1
|
Milnes MR, Robinson CD, Foley AP, Stepp C, Hale MD, John-Alder HB, Cox RM. Effects of testosterone on urogenital tract morphology and androgen receptor expression in immature Eastern Fence lizards (Sceloporus undulatus). Gen Comp Endocrinol 2024; 346:114418. [PMID: 38036014 DOI: 10.1016/j.ygcen.2023.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
In non-avian reptiles, the onset of sexual dimorphism of the major structures of the urogenital tract varies temporally relative to gonadal differentiation, more so than in other amniote lineages. In the current study, we used tonic-release implants to investigate the effects of exogenous testosterone (T) on postnatal development of the urogenital tract in juvenile Eastern Fence Lizards (Sceloporus undulatus) to better understand the mechanisms underlying the ontogeny of sexual differentiation in reptiles. We examined gonads, mesonephric kidneys and ducts (male reproductive tract primordia), paramesonephric ducts (oviduct primordia), sexual segments of the kidneys (SSKs), and hemiphalluses to determine which structures were sexually dimorphic independent of T treatment and which structures exhibited sexually dimorphic responses to T. To better understand tissue-level responsiveness to T treatment, we also characterized androgen receptor (AR) expression by immunohistochemistry. At approximately 4 months after hatching in control animals, gonads were well differentiated but quiescent; paramesonephric ducts had fully degenerated in males; mesonephric kidneys, mesonephric ducts, and SSKs remained sexually undifferentiated; and hemiphalluses could not be everted in either sex. Exogenous T caused enlargement, regionalization, and secretory activity of the mesonephric ducts and SSKs in both sexes; enlargement and regionalization of the oviducts in females; and enlargement of male hemipenes. The most responsive tissues exhibited moderate but diffuse staining for AR in control lizards and intense nuclear staining in T-treated lizards, suggestive of autoregulation of AR. The similarity between sexes in the responsiveness of the mesonephric ducts and SSK to T indicates an absence of sexually dimorphic organizational effects in these structures prior to treatment, which was initiated approximately 2 months after hatching. In contrast, the sex-specific responses in oviducts and hemipenes indicate that significant organization and/or differentiation had taken place prior to treatment.
Collapse
Affiliation(s)
- Matthew R Milnes
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | | | - Alexis P Foley
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Charleigh Stepp
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
2
|
Rams-Pociecha I, Mizia PC, Piprek RP. Histological Analysis of Gonadal Ridge Development and Sex Differentiation of Gonads in Three Gecko Species. BIOLOGY 2023; 13:7. [PMID: 38248438 PMCID: PMC10813461 DOI: 10.3390/biology13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Reptiles constitute a highly diverse group of vertebrates, with their evolutionary lineages having diverged relatively early. The types of sex determination exemplify the diversity of reptiles; however, there are limited data regarding the gonadal development in squamate reptiles. Geckos constitute a group that is increasingly used in research and that serves as a potential reptilian model organism. The aim of this study was to trace the changes in the structure of developing gonads in the embryos of three gecko species: the crested gecko, leopard gecko, and mourning gecko. These species represent different families of the Gekkota infraorder and exhibit different types of sex determination. Gonadal development was examined from the formation of the earliest gonadal ridges through the development of undifferentiated gonadal structures, sex differentiation of gonads, and the formation of testicular and ovarian structures. The study showed that the gonadal primordia of these three gecko species formed on the most dorsally located surface of the dorsal mesentery, and both the coelomic epithelium and the nephric mesenchyme contributed to their development. As in other reptile species, primordial germ cells settled in the gonadal ridges, and the undifferentiated gonad was composed of a cortex and a medulla. Ovarian differentiation started with the thickening of the gonadal cortex and proliferation of germ cells in this region. A characteristic feature of the developing gecko ovaries was the thickened crescent-shaped cortex on the medial and ventral surfaces of the ovaries. The ovarian medulla also grew and exhibited diverse tendencies to form cords. In the leopard gecko, advanced cord-like structures with lumens were observed in the ovaries, which were not seen in the crested gecko. Testicular differentiation was characterized by cortical thinning and the disappearance of germ cells in this region. In the medulla, the development of distinct cords with early lumen formation was noted. A characteristic feature of embryonic gonads was their growth in a horizontal plane. In this study, gonadal development was characterized by several features that are shared by geckos and other reptiles, along with features that are specific only to geckos.
