1
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
2
|
Zhang L, Su B, Huang J, Zhang L, Chang Y, Hu G. Fine Mapping of QTLs for Alkaline Tolerance in Crucian Carp ( Carassius auratus) Using Genome-Wide SNP Markers. Genes (Basel) 2024; 15:751. [PMID: 38927687 PMCID: PMC11202869 DOI: 10.3390/genes15060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Crucian carp (Carassius auratus) is widely distributed in the world and has become an economically freshwater fish. The population in Lake Dali Nur can tolerate the extreme alkaline environment with alkalinity over 50 mmol/L (pH 9.6), thus providing a special model for exploring alkali-tolerant molecular markers in an extremely alkaline environment. In this study, we constructed a high-density and high-resolution linkage map with 16,224 SNP markers based on genotyping-by-sequencing (GBS) consisting of 152 progenies and conducted QTL studies for alkali-tolerant traits. The total length of the linkage map was 3918.893 cM, with an average distance of 0.241 cM. Two QTLs for the ammonia-N-tolerant trait were detected on LG27 and LG45. A QTL for the urea-N-tolerant trait was detected on LG27. Interestingly, mapping the two QTLs on LG27 revealed that the mapped genes were both located in the intron of CDC42. GO functional annotation and KEGG enrichment analysis results indicated that the biological functions might be involved in the cell cycle, cellular senescence, MAPK, and Ras signaling pathways. These findings suggest that CDC42 may play an important role in the process of dealing with extremely alkaline environments.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China;
| | - Baofeng Su
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jing Huang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Limin Zhang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Yumei Chang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Guo Hu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China;
| |
Collapse
|
3
|
Zimmer AM, Perry SF. The Rhesus glycoprotein Rhcgb is expendable for ammonia excretion and Na + uptake in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110722. [PMID: 32437959 DOI: 10.1016/j.cbpa.2020.110722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 11/27/2022]
Abstract
In zebrafish (Danio rerio), the ammonia-transporting Rhesus glycoprotein Rhcgb is implicated in mechanisms of ammonia excretion and Na+ uptake. In particular, Rhcgb is thought to play an important role in maintaining ammonia excretion in response to alkaline conditions and high external ammonia (HEA) exposure, in addition to facilitating Na+ uptake via a functional metabolon with the Na+/H+-exchanger Nhe3b, specifically under low Na+ conditions. In the present study, we hypothesized that CRISPR/Cas9 knockout of rhcgb would reduce ammonia excretion and Na+ uptake capacity, particularly under the conditions listed above that have elicited increases in Rhcgb-mediated ammonia excretion and/or Na+ uptake. Contrary to this hypothesis, however, larval and juvenile rhcgb knockout (KO) mutants showed no reductions in ammonia excretion or Na+ uptake under any of the conditions tested in our study. In fact, under control conditions, rhcgb KO mutants generally displayed an increase in ammonia excretion, potentially due to increased transcript abundance of another rh gene, rhbg. Under alkaline conditions, rhcgb KO mutants were also able to maintain ammonia excretion, similar to wild-type fish, and stimulation of ammonia excretion after HEA exposure also was not affected by rhcgb KO. Surprisingly, ammonia excretion and Na+ uptake were unaffected by rhcgb or nhe3b KO in juvenile zebrafish acclimated to normal (800 μmol/L) or low (10 μmol/L) Na+ conditions. These results demonstrate that Rhcgb is expendable for ammonia excretion and Na+ uptake in zebrafish, highlighting the plasticity and flexibility of these physiological systems in this species.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Wang Y, Pasparakis C, Stieglitz JD, Benetti DD, Grosell M. The effects of Deepwater Horizon crude oil on ammonia and urea handling in mahi-mahi (Coryphaena hippurus) early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105294. [PMID: 31585273 DOI: 10.1016/j.aquatox.2019.105294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Many ecologically important fishes, including mahi-mahi (Coryphaena hippurus), and their offspring were directly exposed to crude oil following the Deepwater Horizon (DWH) oil spill. Early life stage fish are especially vulnerable to the toxicity of crude oil-derived polycyclic aromatic hydrocarbons (PAHs). In teleosts, yolk sac proteins are the main energy source during development and are usually catabolized into ammonia or urea among other byproducts. Although excretion of these waste products is sensitive to oil exposure, we know little about the underlying mechanisms of this process. In this study, we examined the effects of crude oil on ammonia and urea handling in the early life stages of mahi. Mahi embryos exposed to 30-32 μg L-1 ∑PAH exhibited increased urea excretion rates and greater accumulation of urea in the tissues before hatch suggesting that ammonia, which is highly toxic, was converted into less-toxic urea. Oil-exposed embryos (6.3-32 μg L-1 ∑PAH) displayed significantly increased tissue ammonia levels at 42 hpf and upregulated mRNA levels of ammonia transporters (Rhag, Rhbg and Rhcg1) from 30 to 54 hpf. However, despite increased accumulation and higher expression of ammonia transporters, the larvae exposed to higher ∑PAH (30 μg L-1 ∑PAH) showed reduced ammonia excretion rates after hatch. Together, the increased production of nitrogenous waste reinforces previous work that increased energy demand in oil-exposed embryos is fueled, at least in part, by protein metabolism and that urea synthesis plays a role in ammonia detoxification in oil-exposed mahi embryos. To our knowledge, this study is the first to combine physiological and molecular approaches to assess the impact of crude-oil on both nitrogenous waste excretion and accumulation in the early life stages of any teleosts.
