performance and osmoregulatory homeostasis. It is an important finding that fish considered to be a typical marine stenohaline organism could maintain ion and water balance as low as the isosmotic point, and exhibit survival and positive growth rates in salinities as dilute as 6 ‰. This work delivers a fundamental step in the empirical examination of this emerging aquaculture species and provides a model for evaluating osmoregulatory performance of marine stenohaline fishes in low-salinity aquaculture.
Collapse
Affiliation(s)
- Ciaran A Shaughnessy
- Department of Biological Sciences, DePaul University, Chicago, IL, USA.
- Department of Biological Sciences, University of Denver, S. G. Mudd Building, 2101 E Wesley Ave, Denver, CO, 80208, USA.
| | - Shannon K Balfry
- Formerly of Vancouver Aquarium Marine Science Centre, Vancouver, BC, Canada
| | | |
Collapse
|
7
|
Takei Y, Ando M, Wong MKS, Tsukada T. Molecular mechanisms underlying guanylin-induced transcellular Cl - secretion into the intestinal lumen of seawater-acclimated eels. Gen Comp Endocrinol 2022; 318:113986. [PMID: 35114197 DOI: 10.1016/j.ygcen.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Guanylin (GN) stimulates Cl- secretion into the intestinal lumen of seawater-acclimated eels, but the molecular mechanisms of transepithelial Cl- transport are still unknown. In Ussing chamber experiments, we confirmed that mucosal application of eel GN reversed intestinal serosa-negative potential difference, indicating Cl- secretion. Serosal application of DNDS or mucosal application of DPC inhibited the GN effect, but serosal application of bumetanide had no effect. Removal of HCO3- from the serosal fluid also inhibited the GN effect. In intestinal sac experiments, mucosal GN stimulated luminal secretion of both Cl- and Na+, which was blocked by serosal DNDS. These results suggest that Cl- is taken up at the serosal side by DNDS-sensitive anion exchanger (AE) coupled with Na+-HCO3- cotransporter (NBC) but not by Na+-K+-2Cl- cotransporter 1 (NKCC1), and Cl- is secreted by unknown DPC-sensitive Cl- channel (ClC) at the mucosal side. The transcriptomic analysis combined with qPCR showed low expression of NKCC1 gene and no upregulation of the gene after seawater transfer, while high expression of ClC2 gene and upregulation after seawater transfer. In addition, SO42- transporters (apical Slc26a3/6 and basolateral Slc26a1) are also candidates for transcellular Cl- secretion in exchange of luminal SO42. Na+ secretion could occur through a paracellular route, as Na+-leaky claudin15 was highly expressed and upregulated after seawater transfer. High local Na+ concentration in the lateral interspace produced by Na+/K+-ATPase (NKA) coupled with K+ channels (Kir5.1b) seems to facilitate the paracellular transport. In situ hybridization confirmed the expression of the candidate genes in the epithelial enterocytes. Together with our previous results, we suggest that GN stimulates basolateral NBCela/AE2 and apical ClC2 to increase transcellular Cl- secretion in seawater eel intestine, which differs from the involvement of apical CFTR and basolateral NKCC1 as suggested in mammals and other teleosts.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| | - Masaaki Ando
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Marty K S Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
8
|
Barany A, Shaughnessy CA, Pelis RM, Fuentes J, Mancera JM, McCormick SD. Tissue and salinity specific Na +/Cl - cotransporter (NCC) orthologues involved in the adaptive osmoregulation of sea lamprey (Petromyzon marinus). Sci Rep 2021; 11:22698. [PMID: 34811419 PMCID: PMC8608846 DOI: 10.1038/s41598-021-02125-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Two orthologues of the gene encoding the Na+-Cl− cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl− cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain. .,Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.
| | - C A Shaughnessy
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R M Pelis
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Johnson City, NY, 13790, USA
| | - J Fuentes
- Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain
| | - S D McCormick
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
9
|
Ceron FJM, Prodocimo V, Freire CA. Distribution of Na +/K +-ATPase-immunoreactive ionocytes varies between two superorders of ray-finned fish: Ostariophysi and Acanthopterygii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1063-1071. [PMID: 33999342 DOI: 10.1007/s10695-021-00963-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Ray-finned fishes of the superorder Ostariophysi are primarily freshwater (FW), and normally stenohaline. Differently, fishes of the superorder Acanthopterygii are essentially marine, and frequently euryhaline, with some secondary FW. Na+/K+-ATPase-immunoreactive ionocytes were localized in the branchial epithelia of 4 species of Ostariophysi and 3 of Acanthopterygii. The Ostariophysi grass carp (Ctenopharyngodon idella, Cypriniformes), twospot Astyanax (Astyanax bimaculatus) and piracanjuba (Brycon orbignyanus), Characiformes, and the jundiá (Rhamdia quelen, Siluriformes), all from FW, displayed ionocytes in the filament plus secondary lamellae (F + SL). In their turn, all the three species of Acanthopterygii showed immunoreactive ionocytes in the filaments only (F). They were the Nile tilapia (Oreochromis niloticus, Cichliformes) in FW, the dog snapper (Lutjanus jocu, Perciformes) in seawater (SW), and the green puffer (Sphoeroides greeleyi, Tetraodontiformes) in SW. Ionocytes normally extend their distribution to the secondary lamellae (F + SL) in Ostariophysi. In Acanthopterygii, we find more plasticity: ionocytes are more frequently restricted to the filament in SW, but also spread to SL in FW. It may be that the occurrence of ionocytes in SL is the ancestral condition, but some euryhaline acanthopterygians rely on the space of the SL for placement of additional ionocytes when in FW absorbing salt. Our study contributed to the identification of the pattern of ionocyte distribution in gills of Ostariophysi in respect to that of Acanthopterygii.
Collapse
Affiliation(s)
- F Juliane M Ceron
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, 81531-980, Brazil
| | - Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, 81531-980, Brazil
| | - Carolina A Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, 81531-980, Brazil.
| |
Collapse
|
10
|
Barany A, Shaughnessy CA, McCormick SD. Corticosteroid control of Na +/K +-ATPase in the intestine of the sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2021; 307:113756. [PMID: 33741310 DOI: 10.1016/j.ygcen.2021.113756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 01/15/2023]
Abstract
Anadromous sea lamprey (Petromyzon marinus) larvae undergo a months-long true metamorphosis during which they develop seawater (SW) tolerance prior to downstream migration and SW entry. We have previously shown that intestinal Na+/K+-ATPase (NKA) activity increases during metamorphosis and is critical to the osmoregulatory function of the intestine in SW. The present study investigated the role of 11-deoxycortisol (S) in controlling NKA in the anterior (AI) and posterior (PI) intestine during sea lamprey metamorphosis. In a tissue profile, nka mRNA and protein were most abundant in the gill, kidney, and AI. During metamorphosis, AI nka mRNA increased 10-fold, whereas PI nka mRNA did not change. Specific corticosteroid receptors were found in the AI, which had a higher binding affinity for S compared to 11-deoxycorticosterone (DOC). In vivo administration of S in mid-metamorphic lamprey upregulated NKA activity 3-fold in the AI and PI, whereas administration of DOC did not affect intestinal NKA activity. During a 24 h SW challenge test, dehydration of white muscle moisture was rescued by prior treatment with S, which was associated with increased intestinal nka mRNA and NKA activity. These results indicate that intestinal osmoregulation in sea lamprey is a target for control by S during metamorphosis and the development of SW tolerance.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Spain; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA.
| | - Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
11
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|