Collapse
Affiliation(s)
- Izabela Rams-Pociecha
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (I.R.-P.); (P.C.M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Paulina C. Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (I.R.-P.); (P.C.M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Rafal P. Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (I.R.-P.); (P.C.M.)
| |
Collapse
|
3
|
Gessler TB, Wu Z, Valenzuela N. Transcriptomic thermal plasticity underlying gonadal development in a turtle with ZZ/ZW sex chromosomes despite canalized genotypic sex determination. Ecol Evol 2023; 13:e9854. [PMID: 36844670 PMCID: PMC9951354 DOI: 10.1002/ece3.9854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/28/2023] Open
Abstract
Understanding genome-wide responses to environmental conditions during embryogenesis is essential for discerning the evolution of developmental plasticity and canalization, two processes generating phenotypic variation targeted by natural selection. Here, we present the first comparative trajectory analysis of matched transcriptomic developmental time series from two reptiles incubated under identical conditions, a turtle with a ZZ/ZW system of genotypic sex determination (GSD), Apalone spinifera, and a turtle with temperature-dependent sex determination (TSD), Chrysemys picta. Results from our genome-wide, hypervariate gene expression analysis of sexed embryos across five developmental stages revealed that substantial transcriptional plasticity in the developing gonads can persist for >145 Myr, long after the canalization of sex determination via the evolution of sex chromosomes, while some gene-specific thermal sensitivity drifts or evolves anew. Such standing thermosensitivity represents an underappreciated evolutionary potential harbored by GSD species that may be co-opted during future adaptive shifts in developmental programing, such as a GSD to TSD reversal, if favored by ecological conditions. Additionally, we identified novel candidate regulators of vertebrate sexual development in GSD reptiles, including sex-determining candidate genes in a ZZ/ZW turtle.
Collapse
Affiliation(s)
- Thea B. Gessler
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA,Genetics and Genomics ProgramIowa State UniversityAmesIowaUSA
| | - Zhiqiang Wu
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA,Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
4
|
Suárez-Varón G, Mendoza-Cruz E, Acosta A, Villagrán-Santa Cruz M, Cortez D, Hernández-Gallegos O. Genetic determination and JARID2 over-expression in a thermal incubation experiment in Casque-Headed Lizard. PLoS One 2022; 17:e0263804. [PMID: 35797377 PMCID: PMC9262179 DOI: 10.1371/journal.pone.0263804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Non-avian reptiles, unlike mammals and birds, have undergone numerous sex determination changes. Casque-Headed Lizards have replaced the ancestral XY system shared across pleurodonts with a new pair of XY chromosomes. However, the evolutionary forces that triggered this transition have remained unclear. An interesting hypothesis suggests that species with intermediate states, with sex chromosomes but also thermal-induced sex reversal at specific incubation temperatures, could be more susceptible to sex determination turnovers. We contrasted genotypic data (presence/absence of the Y chromosome) against the histology of gonads of embryos from stages 35–37 incubated at various temperatures, including typical male-producing (26°C) and female-producing (32°C) temperatures. Our work apparently reports for the first time the histology of gonads, including morphological changes, from stages 35–37 of development in the family Corytophanidae. We also observed that all embryos developed hemipenes, suggesting sex-linked developmental heterochrony. We observed perfect concordance between genotype and phenotype at all temperatures. However, analysis of transcriptomic data from embryos incubated at 26°C and 32°C identified transcript variants of the chromatin modifiers JARID2 and KDM6B that have been linked to temperature-dependent sex determination in other reptiles. Our work tested the validity of a mixed sex determination system in the family Corytophanidae. We found that XY chromosomes are dominant; however, our work supports the hypothesis of a conserved transcriptional response to incubation temperatures across non-avian reptiles that could be a reminiscence of an ancestral sex determination system.
Collapse
Affiliation(s)
- Gabriel Suárez-Varón
- Laboratorio de Herpetología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario # 100 Centro, Toluca, Estado de México, México
| | - Eva Mendoza-Cruz
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Maricela Villagrán-Santa Cruz
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Diego Cortez
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, México
- * E-mail:
| | - Oswaldo Hernández-Gallegos
- Laboratorio de Herpetología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario # 100 Centro, Toluca, Estado de México, México
| |
Collapse
|
5
|
Hill P, While GM, Burridge CP, Ezaz T, Munch KL, McVarish M, Wapstra E. Sex reversal explains some, but not all, climate-mediated sex ratio variation within a viviparous reptile. Proc Biol Sci 2022; 289:20220689. [PMID: 35642367 PMCID: PMC9156933 DOI: 10.1098/rspb.2022.0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evolutionary transitions in sex-determining systems have occurred frequently yet understanding how they occur remains a major challenge. In reptiles, transitions from genetic to temperature-dependent sex determination can occur if the gene products that determine sex evolve thermal sensitivity, resulting in sex-reversed individuals. However, evidence of sex reversal is limited to oviparous reptiles. Here we used thermal experiments to test whether sex reversal is responsible for differences in sex determination in a viviparous reptile, Carinascincus ocellatus, a species with XY sex chromosomes and population-specific sex ratio response to temperature. We show that sex reversal is occurring and that its frequency is related to temperature. Sex reversal was unidirectional (phenotypic males with XX genotype) and observed in both high- and low-elevation populations. We propose that XX-biased genotypic sex ratios could produce either male- or female-biased phenotypic sex ratios as observed in low-elevation C. ocellatus under variable rates of XX sex reversal. We discuss reasons why sex reversal may not influence sex ratios at high elevation. Our results suggest that the mechanism responsible for evolutionary transitions from genotypic to temperature-dependent sex determination is more complex than can be explained by a single process such as sex reversal.