Collapse
Affiliation(s)
- Y Wang
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States.
| | - C Pasparakis
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - J D Stieglitz
- Department of Marine Ecosystems and Society, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - D D Benetti
- Department of Marine Ecosystems and Society, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - M Grosell
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| |
Collapse
|
5
|
Abstract
During water-land transition, ancient fishes acquired the ability to breathe air, but air-breathing engendered problems in nitrogenous waste excretion. Nitrogen is a fundamental component of amino acids, proteins, and nucleic acids, and the degradation of these nitrogen-containing compounds releases ammonia. Ammonia is toxic and must be removed. Fishes in water excrete ammonia as the major nitrogenous waste through gills, but gills of air-breathing fishes are modified for air-breathing or largely replaced by air-breathing organs. Notably, fishes emerged from water can no longer excrete ammonia effectively because of a lack of water to flush the gills. Hence, ancient fishes that participated in water-land transition must have developed means to deal with ammonia toxicity. Extant air-breathing fishes, particularly amphibious ones, can serve as models to examine adaptations which might have facilitated the emergence of ancient fishes from water. Some of these fishes can actively emerge from water and display complex behaviors on land, while a few can burrow into mud and survive for years during drought. Many of them are equipped with mechanisms to ameliorate ammonia toxicity during emersion. In this review, the mechanisms adopted by air-breathing fishes to deal with ammonia toxicity during emersion were organized into seven disparate strategies. In addition, eight extant air-breathing fishes with distinctive terrestrial behaviors and peculiar natural habitats were selected to describe in detail how these seven strategies could be adopted in disparate combinations to ameliorate ammonia toxicity during emersion.
Collapse
|
6
|
Zimmer AM, Wright PA, Wood CM. Ammonia and urea handling by early life stages of fishes. ACTA ACUST UNITED AC 2018; 220:3843-3855. [PMID: 29093184 DOI: 10.1242/jeb.140210] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
7
|
Zimmer AM, Wood CM. Physiological and molecular ontogeny of branchial and extra-branchial urea excretion in posthatch rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2016; 310:R305-12. [PMID: 26608657 PMCID: PMC4796753 DOI: 10.1152/ajpregu.00403.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
All teleost fish produce ammonia as a metabolic waste product. In embryos, ammonia excretion is limited by the chorion, and fish must detoxify ammonia by synthesizing urea via the ornithine urea cycle (OUC). Although urea is produced by embryos and larvae, urea excretion (J(urea)) is typically low until yolk sac absorption, increasing thereafter. The aim of this study was to determine the physiological and molecular characteristics of J(urea) by posthatch rainbow trout (Oncorhynchus mykiss). Following hatch, whole body urea concentration decreased over time, while J(urea) increased following yolk sac absorption. From 12 to 40 days posthatch (dph), extra-branchial routes of excretion accounted for the majority of J(urea), while the gills became the dominant site for J(urea) only after 55 dph. This represents the most delayed branchial ontogeny of any process studied to date. Urea transporter (UT) gene expression in the gills and skin increased over development, consistent with increases in branchial and extra-branchial J(urea). Following exposure to 25 mmol/l urea, the accumulation and subsequent elimination of exogenous urea was much greater at 55 dph than 12 dph, consistent with increased UT expression. Notably, UT gene expression in the gills of 55 dph larvae increased in response to high urea. In summary, there is a clear increase in urea transport capacity over posthatch development, despite a decrease in OUC activity.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Zimmer AM, Wilson JM, Wright PA, Hiroi J, Wood CM. Different mechanisms of Na+ uptake and ammonia excretion by the gill and yolk sac epithelium of early life stage rainbow trout. J Exp Biol 2016; 220:775-786. [DOI: 10.1242/jeb.148429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
In rainbow trout, the dominant site of Na+ uptake (JNain) and ammonia excretion (Jamm) shifts from the skin to the gills over development. Post-hatch (PH; 7 days post-hatch) larvae utilize the yolk sac skin for physiological exchange, whereas by complete yolk sac absorption (CYA; 30 days post-hatch), the gill is the dominant site. At the gills, JNain and Jamm occur via loose Na+/NH4+ exchange, but this exchange has not been examined in the skin of larval trout. Based on previous work, we hypothesized that, contrary to the gill model, JNain by the yolk sac skin of PH trout occurs independently of Jamm. Following a 12-h exposure to high environmental ammonia (HEA; 0.5 mmol l−1 NH4HCO3; [Na+]=600 µmol l−1; pH=8), Jamm by the gills of CYA trout and the yolk sac skin of PH larvae, which were isolated using divided chambers, increased significantly. However, this was coupled to an increase in JNain across the gills only, supporting our hypothesis. Moreover, gene expression of proteins involved in JNain (Na+/H+-exchanger-2 (NHE2) and H+-ATPase) increased in response to HEA only in the CYA gills. We further identified expression of the apical Rhesus (Rh) proteins Rhcg2 in putative pavement cells and Rhcg1 (co-localized with apical NHE2 and NHE3b and Na+/K+-ATPase) in putative peanut lectin agglutinin-positive (PNA+) ionocytes in gill sections. Similar Na+/K+-ATPase-positive cells expressing Rhcg1 and NHE3b, but not NHE2, were identified in the yolk sac epithelium. Overall, our findings suggest that the mechanisms of JNain and Jamm by the dominant exchange epithelium at two distinct stages of early development are fundamentally different.
