1
|
Farner JE, Lyberger KP, Couper LI, Cruz-Loya M, Mordecai EA. Nonlinear effects of temperature on mosquito parasite infection across a large geographic climate gradient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631804. [PMID: 39829816 PMCID: PMC11741412 DOI: 10.1101/2025.01.07.631804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Temperature drives ectothermic host - parasite interactions, making them particularly sensitive to climatic variation and change. To isolate the role of temperature, lab-based studies are increasingly used to assess and forecast disease risk under current and future climate conditions. However, in the field, the effects of temperature on parasitism may be mediated by other sources of variation, including local adaptation. To address the key knowledge gaps of how temperature influences host - parasite interactions and whether thermal responses measured in controlled experiments capture infection across temperature gradients in nature, we paired an extensive field survey of parasitism-by the ciliate Lambornella clarki on its tree hole mosquito host, Aedes sierrensis -with laboratory experiments describing parasitism thermal performance curves (TPCs) for six host populations from varying climates. We also investigated the mechanisms underlying the thermal biology of the host - parasite interaction by separately measuring TPCs for infection, host immunity, and parasite growth rates. Along the west coast of North America, across an 1100 km climate gradient spanning 12°C mean rainy season temperature variation, we found that parasitism peaked at intermediately cold temperatures, and was consistent both between field seasons and with the lab experiment results. The experiments produced no evidence of host intraspecific variation in temperature sensitivity to parasitism. Importantly, parasitism peaked at temperatures below the thermal optimum for free-living L. clarki due to the balance of temperature effects on parasite growth and reproduction against the strength of the host melanization immune response. The results suggest that nonlinear responses to temperature drive parasitism in nature, and that simple lab and field studies can accurately capture the thermal biology of multilayered host - parasite interactions. Data and code for this submission are provided on Dryad: http://datadryad.org/stash/share/CfZkk4LsJzljetJJnFZMDMrjuciTXMxrkrc95I2J3tA .
Collapse
|
2
|
Pfenning-Butterworth A, Buckley LB, Drake JM, Farner JE, Farrell MJ, Gehman ALM, Mordecai EA, Stephens PR, Gittleman JL, Davies TJ. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet Health 2024; 8:e270-e283. [PMID: 38580428 PMCID: PMC11090248 DOI: 10.1016/s2542-5196(24)00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.
Collapse
Affiliation(s)
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - John M Drake
- School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Maxwell J Farrell
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada; School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alyssa-Lois M Gehman
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada; Hakai Institute, Calvert, BC, Canada
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Patrick R Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - John L Gittleman
- School of Ecology, University of Georgia, Athens, GA, USA; Nicholas School for the Environment, Duke University, Durham, NC, USA
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. Oecologia 2024; 204:389-399. [PMID: 38006450 DOI: 10.1007/s00442-023-05481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5 °C and 13 °C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
Affiliation(s)
- Sherine Ismail
- Department of Biology, Stanford University, Stanford, USA
| | | | - Lisa Couper
- Department of Biology, Stanford University, Stanford, USA
| | - Erin Mordecai
- Department of Biology, Stanford University, Stanford, USA
| | | |
Collapse
|
4
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554680. [PMID: 37662401 PMCID: PMC10473705 DOI: 10.1101/2023.08.24.554680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5°C and 13°C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
|
5
|
Schilliger L, Paillusseau C, François C, Bonwitt J. Major Emerging Fungal Diseases of Reptiles and Amphibians. Pathogens 2023; 12:pathogens12030429. [PMID: 36986351 PMCID: PMC10053826 DOI: 10.3390/pathogens12030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Emerging infectious diseases (EIDs) are caused by pathogens that have undergone recent changes in terms of geographic spread, increasing incidence, or expanding host range. In this narrative review, we describe three important fungal EIDs with keratin trophism that are relevant to reptile and amphibian conservation and veterinary practice. Nannizziopsis spp. have been mainly described in saurians; infection results in thickened, discolored skin crusting, with eventual progression to deep tissues. Previously only reported in captive populations, it was first described in wild animals in Australia in 2020. Ophidiomyces ophidiicola (formely O. ophiodiicola) is only known to infect snakes; clinical signs include ulcerating lesions in the cranial, ventral, and pericloacal regions. It has been associated with mortality events in wild populations in North America. Batrachochytrium spp. cause ulceration, hyperkeratosis, and erythema in amphibians. They are a major cause of catastrophic amphibian declines worldwide. In general, infection and clinical course are determined by host-related characteristics (e.g., nutritional, metabolic, and immune status), pathogens (e.g., virulence and environmental survival), and environment (e.g., temperature, hygrometry, and water quality). The animal trade is thought to be an important cause of worldwide spread, with global modifications in temperature, hygrometry, and water quality further affecting fungal pathogenicity and host immune response.
Collapse
Affiliation(s)
- Lionel Schilliger
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
- Correspondence: ; Tel.: +33-188-616-831
| | - Clément Paillusseau
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Camille François
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Jesse Bonwitt
- Department of Anthropology, Durham University, South Rd., Durham DH1 3LE, UK
| |
Collapse
|