Collapse
Affiliation(s)
- Peta Hill
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Geoffrey M While
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory 2601, Australia
| | - Kirke L Munch
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Mary McVarish
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Erik Wapstra
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| |
Collapse
|
6
|
Folwell M, Sanders K, Crowe-Riddell J. The Squamate Clitoris: A Review and Directions for Future Research. Integr Comp Biol 2022; 62:icac056. [PMID: 35662336 DOI: 10.1093/icb/icac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The clitoris is a part of the genitalia of female amniotes that typically functions to stimulate sensory arousal. It usually consists of a small organ that is dimorphic and homologous to the penis. The developing amniote embryo forms a genital tubule, then sex hormones initiate a developmental cascade to form either a penis or clitoris. In squamates (lizards and snakes) the genital tubule develops into a paired hemiphallus structure called the "hemiclitores" in the female and the "hemipenes" in the male. The complex evolution of squamate hemipenes has been extensively researched since early discoveries in the 1800's, and this has uncovered huge diversity in hemipenis size, shape, and ornamentation (e.g., protrusions of spines, hooks, chalices, cups). In contrast, the squamate hemiclitoris has been conspicuously under investigated, and the studies that describe this anatomy are fraught with inconsistences. This paper aims to clarify the current state of knowledge of the squamate hemiclitoris, providing a foundation for further research on its morphology and functional role. We show that while several studies have described the gross anatomy of hemiclitores in lizards, comparative information is entirely lacking for snakes. Several papers cite earlier authors as having reported discoveries of the snake hemiclitores in vipers and colubrid snakes. However, our examination of this reveals only erroneous reports of hemiclitores in snakes and shows that these stem from misinterpretations of the true anatomy or species involved. An especially problematic source of confusion is the presence of intersex individuals in some snake populations; these form reproductively functional ovaries and a single hemipenis, with the latter sometimes mistaken for a hemiclitoris (the intersex hemipenis is usually smaller and less spinous than the male hemipenis). Further research is recommended to identify the defining anatomical features of the squamate hemiclitores. Such studies will form a vital basis of future comparative analyses of variation in female genitalia in squamates and other amniotes.
Collapse
Affiliation(s)
- Megan Folwell
- The University of Adelaide, Faculty of Biological Science
| | - Kate Sanders
- University of Adelaide, Faculty of Biological Science
| | | |
Collapse
|
7
|
Lin Z, Yu K, Shen L, Zhang Y, Liu Y, Hou M, Peng Z, Tang X, Chen Q. A staging table of embryonic development for a viviparous (live-bearing) lizard Eremias multiocellata (Squamata: Lacertidae). Reprod Fertil Dev 2021; 33:782-797. [PMID: 34663492 DOI: 10.1071/rd21082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022] Open
Abstract
As the only viviparous reptile in China that has both temperature-dependent sex determination (TSD) and genetic-dependent sex determination (GSD) mechanisms, Eremias multiocellata is considered as an ideal species for studying the sex determination mechanism in viviparous lizards. However, studies on embryonic stage of viviparous lizards and morphological characteristics of each stage are limited. In the present study, the embryonic development process of E. multiocellata is divided into 15 stages (stages 28-42) according to the morphology of embryos. Embryos sizes are measured and continuous dynamic variation of some key features, including limbs, genitals, eyes, pigments, and brain scales are color imaged by a stereoscopic microscope. Furthermore, based on these morphological characteristics, we compare the similarities and differences in the embryonic development of E. multiocellata with other squamate species. Our results not only identified the staging table of E. multiocellata with continuous changes of external morphological characteristics but also developed a staging scheme for an important model species that provides a necessary foundation for study of sex determination in a viviparous lizard.
Collapse
Affiliation(s)
- Zhaocun Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Kaiming Yu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Leyao Shen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Mei Hou
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhennan Peng
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
8
|
Whiteley SL, Georges A, Weisbecker V, Schwanz LE, Holleley CE. Ovotestes suggest cryptic genetic influence in a reptile model for temperature-dependent sex determination. Proc Biol Sci 2021; 288:20202819. [PMID: 33467998 DOI: 10.1098/rspb.2020.2819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon (Amphibolurus muricatus) is an attractive model species for the study of gene-environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in A. muricatus. The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species Pogona vitticeps. Here, we present the first developmental data for A. muricatus, and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.