Collapse
Affiliation(s)
- Alex M. Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
- Department of Biology, Wilfrid Laurier University, ON, Canada N2L 3C5
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | - Patricia A. Wright
- Department of Anatomy, St Marianna University School of Medicine, Miyamae, Kawasaki 216-8511, Japan
| | - Junya Hiroi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
9
|
Wang J, Li J, Xu N, Li J, Li Z, Chen Y, Yang Z. Responses of Takifugu obscurus fertilized eggs and larvae to increased ammonia exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15976-15984. [PMID: 26054459 DOI: 10.1007/s11356-015-4815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Ammonia is a common toxicant in aquatic systems; this substance has become a critical threat to fish, especially in early life stages. This study aimed to evaluate the effects of unionized ammonia (NH3-N: 0, 0.068, 0.138, 0.206, 0.275, 0.343, 0.412, and 0.481 mg L(-1)) on fertilized eggs and larvae of obscure puffer Takifugu obscurus, a fish species with potential economic value. Results showed that hatch time was significantly retarded and hatch rate was significantly decreased as NH3-N concentrations increased; newly hatched larvae exhibited high rate of abnormalities and low viability. The survival rate of larvae also decreased significantly as NH3-N concentrations increased; larvae could tolerate NH3-N to a less extent than embryos. NH3-N also caused a significant decrease in superoxide dismutase (SOD) and Na(+)/K(+) ATPase activities but not in malondialdehyde (MDA) levels of larvae. Two-way ANOVA indicated that there was a statistically significant interaction between NH3-N concentrations and exposure times on SOD activity but not on Na(+)/K(+) ATPase activity. Such responses indicated that an increase in ammonia concentration in surface water may negatively affect the early development of T. obscurus and thus likely impair population recruitment and persistence of this fish species.
Collapse
Affiliation(s)
- Jun Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiajia Li
- Jiangsu Institute of Freshwater Fisheries, 79 East Chating Street, Nanjing, 210017, China
| | - Nuo Xu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Li
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ziheng Li
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
10
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Chew SF, Ip YK. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. JOURNAL OF FISH BIOLOGY 2014; 84:603-38. [PMID: 24438022 DOI: 10.1111/jfb.12279] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in which it lives.
Collapse
Affiliation(s)
- S F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | | |
Collapse
|
12
|
Abstract
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
13
|
Bucking C, Lemoine CMR, Walsh PJ. Waste nitrogen metabolism and excretion in zebrafish embryos: effects of light, ammonia, and nicotinamide. ACTA ACUST UNITED AC 2013; 319:391-403. [PMID: 23754660 DOI: 10.1002/jez.1802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/28/2013] [Accepted: 04/01/2013] [Indexed: 11/08/2022]
Abstract
Bony fish primarily excrete ammonia as adults however the persistence of urea cycle genes may reflect a beneficial role for urea production during embryonic stages in protecting the embryo from toxic effects of ammonia produced from a highly nitrogenous yolk. This study aimed to examine the dynamic scope for changes in rates of urea synthesis and excretion in one such species (zebrafish, Danio rerio) by manipulating the intrinsic developmental rate (by alteration of light:dark cycles), as well as by direct chemical manipulation via ammonia injection (to potentially activate urea production) and nicotinamide exposure (to potentially inhibit urea production). Continuous dark exposure delayed development in embryos as evidenced by delayed appearance of hallmark anatomical features (heartbeat, eye pigmentation, body pigmentation, lateral line, fin buds) at 30 and 48 hr post-fertilization, as well by a lower hatching rate compared to embryos reared in continuous light. Both ammonia and urea excretion were similarly effected and were generally higher in embryos continuously exposed to light. Ammonia injection resulted in significant increases (up to fourfold) of urea N excretion and no changes to ammonia excretion rates along with modest increases in yolk ammonia content during 2-6 hr post-injection. Nicotinamide (an inhibitor of urea synthesis in mammals) reduced the ammonia-induced increase in urea excretion and led to retention of ammonia in the yolk and body of the embryo. Our results indicate that there is a relatively rapid and large scope for increases in urea production/excretion rates in developing embryos. Potential mechanisms for these increases are discussed.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | | | |
Collapse
|
14
|
Wright PA, Wood CM. Seven things fish know about ammonia and we don't. Respir Physiol Neurobiol 2012; 184:231-40. [PMID: 22910326 DOI: 10.1016/j.resp.2012.07.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 01/01/2023]
Abstract
In this review we pose the following seven questions related to ammonia and fish that represent gaps in our knowledge. 1. How is ammonia excretion linked to sodium uptake in freshwater fish? 2. How much does branchial ammonia excretion in seawater teleosts depend on Rhesus (Rh) glycoprotein-mediated NH(3) diffusion? 3. How do fish maintain ammonia excretion rates if branchial surface area is reduced or compromised? 4. Why does high environmental ammonia change the transepithelial potential across the gills? 5. Does high environmental ammonia increase gill surface area in ammonia tolerant fish but decrease gill surface area in ammonia intolerant fish? 6. How does ammonia contribute to ventilatory control? 7. What do Rh proteins do when they are not transporting ammonia? Mini reviews on each topic, which are able to present only partial answers to each question at present, are followed by further questions and/or suggestions for research approaches targeted to uncover answers.
