1
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Rojas M, Salvatierra R, Smok C, Sandoval C, Souza-Mello V, del Sol M. Effect of hypoxia on the post-hatching growth of the body of the fry and the caudal fin of the Atlantic Salmon (Salmo salar). FRONTIERS IN MARINE SCIENCE 2024; 11. [DOI: 10.3389/fmars.2024.1425671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
IntroductionHypoxia is a recurring problem in the fish farming industry. Currently, it is known that the exposure of fish and fry to a hypoxic environment induces important changes in their metabolism, compromising not only their development but also their reproduction and mortality rates. Our hypothesis is that hypoxia constitutes one of the etiological factors causing deformation of the body and caudal fin in this species, as well as affecting its growth.MethodsWe analyzed two hundred forty Salmo salar salmon fry, differentially cultured at 100% saturation (normoxia condition) and 60% (hypoxia condition) for 2, 4, 6, and 8 days, including a group under continuous hypoxia. We performed diaphanization and Alcian blue staining, along with standard histological techniques. The polyclonal anti-HIF-1a antibody was used as a marker of hypoxia in Salmo salar, and hypoxia in these fish was associated with the immunopositivity of this antibody.Results and discussionThe results indicate that there is an association between exposure to hypoxia and the deformation of the body and fin, as well as an agreement between hypoxia and the total length of the fry and fin. Several months after the event occurred, we were able to find and describe angiogenesis, blood vessel disorganization, and vasodilation histologically. Finally, hypoxic cells in the fry (HIF-1a) could be recognized and confirmed as hypoxia sensors. All of this indicates that hypoxia not only affects the fry during the development phase of the event, but that its results can be evident much later and affect the fry throughout their entire ontogeny.
Collapse
|
3
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
4
|
Expression of the Antimicrobial Peptide Piscidin 1 and Neuropeptides in Fish Gill and Skin: A Potential Participation in Neuro-Immune Interaction. Mar Drugs 2022; 20:md20020145. [PMID: 35200674 PMCID: PMC8879440 DOI: 10.3390/md20020145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.
Collapse
|
5
|
Lauriano ER, Capillo G, Icardo JM, Fernandes JMO, Kiron V, Kuciel M, Zuwala K, Guerrera MC, Aragona M, Germana' A, Zaccone G. Neuroepithelial cells (NECs) and mucous cells express a variety of neurotransmitters and neurotransmitter receptors in the gill and respiratory air-sac of the catfish Heteropneustes fossilis (Siluriformes, Heteropneustidae): a possible role in local immune defence. ZOOLOGY 2021; 148:125958. [PMID: 34399394 DOI: 10.1016/j.zool.2021.125958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Heteropneustes fossilis is an air-breathing teleost inhabiting environments with very poor O2 conditions, and so it has evolved to cope with hypoxia. In the gills and respiratory air-sac, the sites for O2 sensing and the response to hypoxia rely on the expression of acetylcholine (Ach) acting via its nicotinic receptor (nAChR). This study examined the expression patterns of neuronal markers and some compounds in the NECs of the gills and respiratory air sac having an immunomodulatory function in mammalian lungs. Mucous cells, epithelial cells and neuroepithelial cells (NECs) were immunopositive to a variety of both neuronal markers (VAChT, nAChR, GABA-B-R1 receptor, GAD679) and the antimicrobial peptide piscidin, an evolutionary conserved humoral component of the mucosal immune system in fish. We speculate that Ach release via nAChR from mucous cells may be modulated by GABA production in the NECs and it is required for the induction of mucus production in both normoxic and hypoxic conditions. The presence of piscidin in mucous cells may act in synergy with the autocrine/paracrine signals of Ach and GABA binding to GABA B R1B receptor that may play a local immunomodulatory function in the mucous epithelia of the gills and the respiratory air sac. The potential role of the NECs in the immunobiological behaviour of the gill/air-sac is at moment a matter of speculation. The extent to which the NECs as such may participate is elusive at this stage and waits investigation.