Collapse
Affiliation(s)
- Sarah L Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Lisa E Schwanz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia
| | - Clare E Holleley
- Australian National Wildlife Collection, CSIRO, Canberra, Australia
| |
Collapse
|
9
|
Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, Dissanayake DSB, Dong CM, Doody JS, Edwards DL, Ezaz T, Friesen CR, Gardner MG, Georges A, Higgie M, Hill PL, Holleley CE, Hoops D, Hoskin CJ, Merry DL, Riley JL, Wapstra E, While GM, Whiteley SL, Whiting MJ, Zozaya SM, Whittington CM. Australian lizards are outstanding models for reproductive biology research. AUST J ZOOL 2020. [DOI: 10.1071/zo21017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Australian lizards are a diverse group distributed across the continent and inhabiting a wide range of environments. Together, they exhibit a remarkable diversity of reproductive morphologies, physiologies, and behaviours that is broadly representative of vertebrates in general. Many reproductive traits exhibited by Australian lizards have evolved independently in multiple lizard lineages, including sociality, complex signalling and mating systems, viviparity, and temperature-dependent sex determination. Australian lizards are thus outstanding model organisms for testing hypotheses about how reproductive traits function and evolve, and they provide an important basis of comparison with other animals that exhibit similar traits. We review how research on Australian lizard reproduction has contributed to answering broader evolutionary and ecological questions that apply to animals in general. We focus on reproductive traits, processes, and strategies that are important areas of current research, including behaviours and signalling involved in courtship; mechanisms involved in mating, egg production, and sperm competition; nesting and gestation; sex determination; and finally, birth in viviparous species. We use our review to identify important questions that emerge from an understanding of this body of research when considered holistically. Finally, we identify additional research questions within each topic that Australian lizards are well suited for reproductive biologists to address.
Collapse
|
10
|
Delssin AR, Sandoval MT, Ortiz MA, Alvarez BB. Development and differentiation of the reproductive system of Tropidurus catalanensis (Squamata: Tropiduridae). J Morphol 2019; 280:244-258. [PMID: 30653714 DOI: 10.1002/jmor.20940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Development and differentiation of the reproductive system in lizards begin in the embryonic period, although the stage and time of their occurrence vary according to populations and species. In this study, the events of the development and differentiation of the reproductive system of males and females of Tropidurus catalanensis were characterized during the embryonic, neonatal, and juvenile periods. Embryos at Stages 27, 34, 37, 40, and 41, neonates and juveniles, from Corrientes, Argentina, were analyzed. At Stage 27, the genital ridge was not observed but primordial germ cells were recorded in the yolk sac as well as the mesenteric mesenchyme, indicating the beginning of germ cell migration. Gonadal differentiation commenced at Stage 34. In males from Stage 37, the testes possessed seminiferous cords with Sertoli cells and spermatogonia, while in hatchlings seminiferous tubules and interstitial tissue with mature Leydig cells were present. Spermatogenesis was observed in a specimen of 51.9 mm snout-vent length, corresponding to the minimum reproductive size. In females, from Stage 37 until hatching, the ovaries had a cavernous medulla and a cortex with somatic cells and abundant oogonia. The onset of meiosis and folliculogenesis occurred in the juvenile period.
Collapse
Affiliation(s)
- Andrea Raquel Delssin
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Embriología Animal. Av. Libertad 5470, CP 3400, Corrientes, Argentina.,Universidad Nacional del Nordeste-Consejo Nacional de Investigaciones Científicas y Tecnológicas (UNNE-CONICET), FaCENA (CP 3400), Corrientes, Argentina
| | - María Teresa Sandoval
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Embriología Animal. Av. Libertad 5470, CP 3400, Corrientes, Argentina
| | - Martin Alejandro Ortiz
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Embriología Animal. Av. Libertad 5470, CP 3400, Corrientes, Argentina.,Universidad Nacional del Nordeste-Consejo Nacional de Investigaciones Científicas y Tecnológicas (UNNE-CONICET), FaCENA (CP 3400), Corrientes, Argentina
| | - Blanca Beatriz Alvarez
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Embriología Animal. Av. Libertad 5470, CP 3400, Corrientes, Argentina
| |
Collapse
|
11
|
Developmental asynchrony and antagonism of sex determination pathways in a lizard with temperature-induced sex reversal. Sci Rep 2018; 8:14892. [PMID: 30291276 PMCID: PMC6173690 DOI: 10.1038/s41598-018-33170-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Vertebrate sex differentiation follows a conserved suite of developmental events: the bipotential gonads differentiate and shortly thereafter sex specific traits become dimorphic. However, this may not apply to squamates, a diverse vertebrate lineage comprising of many species with thermosensitive sexual development. Of the three species with data on the relative timing of gonad differentiation and genital dimorphism, the females of two (Niveoscincus ocellatus and Barisia imbricata) exhibit a phase of temporary pseudohermaphroditism or TPH (gonads have differentiated well before genital dimorphism). We report a third example of TPH in Pogona vitticeps, an agamid with temperature-induced male to female sex reversal. These findings suggest that for female squamates, genital and gonad development may not be closely synchronised, so that TPH may be common. We further observed a high frequency of ovotestes, a usually rare gonadal phenotype characterised by a mix of male and female structures, exclusively associated with temperature-induced sex reversal. We propose that ovotestes are evidence of a period of antagonism between male and female sex-determining pathways during sex reversal. Female sexual development in squamates is considerably more complex than has been appreciated, providing numerous avenues for future exploration of the genetic and hormonal cues that govern sexual development.