Collapse
Affiliation(s)
- Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | |
Collapse
|
15
|
McDonald MD, Gilmour KM, Walsh PJ. New insights into the mechanisms controlling urea excretion in fish gills. Respir Physiol Neurobiol 2012; 184:241-8. [PMID: 22684040 DOI: 10.1016/j.resp.2012.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
Not long ago, urea was believed to freely diffuse across plasma membranes. The discovery of specialized proteins to facilitate the movement of urea across the fish gill, similar to those found in mammalian kidney, was exciting, and at the same time, perplexing; especially considering the fact that, aside from elasmobranchs, most fish do not produce urea as their primary nitrogenous waste. Increasingly, it has become apparent that many fish do indeed produce at least a small amount of urea through various processes and continued work on branchial urea transporters in teleost and elasmobranch fishes has led to recent advances in the regulation of these mechanisms. The following review outlines the substantial progress that has been made towards understanding environmental and developmental impacts on fish gill urea transport. This review also outlines the work that has been done regarding endocrine and neural control of urea excretion, most of which has been collected from only a handful of teleost fish. It is evident that more research is needed to establish the endocrine and neural control of urea excretion in fish, including fish representative of more ancient lineages (hagfish and lamprey), and elasmobranch fish.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | | | | |
Collapse
|
16
|
Weihrauch D, Donini A, O'Donnell MJ. Ammonia transport by terrestrial and aquatic insects. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:473-87. [PMID: 22100291 DOI: 10.1016/j.jinsphys.2011.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 05/13/2023]
Abstract
Ammonia, an end product from amino acid and nucleic acid metabolism, is highly toxic for most animals. This review will provide an update on nitrogen metabolism in terrestrial and aquatic insects with emphasis on ammonia generation and transport. Aspects that will be discussed include metabolic pathways of nitrogenous compounds, the origin of ammonia and other nitrogenous waste products, ammonia toxicity, putative ammonia transporters as well as ammonia transport processes known in insects. Ammonia transport mechanisms in the mosquito Aedes aegypti, the tobacco hornworm Manduca sexta and the locust Schistocerca gregaria will be discussed in detail while providing additional, novel data.
Collapse
Affiliation(s)
- Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T2N2.
| | | | | |
Collapse
|
17
|
Wood CM, Nawata CM. A nose-to-nose comparison of the physiological and molecular responses of rainbow trout to high environmental ammonia in seawater versus freshwater. ACTA ACUST UNITED AC 2012; 214:3557-69. [PMID: 21993784 DOI: 10.1242/jeb.057802] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steelhead rainbow trout acclimated to either freshwater (FW) or seawater (SW) were exposed to high environmental ammonia (HEA, 1000 μmol l(-1) NH(4)HCO(3), pH 7.8-8.0) for 24 h. SW trout restored ammonia excretion more rapidly (3-6 h versus 9-12 h in FW), despite higher production rates and lower plasma pH. Plasma total ammonia levels stabilized at comparable levels below the external HEA concentration, and blood acid-base disturbances were small at both salinities. The electrochemical gradients for NH(4)(+) entry (F(NH(4))(+)) were the same in the two salinities, but only because FW trout allowed their transepithelial potential to rise by ∼15 mV during HEA exposure. Elevation of plasma [cortisol] during HEA exposure was more prolonged in SW fish. Plasma [glucose] increased in SW, but decreased in FW trout. Plasma [urea-N] also decreased in FW, in concert with elevated urea transporter (UT) mRNA expression in the gills. Of 13 branchial transporters, baseline mRNA expression levels were higher for Rhcg1, NHE2, NKCC1a and UT, and lower for NBC1 and NKA-α1a in SW trout, whereas NKA-α1b, NHE3, CA2, H(+)-ATPase, Rhag, Rhbg and Rhcg2 did not differ. Of the Rh glycoprotein mRNAs responding to HEA, Rhcg2 was greatly upregulated in both FW and SW, Rhag decreased only in SW and Rhcg1 decreased only in FW. H(+)-ATPase mRNA increased in FW whereas NHE2 mRNA increased in SW; NHE3 did not respond, and V-type H(+)-ATPase activity declined in SW during HEA exposure. Branchial Na(+),K(+)-ATPase activity was much higher in SW gills, but could not be activated by NH(4)(+). Overall, the more effective response of SW trout was explained by differences in physical chemistry between SW and FW, which greatly reduced the plasma NH(3) tension gradient for NH(3) entry, as well as by the higher [Na(+)] in SW, which favoured Na(+)-coupled excretion mechanisms. At a molecular level, responses in SW trout showed subtle differences from those in FW trout, but were very different than in the SW pufferfish. Upregulation of Rhcg2 appears to play a key role in the response to HEA in both FW and SW trout, and NH(4)(+) does not appear to move through Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | | |
Collapse
|
18
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
19
|