Collapse
Affiliation(s)
- Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy; Institute of Marine Biological Resources and Biotechnology - National Research Council (IRBIM, CNR), Spianata S. Raineri, 86, 98122, Messina, Italy.
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology, Poligono de Cazona, Faculty of Medicine, University of Cantabria, Santander, 39011, Spain
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodo, Norway
| | - Michal Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kopernika 15, 30501, Cracow, Poland
| | - Krystyna Zuwala
- Department of Comparative Anatomy, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, 30387, Poland
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Antonino Germana'
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giacomo Zaccone
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| |
Collapse
|
6
|
Tripathi S, Sengar M, Gopesh A. Paraneuronal pseudobranchial neurosecretory system in tank goby Glossogobius giuris with special reference to novel neurohaemal contact complex. Respir Physiol Neurobiol 2020; 278:103440. [PMID: 32353416 DOI: 10.1016/j.resp.2020.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022]
Abstract
Various putative oxygen chemosensory cells are reported to be present throughout the vertebrate body performing pivotal roles in respiration by initiating responses during acute hypoxia. Since air-breathing fishes often are exposed to the oxygen-deficient milieu, in such conditions various chemosensory cells operate in an orchestrated fashion. The Pseudobranchial neurosecretory system (PSNS) a newly discovered system, is one of these. It has been placed in the category of "Diffuse NE systems (DNES)". It is found in all the catfish species and in some other non-catfish group of teleosts. In catfishes, it is present in close association with the carotid labyrinth- a chemosensory structure, known in fish and amphibians. The presence of this system in Glossogobius giuris, in association with the pseudobranch, a structure considered to be precursor of carotid labyrinth, is a significant finding. In an attempt to study the structure and organization of the pseudobranchial neurosecretory system in a non-catfish species of teleost, the present investigation was undertaken on a goby G. giuris. The histological observations, using a neurosecretion-specific stain, revealed the presence of this system in G. giuris. The findings are discussed in the light of the association of PSNS with pseudobranch and the type of "neurohaemal contact complex" formed between this neurosecretory system and the elements of the circulatory system.
Collapse
Affiliation(s)
- Sonal Tripathi
- Department of Zoology, University of Allahabad, Prayagraj, 211002, U.P., India
| | - Manvendra Sengar
- Department of Zoology, Bipin Bihari P.G. College, Jhansi, U.P., India
| | - Anita Gopesh
- Department of Zoology, University of Allahabad, Prayagraj, 211002, U.P., India.
| |
Collapse
|
7
|
Zaccone G, Cupello C, Capillo G, Kuciel M, Nascimento ALR, Gopesh A, Germanà GP, Spanò N, Guerrera MC, Aragona M, Crupi R, Icardo JM, Lauriano ER. Expression of Acetylcholine- and G protein coupled Muscarinic receptor in the Neuroepithelial cells (NECs) of the obligated air-breathing fish, Arapaima gigas (Arapaimatidae: Teleostei). ZOOLOGY 2020; 139:125755. [PMID: 32088527 DOI: 10.1016/j.zool.2020.125755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/18/2023]
Abstract
The air-breathing specialization has evolved idependently in vertebrates, as many different organs can perfom gas exchange. The largest obligate air-breathing fish from South America Arapaima gigas breathe air using its gas bladder, and its dependence on air breathing increases during its growth. During its development, gill morphology shows a dramatic change, remodeling with a gradual reduction of gill lamellae during the transition from water breathing to air breathing . It has been suggested that in this species the gills remain the main site of O2 and CO2 sensing. Consistent with this, we demonstrate for the first time the occurrence of the neuroepithelial cells (NECs) in the glottis, and in the gill filament epithelia and their distal halves. These cells contain a broader spectrum of neurotransmitters (5-HT, acetylcholine, nNOS), G-protein subunits and the muscarininic receptors that are coupled to G proteins (G-protein coupled receptors). We report also for the first time the presence of G alpha proteins coupled with muscarinic receptors on the NECs, that are thought as receptors that initiate the cardiorespiratory reflexes in aquatic vertebrates. Based on the specific orientation in the epithelia and their closest vicinity to efferent vasculatures, the gill and glottal NECs of A. gigas could be regarded as potential O2 and CO2 sensing receptors. However, future studies are needed to ascertain the neurophysiological characterization of these cells.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, I-98168 Messina, Italy
| | - Camila Cupello
- Departamento de Zoologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, 20550-900, Rio de Janeiro, Brazil
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy.