Collapse
|
12
|
Whiteley SL, Holleley CE, Ruscoe WA, Castelli M, Whitehead DL, Lei J, Georges A, Weisbecker V. Sex determination mode does not affect body or genital development of the central bearded dragon ( Pogona vitticeps). EvoDevo 2017; 8:25. [PMID: 29225770 PMCID: PMC5716226 DOI: 10.1186/s13227-017-0087-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background The development of male- or female-specific phenotypes in squamates is typically controlled by either temperature-dependent sex determination (TSD) or chromosome-based genetic sex determination (GSD). However, while sex determination is a major switch in individual phenotypic development, it is unknownhow evolutionary transitions between GSD and TSD might impact on the evolution of squamate phenotypes, particularly the fast-evolving and diverse genitalia. Here, we take the unique opportunity of studying the impact of both sex determination mechanisms on the embryological development of the central bearded dragon (Pogona vitticeps). This is possible because of the transitional sex determination system of this species, in which genetically male individuals reverse sex at high incubation temperatures. This can trigger the evolutionary transition of GSD to TSD in a single generation, making P. vitticeps an ideal model organism for comparing the effects of both sex determination processes in the same species. Results We conducted four incubation experiments on 265 P. vitticeps eggs, covering two temperature regimes ("normal" at 28 °C and "sex reversing" at 36 °C) and the two maternal sexual genotypes (concordant ZW females or sex-reversed ZZ females). From this, we provide the first detailed staging system for the species, with a focus on genital and limb development. This was augmented by a new sex chromosome identification methodology for P. vitticeps that is non-destructive to the embryo. We found a strong correlation between embryo age and embryo stage. Aside from faster growth in 36 °C treatments, body and external genital development was entirely unperturbed by temperature, sex reversal or maternal sexual genotype. Unexpectedly, all females developed hemipenes (the genital phenotype of adult male P. vitticeps), which regress close to hatching. Conclusions The tight correlation between embryo age and embryo stage allows the precise targeting of specific developmental periods in the emerging field of molecular research on P. vitticeps. The stability of genital development in all treatments suggests that the two sex-determining mechanisms have little impact on genital evolution, despite their known role in triggering genital development. Hemipenis retention in developing female P. vitticeps, together with frequent occurrences of hemipenis-like structures during development in other squamate species, raises the possibility of a bias towards hemipenis formation in the ancestral developmental programme for squamate genitalia.
Collapse
Affiliation(s)
- Sarah L Whiteley
- School of Biological Sciences, University of Queensland, Brisbane, QLD Australia.,Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT Australia.,Institute for Applied Ecology, University of Canberra, Canberra, ACT Australia
| | - Clare E Holleley
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT Australia.,Institute for Applied Ecology, University of Canberra, Canberra, ACT Australia
| | - Wendy A Ruscoe
- Institute for Applied Ecology, University of Canberra, Canberra, ACT Australia
| | - Meghan Castelli
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT Australia.,Institute for Applied Ecology, University of Canberra, Canberra, ACT Australia
| | - Darryl L Whitehead
- School of Biomedical Science, University of Queensland, Brisbane, QLD Australia
| | - Juan Lei
- School of Biological Sciences, University of Queensland, Brisbane, QLD Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT Australia
| | - Vera Weisbecker
- School of Biological Sciences, University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
13
|
Gruber J, Cunningham GD, While GM, Wapstra E. Disentangling sex allocation in a viviparous reptile with temperature-dependent sex determination: a multifactorial approach. J Evol Biol 2017; 31:267-276. [PMID: 29194826 DOI: 10.1111/jeb.13219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022]
Abstract
Females are predicted to alter sex allocation when ecological, physiological and behavioural variables have different consequences on the fitness of male and female offspring. Traditionally, tests of sex allocation have examined single causative factors, often ignoring possible interactions between multiple factors. Here, we used a multifactorial approach to examine sex allocation in the viviparous skink, Niveoscincus ocellatus. We integrated a 16-year observational field study with a manipulative laboratory experiment to explore whether the effects of the maternal thermal environment interact with the resources available to females for reproduction to affect sex allocation decisions. We found strong effects of temperature on sex allocation in the field, with females born in warm conditions and males in cold conditions; however, this was not replicated in the laboratory. In contrast, we found no effect of female resource availability on sex allocation, either independently, or in interaction with temperature. These results corresponded with an overall lack of an effect of resource availability on any of the life history traits that we predicted would mediate the benefits of differential sex allocation in this system, suggesting that selection for sex allocation in response to resource availability may be relatively weak. Combined, these results suggest that temperature may be the predominant factor driving sex allocation in this system.