Perry SF, Schwaiger T, Kumai Y, Tzaneva V, Braun MH. The consequences of reversible gill remodelling on ammonia excretion in goldfish (Carassius auratus). ACTA ACUST UNITED AC 2011; 213:3656-65. [PMID: 20952613 DOI: 10.1242/jeb.045955] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Goldfish acclimated to cold water (e.g. 7°C) experience a marked reduction in functional lamellar surface area owing to the proliferation of an interlamellar cell mass (ILCM), a phenomenon termed gill remodelling. The goal of the present study was to assess the consequences of the reduced functional surface area on the capacity of goldfish to excrete ammonia. Despite the expected impact of ambient temperature on functional surface area, fish acclimated to 7°C and 25°C exhibited similar rates of ammonia excretion (J(net,amm)); the Q₁₀ values for fed and starved fish were 1.07 and 1.20, respectively. To control for possible temperature-related differences in rates of endogenous ammonia production, J(net,amm) was determined at the two acclimation temperatures after loading fish with 1.12 μmol g₋₁ of NH₄Cl. In the 3 h post-injection period, J(net,amm) was elevated to a greater extent in the 25°C fish. To estimate the potential contribution of increased ventilation and cardiac output to ammonia clearance in the warmer fish, the ammonia loading experiment was repeated on the 7°C fish immediately after they were exercised to exhaustion. The rate of excretion of ammonia was significantly increased in the exercised 7°C fish (presumably experiencing increased ventilation and cardiac output for at least some of the measurement period) suggesting that differences in external and internal convection may at least partially explain the enhanced capacity of the 25°C fish to clear the ammonia load. To more specifically assess the contribution of the different functional surface areas on the differing rates of ammonia clearance at the two acclimation temperatures, the 7°C fish were exposed for 7 days to hypoxia (P(O₂)=10 mmHg=1.33 kPa), a treatment known to cause the disappearance of the ILCM. The results demonstrated that the hypoxia-associated loss of the ILCM was accompanied by a significant increase in the rate of ammonia clearance in the 7°C fish when returned to normoxic conditions. To determine whether compensatory changes in the ammonia transporting proteins might be contributing to sustaining J(net,amm) under conditions of reduced functional lamellar surface area, the relative expression and branchial distribution of four Rh proteins were assessed by western blotting and immunocytochemistry. Although the relative expression of the Rh proteins was unaffected by acclimation temperature, there did appear to be a change in the spatial distribution of Rhag, Rhbg and Rhcg1. Specifically, these three Rh proteins (and to a lesser extent Rhcg2) appeared to localize in cells on the outer edge of the ILCM that were enriched with Na(+)/K(+)-ATPase. Thus, we suggest that despite the impediment to ammonia excretion imposed by the ILCM, goldfish acclimated to 7°C are able to sustain normal rates of excretion owing to the redistribution of ammonia transporting cells.
Collapse
Affiliation(s)
- Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Braun MH, Perry SF. Ammonia and urea excretion in the Pacific hagfish Eptatretus stoutii: Evidence for the involvement of Rh and UT proteins. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:405-15. [PMID: 20732439 DOI: 10.1016/j.cbpa.2010.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 01/14/2023]
Abstract
The nature of ammonia and urea excretion was examined in the Pacific hagfish (Eptatretus stoutii), which, under resting conditions, excreted similar quantities of nitrogen as either ammonia or urea. In the presence of high external ammonia (HEA) concentrations, ammonia was taken up at high rates and then excreted at similarly high rates upon return to normal water. However, although elevated by HEA, plasma ammonia levels were maintained at approximately 1-4 μmolNg⁻¹, reflecting time-dependent decreases in the rates of ammonia uptake, the possible conversion of ammonia to urea, and the potential active excretion of ammonia against a gradient. Internal injections of NH₄Cl caused marked increases in the rate of ammonia excretion and a delayed increase in urea excretion that may have resulted from increasing urea levels in the plasma. Conversely, when the rate of urea excretion was reduced in the presence of 0.1 mM phloretin, ammonia excretion was significantly elevated. Rates of urea excretion were initially increased by approximately 1000-fold following internal urea injections while the presence of high external urea levels (5-100 mM final concentration) resulted in associated linear increases in plasma urea levels. Using hagfish skin mounted in Ussing chambers, the rate of diffusion of ammonia across the skin exceeded that of urea by approximately four times when equivalent gradients were imposed. Based on western blotting and immunocytochemistry, hagfish gill appears to possess Rh proteins (Rhag, Rhbg and Rhcg1) and urea transporter proteins. Despite the tolerance of hagfish to high levels of ammonia and urea, it is suggested that the presence of ammonia and urea transporter proteins may be required during the period of time hagfish spend in burrows or while feeding, when conditions of high ammonia and/or urea might be encountered.
Collapse
Affiliation(s)
- Marvin H Braun
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada ON K1N 6N5
| | | |
Collapse
|
22
|
Ip YK, Chew SF. Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 2010; 1:134. [PMID: 21423375 PMCID: PMC3059970 DOI: 10.3389/fphys.2010.00134] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 09/06/2010] [Indexed: 12/20/2022] Open
Abstract
Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH4+transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia through the blood-brain barrier and passages of ammonia and water through transporters in the plasmalemma of brain cells. Additionally, brain ammonia toxicity could be related to the passage of glutamine through the mitochondrial membranes into the mitochondrial matrix. On the other hand, recent reports on ammonia excretion in fish confirm the involvement of Rhesus glycoproteins in the branchial and cutaneous epithelia. Therefore, this review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia, as NH(3), NH4+ or proton-neutral nitrogenous compounds, across mitochondrial membranes, the blood-brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish. It also addresses how certain fishes with high ammonia tolerance defend against ammonia toxicity through the regulation of the permeation of ammonia and related nitrogenous compounds through various types of membranes. It is hoped that this review would revive the interests in investigations on the passage of ammonia through the mitochondrial membranes and the blood-brain barrier of ammonotelic fishes and fishes with high brain ammonia tolerance, respectively.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore Singapore, Republic of Singapore.