| | - Michal Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kpernika 15, 30-501 Krakòw, Poland
| | - Ana L R Nascimento
- Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 20551-030, Rio de Janeiro, Brazil
| | - Anita Gopesh
- Department of Zoology, University of Allahabad, Allahabad 211002, U.P., India
| | - Germana Patrizia Germanà
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, I-98168 Messina, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168 Messina, Italy
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology, Poligono de Cazona, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
8
|
Chemoreceptors as a key to understanding carcinogenesis process. Semin Cancer Biol 2019; 60:362-364. [PMID: 31622661 DOI: 10.1016/j.semcancer.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022]
Abstract
The tissue organization field theory (TOFT) presented completely new, different from the previous one, perspective of research on neoplasm processes. It implicates that secretory neuroepithelial-like cells (NECs), putative chemoreceptors are probably responsible for the control of squamous epithelial cells proliferation in the digestive tract during hypoxia in gut breathing fish (GBF). On the other hand, chemoreceptors dysfunction can lead to uncontrolled proliferation and risk of cancer development in mammals, including humans. The studies on NECs like cells (signal capturing and transduction) may be crucial for understanding the processes of controlling the proliferation of squamous epithelial cells in the digestive tract of GBF fish during hypoxia states. This knowledge can contribute to the explanation of cancer processes.
Collapse
|
9
|
From epithelial remodelling to carcinogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:203-205. [PMID: 31381892 DOI: 10.1016/j.pbiomolbio.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023]
Abstract
The novel cancer theory named 'the tissue organization field theory' (TOFT) suggests that carcinogenesis is a process analogous to embryonic development, whereby organs are formed through interactions among different cell types. The suggested 'morphological remodelling' of the epithelium under hypoxia in gut breathing fish (GBF) has many common features with carcinogenesis. It appears that research into the relationship among epidermal growth factor receptor (EGFR), hypoxia inducible factor (HIF) as well as hypoxia and normoxia states in GBF fishes can be crucial in learning about the steering mechanisms of squamous epithelium proliferation, leading to a better understanding of carcinogenesis.
Collapse
|
10
|
Kumari S, Choudhury MG, Saha N. Hyper-ammonia stress causes induction of inducible nitric oxide synthase gene and more production of nitric oxide in air-breathing magur catfish, Clarias magur (Hamilton). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:907-920. [PMID: 30536137 DOI: 10.1007/s10695-018-0593-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Nitric oxide (NO) is an important signalling molecule that plays diverse physiological functions in several vertebrates including that of adaptation to various stressful stimuli. The air-breathing magur catfish (Clarias magur) is known to tolerate a very high external ammonia (HEA) stress in its natural habitats. We report here the possible induction of inducible nitric oxide (inos) gene and more generation of NO in magur catfish exposed to HEA. Exposure to HEA (25 mM NH4Cl) for 14 days led to the higher accumulation of NO in different tissues of magur catfish and also more efflux of NO from the perfused liver of NH4Cl-treated fish as a consequence of high build of toxic ammonia in body tissues. More synthesis and accumulation of NO in body tissues was associated with the induction of iNOS activity, which otherwise was not detectable in control fish. The stimulation of iNOS activity in HEA exposed fish was mainly due to induction of inos gene as evidenced by more expression of inos mRNA and also more abundance of iNOS protein in different tissues of magur catfish. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues of magur catfish. The augmentation of iNOS in the fish under HEA could be an adaptive strategy of the fish to defend against the ammonia stress through the generation of NO. Therefore, the present finding identifies the potential role of iNOS to enhance the adaptive capacity and survivability of catfish under various adverse environmental and pathological conditions that it faces in its natural habitats.