Collapse
Affiliation(s)
- J Gruber
- School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| | - G D Cunningham
- School of Biological Sciences, The University of Tasmania, Hobart, Tas., Australia
| | - G M While
- School of Biological Sciences, The University of Tasmania, Hobart, Tas., Australia
| | - E Wapstra
- School of Biological Sciences, The University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
14
|
Cunningham GD, While GM, Wapstra E. Climate and sex ratio variation in a viviparous lizard. Biol Lett 2017; 13:rsbl.2017.0218. [PMID: 28566543 DOI: 10.1098/rsbl.2017.0218] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/09/2017] [Indexed: 11/12/2022] Open
Abstract
The extent to which key biological processes, such as sex determination, respond to environmental fluctuations is fundamental for assessing species' susceptibility to ongoing climate change. Few studies, however, address how climate affects offspring sex in the wild. We monitored two climatically distinct populations of the viviparous skink Niveoscincus ocellatus for 16 years, recording environmental temperatures, offspring sex and date of birth. We found strong population-specific effects of temperature on offspring sex, with female offspring more common in warm years at the lowland site but no effect at the highland site. In contrast, date of birth advanced similarly in response to temperature at both sites. These results suggest strong population-specific effects of temperature on offspring sex that are independent of climatic effects on other physiological processes. These results have significant implications for our understanding of the ecological and evolutionary consequences of variation in sex ratios under climate change.
Collapse
Affiliation(s)
- George D Cunningham
- School of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, Tasmania 7000, Australia
| | - Geoffrey M While
- School of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, Tasmania 7000, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, Tasmania 7000, Australia
| |
Collapse
|
15
|
Li H, Elphick M, Shine R. Potential targets for selection during the evolution of viviparity in cold-climate reptiles. Oecologia 2016; 183:21-30. [PMID: 27743167 DOI: 10.1007/s00442-016-3752-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022]
Abstract
Viviparity (live-bearing) has evolved from oviparity (egg-laying) in more than 100 lineages of squamate reptiles (lizards and snakes). This transition generally has occurred in cool climates, where thermal differentials between eggs in the (cool) nest versus the (warm) maternal oviduct influence embryonic development, in ways that may enhance offspring fitness. To identify specific traits potentially under selection, we incubated eggs of a montane scincid lizard at conditions simulating natural nests, maternal body temperatures, and an intermediate stage (2-week uterine retention of eggs prior to laying). Incubation at maternal temperatures throughout incubation affected the hatchling lizard's activity level and boldness, as well as its developmental rate, morphology, and locomotor ability. A treatment that mimicked the initial stages of the transition toward viviparity had a major effect on some hatchling traits (locomotor speeds), a minor effect on others (tail length, total incubation period) and no effect on yet others (offspring behaviors). More generally, different aspects of the phenotype are sensitive to incubation conditions at different stages of development; thus, the evolution of reptilian viviparity may have been driven by a succession of advantages that accrued at different stages of embryogenesis.