| | | |
Collapse
|
23
|
Nawata CM, Wood CM, O'Donnell MJ. Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. J Exp Biol 2010; 213:1049-59. [PMID: 20228341 DOI: 10.1242/jeb.038752] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SUMMARY
Recent experimental evidence from rainbow trout suggests that gill ammonia transport may be mediated in part via Rhesus (Rh) glycoproteins. In this study we analyzed the transport properties of trout Rh proteins (Rhag, Rhbg1, Rhbg2, Rhcg1, Rhcg2, Rh30-like) expressed in Xenopus oocytes, using the radiolabeled ammonia analogue [14C]methylamine, and the scanning ion electrode technique (SIET). All of the trout Rh proteins, except Rh30-like, facilitated methylamine uptake. Uptake was saturable, with Km values ranging from 4.6 to 8.9 mmol l−1. Raising external pH from 7.5 to 8.5 resulted in 3- to 4-fold elevations in Jmax values for methylamine; Km values were unchanged when expressed as total or protonated methylamine. Efflux of methylamine was also facilitated in Rh-expressing oocytes. Efflux and influx rates were stimulated by a pH gradient, with higher rates observed with steeper H+ gradients. NH4Cl inhibited methylamine uptake in oocytes expressing Rhbg1 or Rhcg2. When external pH was elevated from 7.5 to 8.5, the Ki for ammonia against methylamine transport was 35–40% lower when expressed as total ammonia or NH4+, but 5- to 6-fold higher when expressed as NH3. With SIET we confirmed that ammonia uptake was facilitated by Rhag and Rhcg2, but not Rh30-like proteins. Ammonia uptake was saturable, with a comparable Jmax but lower Km value than for total or protonated methylamine. At low substrate concentrations, the ammonia uptake rate was greater than that of methylamine. The Km for total ammonia (560 μmol l−1) lies within the physiological range for trout. The results are consistent with a model whereby NH4+ initially binds, but NH3 passes through the Rh channels. We propose that Rh glycoproteins in the trout gill are low affinity, high capacity ammonia transporters that exploit the favorable pH gradient formed by the acidified gill boundary layer in order to facilitate rapid ammonia efflux when plasma ammonia concentrations are elevated.
Collapse
Affiliation(s)
- C. Michele Nawata
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1
| | - Chris M. Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1
| | - Michael J. O'Donnell
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
24
|
Sashaw J, Nawata M, Thompson S, Wood CM, Wright PA. Rhesus glycoprotein and urea transporter genes in rainbow trout embryos are upregulated in response to alkaline water (pH 9.7) but not elevated water ammonia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:308-13. [PMID: 20044151 DOI: 10.1016/j.aquatox.2009.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/18/2009] [Accepted: 11/21/2009] [Indexed: 05/28/2023]
Abstract
Recent studies have shown that genes for the putative ammonia transporter, Rhesus glycoproteins (Rh) and the facilitated urea transporter (UT) are expressed before hatching in rainbow trout (Oncorhychus mykiss Walbaum) embryos. We tested the hypothesis that Rh and UT gene expressions are regulated in response to environmental conditions that inhibit ammonia excretion during early life stages. Eyed-up embryos (22 days post-fertilization (dpf)) were exposed to control (pH 8.3), high ammonia (1.70 mmol l(-1) NH4HCO3) and high pH (pH 9.7) conditions for 48h. With exposure to high water ammonia, ammonia excretion rates were reversed, tissue ammonia concentration was elevated by 9-fold, but there were no significant changes in mRNA expression relative to control embryos. In contrast, exposure to high water pH had a smaller impact on ammonia excretion rates and tissue ammonia concentrations, whereas mRNA levels for the Rhesus glycoprotein Rhcg2 and urea transporter (UT) were elevated by 3.5- and 5.6-fold, respectively. As well, mRNAs of the genes for H+ATPase and Na+/H+ exchanger (NHE2), associated with NH3 excretion, were also upregulated by 7.2- and 13-fold, respectively, in embryos exposed to alkaline water relative to controls. These results indicate that the Rhcg2, UT and associated transport genes are regulated in rainbow trout embryos, but in contrast to adults, there is no effect of high external ammonia at this stage of development.
Collapse
Affiliation(s)
- Jessica Sashaw
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Braun MH, Steele SL, Perry SF. The responses of zebrafish (Danio rerio) to high external ammonia and urea transporter inhibition: nitrogen excretion and expression of rhesus glycoproteins and urea transporter proteins. J Exp Biol 2009; 212:3846-56. [PMID: 19915127 DOI: 10.1242/jeb.034157] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
While adult zebrafish, Danio rerio, possess ammonia and urea transporters (Rh and UT proteins, respectively) in a number of tissues, they are most heavily concentrated within the gills. UT has a diffuse expression pattern within Na+-K+-ATPase (NKA)-type mitochondrion-rich cells and Rh proteins form a network similar to the arrangement seen in pufferfish gills (Nakada et al., 2007b). Rhag expression appeared to be limited to the pillar cells lining the blood spaces of the lamellae while Rhbg was localized to the outer layer of both the lamellae and the filament, upon the pavement cells. Exposure to high external ammonia (HEA) or phloretin increased tissue levels of ammonia and urea, respectively, in adult and juvenile zebrafish; however, the responses to these stressors were age dependent. HEA increased mRNA levels for a number of Rh proteins in embryos and larvae but did not elicit similar effects in adult gills, which appear to compensate for the unfavourable ammonia excretory gradient by increasing expression of V-type H+-ATPase. Phloretin exposure increased UT mRNA levels in embryos and larvae but was without effect in adult gill tissue. Surprisingly, in both adults and juveniles, HEA increased the mRNA expression of UT and phloretin increased the mRNA expression of Rh proteins. These results imply that, in zebrafish, there may be a tighter link between ammonia and urea excretion than is thought to occur in most teleosts.