Collapse
Affiliation(s)
- Suman Kumari
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Mahua G Choudhury
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
- Department of Biotechnology, Assam Don Bosco University, Assam, 782402, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
11
|
Differential expression of epidermal growth factor receptor (EGFR) in stomach and diverticulum of Otocinclus affinis (Steindachner, 1877) as a potential element of the epithelium remodeling mechanism. Acta Histochem 2019; 121:151-155. [PMID: 30528348 DOI: 10.1016/j.acthis.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023]
Abstract
It is suggested that due to the several stomach modifications, Otocinculus affinis (dwarf sucking catfish) possess the ability to breathe air during hypoxia, however, the exact mechanism remains unknown. The aim of this study was detailed analysis of the expression of EGFR in the stomach and diverticulum of the O. affinis at the mRNA and protein levels together with the immunohistochemical localization of EGFR in these organs. The intensity of band fluorescence corresponding to the EGFR gene expression level is significantly higher in the stomach than in the diverticulum. Further, quantitative analysis of EGFR protein abundance also revealed its higher synthesis in the stomach than in the diverticulum and the immunohistochemistry method confirmed these results. As regional localization of respiratory function in gut air-breathing fishes seems to be connected with "morphological remodeling" of the epithelium of their gut, the present research demonstrated the potential efficiency of the O. affinis stomach as a respiratory organ. Having the potential possibility to create an air-blood barrier in the gastrointestinal tract allowing gas diffusion and respiration in hypoxic states seems to be very beneficial for these fish. It seems that facultative gut air breathing fish species are a relevant vertebrate model for high throughput screening, vascular biology and evolution.
Collapse
|
12
|
Refaey MM, Li D. Transport Stress Changes Blood Biochemistry, Antioxidant Defense System, and Hepatic HSPs mRNA Expressions of Channel Catfish Ictalurus punctatus. Front Physiol 2018; 9:1628. [PMID: 30515103 PMCID: PMC6256068 DOI: 10.3389/fphys.2018.01628] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/29/2018] [Indexed: 11/25/2022] Open
Abstract
Transport procedures usually cause fish stress. The purpose of this study was to investigate the effect of transport stress on blood biochemical profiles, oxidative stress biomarkers, and hepatic heat shock proteins (HSPs) of channel catfish (Ictalurus punctatus). Fish (body weight 55.57 ± 5.13 g) were randomly distributed to two groups, the control, and the treatment. The control group was kept under the normal culture conditions. The treatment group was exposed to the process of transport (3.5 h). Fish samples were collected before transport, after packing and at 0, 1, 6, 24, 72, and 168 h after transport, respectively. Transport caused a significant increase in the serum concentrations of cortisol, glucose, total cholesterol, and triglyceride, as well as, the activity of aspartate aminotransferase at 0 and 1 h after transport compared with non-transported fish and the basal level. Blood total protein content significantly declined in the transported fish. Total antioxidant capacity (T-AOC), malonaldehyde content, and the activities of both glutathione peroxidase and catalase significantly increased in fish within 6 h after transport. The transported fish exhibited a significant higher level in either the concentration of nitric oxide or the mRNA expressions of both hepatic HSP70 and HSP90. It is concluded that transport triggers stress response of I. punctatus, leading to the obvious change in antioxidant capacity. I. punctatus need to be more care after transport to recover from transport stress.