Collapse
Affiliation(s)
- Hong Li
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Melanie Elphick
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Martínez-Torres M, Rubio-Morales B, Piña-Amado JJ, Luis J. Hemipenes in females of the mexican viviparous lizardBarisia imbricata(Squamata: Anguidae): an example of heterochrony in sexual development. Evol Dev 2015; 17:270-7. [DOI: 10.1111/ede.12134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Avenida de los Barrios #1, Los Reyes Iztacala A. P. 314 Tlalnepantla Estado de México CP 54090 México
| | - Beatriz Rubio-Morales
- Laboratorio de Herpetología (Vivario); Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Los Reyes Iztacala AP 314 Tlalnepantla Estado de México CP 54090 México
| | - José Juan Piña-Amado
- Laboratorio de Biología de la Reproducción; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Avenida de los Barrios #1, Los Reyes Iztacala A. P. 314 Tlalnepantla Estado de México CP 54090 México
| | - Juana Luis
- Laboratorio de Biología de la Reproducción; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Avenida de los Barrios #1, Los Reyes Iztacala A. P. 314 Tlalnepantla Estado de México CP 54090 México
| |
Collapse
|
17
|
Gonadal morphogenesis and sex differentiation in the oviparous lizard, Sceloporus aeneus (Squamata: Phrynosomatidae). ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-015-0259-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Parsley LM, Wapstra E, Jones SM. Atrazine disrupts gonadal development in a live-bearing lizard. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/23273747.2015.1006071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Laura M Parsley
- School of Biological Sciences; University of Tasmania; Hobart, Tasmania, Australia
| | - Erik Wapstra
- School of Biological Sciences; University of Tasmania; Hobart, Tasmania, Australia
| | - Susan M Jones
- School of Biological Sciences; University of Tasmania; Hobart, Tasmania, Australia
| |
Collapse
|
19
|
Parsley LM, Wapstra E, Jones SM. Placental and embryonic tissues exhibit aromatase activity in the viviparous lizard Niveoscincus metallicus. Gen Comp Endocrinol 2014; 200:61-6. [PMID: 24631640 DOI: 10.1016/j.ygcen.2014.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 11/26/2022]
Abstract
Aromatase is a key regulator of circulating testosterone (T) and 17-β-oestradiol (E2), two steroids which are critical to the development, maintenance and function of reproductive tissues. The role of aromatase in sexual differentiation in oviparous (egg-laying) reptiles is well understood, yet has never been explored in viviparous (live-bearing) reptiles. As a first step towards understanding the functions of aromatase during gestation in viviparous reptiles, we measured aromatase activity in maternal and embryonic tissues at three stages of gestation in the viviparous skink, Niveoscincus metallicus. Maternal ovaries and adrenals maintained high aromatase activity throughout gestation. During the early phases of embryonic development, placental aromatase activity was comparable to that in maternal ovaries, but declined significantly at progressive stages of gestation. Aromatase activity in the developing brains and gonads of embryos was comparable with measurements in oviparous reptiles. Aromatase activity in the developing brains peaked mid development, and declined to low levels in late stage embryos. Aromatase activity in the embryonic gonads was low at embryonic stage 29-34, but increased significantly at mid-development and then remained high in late stage embryos. We conclude that ovarian estrogen synthesis is supplemented by placental aromatase activity and that maternal adrenals provide an auxiliary source of sex steroid. The pattern of change in aromatase activity in embryonic brains and gonads suggests that brain aromatase is important during sexual differentiation, and that embryonic gonads are increasingly steroidogenic as development progresses. Our data indicate vital roles of aromatase in gestation and development in viviparous lizards.
Collapse
Affiliation(s)
- Laura M Parsley
- School of Zoology, University of Tasmania, Sandy Bay Campus, Private Bag 5, 7000 Tasmania, Australia.
| | - Erik Wapstra
- School of Zoology, University of Tasmania, Sandy Bay Campus, Private Bag 5, 7000 Tasmania, Australia
| | - Susan M Jones
- School of Zoology, University of Tasmania, Sandy Bay Campus, Private Bag 5, 7000 Tasmania, Australia
| |
Collapse
|
20
|
Yolk contributes steroid to the multidimensional endocrine environment of embryos of Niveoscincus metallicus, a viviparous skink with a moderately complex placenta. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:51-6. [DOI: 10.1016/j.cbpa.2014.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 02/05/2023]
|
21
|
Itonaga K, Wapstra E, Jones SM. Evidence for placental transfer of maternal corticosterone in a viviparous lizard. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:184-9. [DOI: 10.1016/j.cbpa.2011.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
22
|
Uller T, While GM, Cadby CD, Harts A, O'Connor K, Pen I, Wapstra E. Altitudinal divergence in maternal thermoregulatory behaviour may be driven by differences in selection on offspring survival in a viviparous lizard. Evolution 2011; 65:2313-24. [PMID: 21790577 DOI: 10.1111/j.1558-5646.2011.01303.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plastic responses to temperature during embryonic development are common in ectotherms, but their evolutionary relevance is poorly understood. Using a combination of field and laboratory approaches, we demonstrate altitudinal divergence in the strength of effects of maternal thermal opportunity on offspring birth date and body mass in a live-bearing lizard (Niveoscincus ocellatus). Poor thermal opportunity decreased birth weight at low altitudes where selection on body mass was negligible. In contrast, there was no effect of maternal thermal opportunity on body mass at high altitudes where natural selection favored heavy offspring. The weaker effect of poor maternal thermal opportunity on offspring development at high altitude was accompanied by a more active thermoregulation and higher body temperature in highland females. This may suggest that passive effects of temperature on embryonic development have resulted in evolution of adaptive behavioral compensation for poor thermal opportunity at high altitudes, but that direct effects of maternal thermal environment are maintained at low altitudes because they are not selected against. More generally, we suggest that phenotypic effects of maternal thermal opportunity or incubation temperature in reptiles will most commonly reflect weak selection for canalization or selection on maternal strategies rather than adaptive plasticity to match postnatal environments.