Collapse
Affiliation(s)
- Marvin H Braun
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | | | | |
Collapse
|
27
|
Nakada T, Westhoff CM, Yamaguchi Y, Hyodo S, Li X, Muro T, Kato A, Nakamura N, Hirose S. Rhesus glycoprotein p2 (Rhp2) is a novel member of the Rh family of ammonia transporters highly expressed in shark kidney. J Biol Chem 2009; 285:2653-64. [PMID: 19926789 DOI: 10.1074/jbc.m109.052068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Rhesus (Rh) glycoproteins are a family of membrane proteins capable of transporting ammonia. We isolated the full-length cDNA of a novel Rh glycoprotein, Rhp2, from a kidney cDNA library from the banded hound shark, Triakis scyllium. Molecular cloning and characterization indicated that Rhp2 consists of 476 amino acid residues and has 12 putative transmembrane spans, consistent with the structure of other family members. The shark Rhp2 gene was found to consist of only one coding exon. Northern blotting and in situ hybridization revealed that Rhp2 mRNA is exclusively expressed in the renal tubules of the sinus zone but not in the bundle zone and renal corpuscles. Immunohistochemical staining with a specific antiserum showed that Rhp2 is localized in the basolateral membranes of renal tubule cells. Double fluorescence labeling with phalloidin or labeling of the Na(+)/K(+)-ATPase further narrowed the location to the second and fourth loops in the sinus zone. Vacuolar type H(+)-ATPase was localized in apical membranes of the Rhp2-expressing tubule cells. Quantitative real-time PCR analysis and Western blotting showed that expression of Rhp2 was increased in response to elevation of environmental salinity. Functional analysis using the Xenopus oocyte expression system showed that Rhp2 has transport activity for methylammonium, an analog of ammonia. This transport activity was inhibited by NH(4)Cl but not trimethylamine-N-oxide and urea. These results suggested that Rhp2 is involved in ammonia reabsorption in the kidney of the elasmobranch group of cartilaginous fish comprising the sharks and rays.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wright PA, Wood CM. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus(Rh) glycoproteins. J Exp Biol 2009; 212:2303-12. [DOI: 10.1242/jeb.023085] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARY
Ammonia excretion at the gills of fish has been studied for 80 years, but the mechanism(s) involved remain controversial. The relatively recent discovery of the ammonia-transporting function of the Rhesus (Rh) proteins, a family related to the Mep/Amt family of methyl ammonia and ammonia transporters in bacteria, yeast and plants, and the occurrence of these genes and glycosylated proteins in fish gills has opened a new paradigm. We provide background on the evolution and function of the Rh proteins, and review recent studies employing molecular physiology which demonstrate their important contribution to branchial ammonia efflux. Rhag occurs in red blood cells,whereas several isoforms of both Rhbg and Rhcg occur in many tissues. In the branchial epithelium, Rhcg appears to be localized in apical membranes and Rhbg in basolateral membranes. Their gene expression is upregulated during exposure to high environmental ammonia or internal ammonia infusion, and may be sensitive to synergistic stimulation by ammonia and cortisol. Rhcg in particular appears to be coupled to H+ excretion and Na+uptake mechanisms. We propose a new model for ammonia excretion in freshwater fish and its variable linkage to Na+ uptake and acid excretion. In this model, Rhag facilitates NH3 flux out of the erythrocyte, Rhbg moves it across the basolateral membrane of the branchial ionocyte, and an apical “Na+/NH +4 exchange complex” consisting of several membrane transporters (Rhcg, V-type H+-ATPase, Na+/H+ exchanger NHE-2 and/or NHE-3, Na+ channel) working together as a metabolon provides an acid trapping mechanism for apical excretion. Intracellular carbonic anhydrase(CA-2) and basolateral Na+/HCO –3cotransporter (NBC-1) and Na+/K+-ATPase play indirect roles. These mechanisms are normally superimposed on a substantial outward movement of NH3 by simple diffusion, which is probably dependent on acid trapping in boundary layer water by H+ ions created by the catalysed or non-catalysed hydration of expired metabolic CO2. Profitable areas for future investigation of Rh proteins in fish are highlighted: their involvement in the mechanism of ammonia excretion across the gills in seawater fish, their possible importance in ammonia excretion across the skin, their potential dual role as CO2 transporters,their responses to feeding, and their roles in early life stages prior to the full development of gills.