Collapse
Affiliation(s)
- Mohamed M Refaey
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China.,Department of Animal Production, Faculty of Agriculture, Mansoura University, Al-Mansoura, Egypt
| | - Dapeng Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Zaccone G, Maina J, Germanà A, Montalbano G, Capillo G, Aragona L, Kuciel MJ, Lauriano ER, Icardo JM. First demonstration of the neuroepithelial cells and their chemical code in the accessory respiratory organ and the gill of the sharptooth catfish,Clarias gariepinus: A preliminary study. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; Section S.A.S.T.A.S.; University of Messina; Messina Italy
| | - John Maina
- Department of Zoology; University of Johannesburg; Johannesburg South Africa
| | - Antonino Germanà
- Department of Veterinary Sciences; University of Messina; Messina Italy
| | | | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Luisa Aragona
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Michał J. Kuciel
- Poison Information Centre and Laboratory Analysis; Department of Toxicology and Environmental Disease; Faculty of Medicine; Jagiellonian University; Krakow Poland
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - José M. Icardo
- Department of Anatomy and Cell Biology Polıgono de Cazona; Faculty of Medicine; University of Cantabria; Santander Spain
| |
Collapse
|
14
|
Florindo LH, Armelin VA, McKenzie DJ, Rantin FT. Control of air-breathing in fishes: Central and peripheral receptors. Acta Histochem 2018; 120:642-653. [PMID: 30219242 DOI: 10.1016/j.acthis.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review considers the environmental and systemic factors that can stimulate air-breathing responses in fishes with bimodal respiration, and how these may be controlled by peripheral and central chemoreceptors. The systemic factors that stimulate air-breathing in fishes are usually related to conditions that increase the O2 demand of these animals (e.g. physical exercise, digestion and increased temperature), while the environmental factors are usually related to conditions that impair their capacity to meet this demand (e.g. aquatic/aerial hypoxia, aquatic/aerial hypercarbia, reduced aquatic hidrogenionic potential and environmental pollution). It is now well-established that peripheral chemoreceptors, innervated by cranial nerves, drive increased air-breathing in response to environmental hypoxia and/or hypercarbia. These receptors are, in general, sensitive to O2 and/or CO2/H+ levels in the blood and/or the environment. Increased air-breathing in response to elevated O2 demand may also be driven by the peripheral chemoreceptors that monitor O2 levels in the blood. Very little is known about central chemoreception in air-breathing fishes, the data suggest that central chemosensitivity to CO2/H+ is more prominent in sarcopterygians than in actinopterygians. A great deal remains to be understood about control of air-breathing in fishes, in particular to what extent control systems may show commonalities (or not) among species or groups that have evolved air-breathing independently, and how information from the multiple peripheral (and possibly central) chemoreceptors is integrated to control the balance of aerial and aquatic respiration in these animals.
Collapse
Affiliation(s)
- Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil; Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - David John McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR9190 (IRD, Ifremer, UM, CNRS), Université Montpellier, Place Eugène Bataillon cc 093, 34095 Montpellier Cedex 5, France; Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
15
|
Abstract
Respiratory chemoreceptors in vertebrates are specialized cells that detect chemical changes in the environment or arterial blood supply and initiate autonomic responses, such as hyperventilation or changes in heart rate, to improve O2 uptake and delivery to tissues. These chemoreceptors are sensitive to changes in O2, CO2 and/or H+. In fish and mammals, respiratory chemoreceptors may be additionally sensitive to ammonia, hypoglycemia, and numerous other stimuli. Thus, chemoreceptors that affect respiration respond to different types of stimuli (or modalities) and are considered to be "polymodal". This review discusses the polymodal nature of respiratory chemoreceptors in vertebrates with a particular emphasis on chemoreceptors of the carotid body and pulmonary epithelium in mammals, and on neuroepithelial cells in water- and air-breathing fish. A major goal will be to examine the evidence for putative polymodal chemoreceptors in fish within the context of studies on mammalian models, for which polymodal chemoreceptors are well described, in order to improve our understanding of the evolution of polymodal chemoreceptors in vertebrates, and to aid in future studies that aim to identify putative receptors in air- and water-breathing fish.