Collapse
Affiliation(s)
- Tobias Uller
- Edward Grey Institute, Department of Zoology, University of Oxford, OX1 3PS, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Pen I, Uller T, Feldmeyer B, Harts A, While GM, Wapstra E. Climate-driven population divergence in sex-determining systems. Nature 2010; 468:436-8. [PMID: 20981009 DOI: 10.1038/nature09512] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/15/2010] [Indexed: 11/10/2022]
Abstract
Sex determination is a fundamental biological process, yet its mechanisms are remarkably diverse. In vertebrates, sex can be determined by inherited genetic factors or by the temperature experienced during embryonic development. However, the evolutionary causes of this diversity remain unknown. Here we show that live-bearing lizards at different climatic extremes of the species' distribution differ in their sex-determining mechanisms, with temperature-dependent sex determination in lowlands and genotypic sex determination in highlands. A theoretical model parameterized with field data accurately predicts this divergence in sex-determining systems and the consequence thereof for variation in cohort sex ratios among years. Furthermore, we show that divergent natural selection on sex determination across altitudes is caused by climatic effects on lizard life history and variation in the magnitude of between-year temperature fluctuations. Our results establish an adaptive explanation for intra-specific divergence in sex-determining systems driven by phenotypic plasticity and ecological selection, thereby providing a unifying framework for integrating the developmental, ecological and evolutionary basis for variation in vertebrate sex determination.
Collapse
Affiliation(s)
- Ido Pen
- Theoretical Biology Group, University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Wapstra E, Uller T, While GM, Olsson M, Shine R. Giving offspring a head start in life: field and experimental evidence for selection on maternal basking behaviour in lizards. J Evol Biol 2010; 23:651-7. [PMID: 20074306 DOI: 10.1111/j.1420-9101.2009.01924.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The timing of birth is often correlated with offspring fitness in animals, but experimental studies that disentangle direct effects of parturition date and indirect effects mediated via variation in female traits are rare. In viviparous ectotherms, parturition date is largely driven by female thermal conditions, particularly maternal basking strategies. Our field and laboratory studies of a viviparous lizard (Niveoscincus ocellatus) show that earlier-born offspring are more likely to survive through their first winter and are larger following that winter, than are later-born conspecifics. Thus, the association between parturition date and offspring fitness is causal, rather than reflecting an underlying correlation between parturition date and maternal attributes. Survival selection on offspring confers a significant advantage for increased maternal basking in this species, mediated through fitness advantages of earlier parturition. We discuss the roles of environmentally imposed constraints and parent-offspring conflict in the evolution of maternal effects on parturition date.
Collapse
Affiliation(s)
- E Wapstra
- School of Zoology, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | |
Collapse
|
25
|
Evolution of "determinants" in sex-determination: a novel hypothesis for the origin of environmental contingencies in avian sex-bias. Semin Cell Dev Biol 2008; 20:304-12. [PMID: 19073270 DOI: 10.1016/j.semcdb.2008.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/23/2022]
Abstract
Sex-determination is commonly categorized as either "genetic" or "environmental"-a classification that obscures the origin of this dichotomy and the evolution of sex-determining factors. The current focus on static outcomes of sex-determination provides little insight into the dynamic developmental processes by which some mechanisms acquire the role of sex determinants. Systems that combine "genetic" pathways of sex-determination (i.e., sex chromosomes) with "environmental" pathways (e.g., epigenetically induced segregation distortion) provide an opportunity to examine the evolutionary relationships between the two classes of processes and, ultimately, illuminate the evolution of sex-determining systems. Taxa with sex chromosomes typically undergo an evolutionary reduction in size of one of the sex chromosomes due to suppressed recombination, resulting in pronounced dimorphism of the sex chromosomes, and setting the stage for emergence of epigenetic compensatory mechanisms regulating meiotic segregation of heteromorphic sex chromosomes. Here we propose that these dispersed and redundant regulatory mechanisms enable environmental contingency in genetic sex-determination in birds and account for frequently documented context-dependence in avian sex-determination. We examine the evolution of directionality in such sex-determination as a result of exposure of epigenetic regulators of meiosis to natural selection and identify a central role of hormones in integrating female reproductive homeostasis, resource allocation to oocytes, and offspring sex. This approach clarifies the evolutionary relationship between sex-specific molecular genetic mechanisms of sex-determination and non-sex-specific epigenetic regulators of meiosis and demonstrates that both can determine sex. Our perspective shows how non-sex-specific mechanisms can acquire sex-determining function and, by establishing the explicit link between physiological integration of oogenesis and sex-determination, opens new avenues to the studies of adaptive sex-bias and sex-specific resource allocation in species with genetic sex-determination.
Collapse
|