Collapse
Affiliation(s)
- Patricia A. Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1,Canada
| | - Chris M. Wood
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1,Canada
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
29
|
Weihrauch D, Wilkie MP, Walsh PJ. Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 2009; 212:1716-30. [PMID: 19448081 DOI: 10.1242/jeb.024851] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diversity of mechanisms of ammonia and urea excretion by the gills and other epithelia of aquatic organisms, especially fish and crustaceans, has been studied for decades. Although the decades-old dogma of ;aquatic species excrete ammonia' still explains nitrogenous waste excretion for many species, it is clear that there are many mechanistic variations on this theme. Even within species that are ammonoteles, the process is not purely ;passive', often relying on the energizing effects of proton and sodium-potassium ATPases. Within the ammonoteles, Rh (Rhesus) proteins are beginning to emerge as vital ammonia conduits. Many fishes are also known to be capable of substantial synthesis and excretion of urea as a nitrogenous waste. In such species, members of the UT family of urea transporters have been identified as important players in urea transport across the gills. This review attempts to draw together recent information to update the mechanisms of ammonia and urea transport by the gills of aquatic species. Furthermore, we point out several potentially fruitful avenues for further research.
Collapse
Affiliation(s)
- Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, 190 Dysart Road, Winnipeg, MB, R3T 2N2 Canada
| | | | | |
Collapse
|
30
|
Tsui TKN, Hung CYC, Nawata CM, Wilson JM, Wright PA, Wood CM. Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na+/NH4+ exchange complex. ACTA ACUST UNITED AC 2009; 212:878-92. [PMID: 19252005 DOI: 10.1242/jeb.021899] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms of ammonia excretion at fish gills have been studied for decades but details remain unclear, with continuing debate on the relative importance of non-ionic NH(3) or ionic NH(4)(+) permeation by various mechanisms. The presence of an apical Na(+)/NH(4)(+) exchanger has also been controversial. The present study utilized an in vitro cultured gill epithelium (double seeded insert, DSI) of freshwater rainbow trout as a model to investigate these issues. The relationship between basolateral ammonia concentration and efflux to apical freshwater was curvilinear, indicative of a saturable carrier-mediated component (K(m)=66 micromol l(-1)) superimposed on a large diffusive linear component. Pre-exposure to elevated ammonia (2000 micromol l(-1)) and cortisol (1000 ng ml(-1)) had synergistic effects on the ammonia permeability of DSI, with significantly increased Na(+) influx and positive correlations between ammonia efflux and Na(+) uptake. This increase in ammonia permeability was bidirectional. It could not be explained by changes in paracellular permeability as measured by [(3)H]PEG-4000 flux. The mRNA expressions of Rhbg, Rhcg2, H(+)-ATPase and Na(+)/H(+) exchanger-2 (NHE-2) were up-regulated in DSI pre-exposed to ammonia and cortisol, CA-2 mRNA was down-regulated, and transepithelial potential became more negative. Bafilomycin (1 micromol l(-1)), phenamil (10 micromol l(-1)) and 5-(N,N-hexamethylene)amiloride (HMA, 10 micromol l(-1)) applied to the apical solution significantly inhibited ammonia efflux, indicating that H(+)-ATPase, Na(+) channel and NHE-2 pathways on the apical surface were involved in ammonia excretion. Apical amiloride (100 micromol l(-1)) was similarly effective, while basolateral HMA was ineffective. Pre-treatment with apical freshwater low in [Na(+)] caused increases in both Rhcg2 mRNA expression and ammonia efflux without change in paracellular permeability. These data suggest that Rhesus glycoproteins are important for ammonia transport in the freshwater trout gill, and may help to explain in vivo data where plasma ammonia stabilized at 50% below water levels during exposure to high environmental ammonia ( approximately 2300 micromol l(-1)). We propose an apical ;Na(+)/NH(4)(+) exchange complex' consisting of several membrane transporters, while affirming the importance of non-ionic NH(3) diffusion in ammonia excretion across freshwater fish gills.
Collapse
Affiliation(s)
- T K N Tsui
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
31
|
Braun MH, Steele SL, Ekker M, Perry SF. Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 2009; 296:F994-F1005. [PMID: 19279128 DOI: 10.1152/ajprenal.90656.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Injection of antisense oligonucleotide morpholinos to elicit selective gene knockdown of ammonia (Rhag, Rhbg, and Rhcg1) or urea transporters (UT) was used as a tool to assess the relative importance of each transporter to nitrogen excretion in developing zebrafish (Danio rerio). Knockdown of UT caused urea excretion to decrease by approximately 90%, whereas each of the Rh protein knockdowns resulted in an approximately 50% reduction in ammonia excretion. Contrary to what has been hypothesized previously for adult fish, each of the Rh proteins appeared to have a similar effect on total ammonia excretion, and thus all are required to facilitate normal ammonia excretion in the zebrafish larva. As demonstrated in other teleosts, zebrafish embryos utilized urea to a much greater extent than adults and were effectively ureotelic until hatching. At that point, ammonia excretion rapidly increased and appeared to be triggered by a large increase in the mRNA expression of Rhag, Rhbg, and Rhcg1. Unlike the situation in the adult pufferfish (35), the various transporters are not specifically localized to the gills of the developing zebrafish, but each protein has a unique expression pattern along the skin, gills, and yolk sac. This disparate pattern of expression would appear to preclude interaction between the Rh proteins in zebrafish embryos. However, this may be a developmental feature of the delayed maturation of the gills, because as the embryos matured, expression of the transporters in and around the gills increased.
Collapse
Affiliation(s)
- M H Braun
- Department of Biology and Center for Advanced Research in Environmental Genetics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.
| | | | | | | |
Collapse
|
32
|
mRNA expression analysis of the physiological responses to ammonia infusion in rainbow trout. J Comp Physiol B 2009; 179:799-810. [DOI: 10.1007/s00360-009-0361-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 01/16/2023]
|