Collapse
|
16
|
Zaccone G, Lauriano ER, Capillo G, Kuciel M. Air- breathing in fish: Air- breathing organs and control of respiration: Nerves and neurotransmitters in the air-breathing organs and the skin. Acta Histochem 2018; 120:630-641. [PMID: 30266194 DOI: 10.1016/j.acthis.2018.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In fishes, exploitation of aerial gas exchange has evolved independently many times, involving a variety of air-breathing organs. Indeed, air-breathing occurs in at least 49 known families of fish (Graham, 1997). Many amphibious vertebrates, at some stage of their development are actually trimodal breathers that use various combinations of respiratory surfaces to breath both water (skin and/or gill) and air (skin and/or lung). The present review examines the evolutionary implications of air-breathing organs in fishes and the morphology of the peripheral receptors and the neurotransmitter content of the cells involved in the control of air-breathing. Control of breathing, whether gill ventilation or air-breathing, is influenced by feedback from peripheral and/or central nervous system receptors that respond to changes in PO2, PCO2 and/or pH. Although the specific chemoreceptors mediating the respiratory reflexes have not been conclusively identified, studies in water-breathing teleosts have implicated the neuroepithelial cells (NECs) existing in gill tissues as the O2 sensitive chemoreceptors that initiate the cardiorespiratory reflexes in aquatic vertebrates. Some of the air-breathing fishes, such as Protopterus, Polypterus and Amia have been shown to have NECs in the gills and/or lungs, although the role of these receptors and their innervation in the control of breathing is not known. NECs have been also reported in the specialized respiratory epithelia of accessory respiratory organs (ARO's) of some catfish species and in the gill and skin of the mudskipper Periophthalmodon schlosseri. Unlike teleosts matching an O2-oriented ventilation to ambient O2 levels, lungfishes have central and peripheral H+/CO2 receptors that control the acid-base status of the blood.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168, Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagiellonian University, Kopernika 15, 30-501 Kraków, Poland.
| |
Collapse
|
17
|
Icardo JM, Colvee E, Kuciel M, Lauriano ER, Zaccone G. The lungs ofPolypterus senegalusandErpetoichthys calabaricus: Insights into the structure and functional distribution of the pulmonary epithelial cells. J Morphol 2017; 278:1321-1332. [DOI: 10.1002/jmor.20715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 01/23/2023]
Affiliation(s)
- José M. Icardo
- Department of Anatomy and Cell Biology; Faculty of Medicine, University of Cantabria; Santander 39011 Spain
| | - Elvira Colvee
- Department of Anatomy and Cell Biology; Faculty of Medicine, University of Cantabria; Santander 39011 Spain
| | - Michal Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Jagiellonian University Medical College; 31-501 Crakow Poland
| | - Eugenia R. Lauriano
- Department of Chemical; Biological, Pharmaceutical and Environmental Sciences, University of Messina; Messina I-98166 Italy
| | - Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; University of Messina; Messina I-98166 Italy
| |
Collapse
|
18
|
|
19
|
Armelin VA, Braga VHDS, Teixeira MT, Rantin FT, Florindo LH, Kalinin AL. Gill denervation eliminates the barostatic reflex in a neotropical teleost, the tambaqui (Colossoma macropomum). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1213-1224. [PMID: 26932845 DOI: 10.1007/s10695-016-0211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The baroreflex is one of the most important regulators of cardiovascular homeostasis in vertebrates. It begins with the monitoring of arterial pressure by baroreceptors, which constantly provide the central nervous system with afferent information about the status of this variable. Any change in arterial pressure relative to its normal state triggers autonomic responses, which are characterized by an inversely proportional change in heart rate and systemic vascular resistance and which tend to restore pressure normality. Although the baroreceptors have been located in mammals and other terrestrial vertebrates, their location in fish is still not completely clear and remains quite controversial. Thus, the objective of this study was to locate the baroreceptors in a teleost, the Colossoma macropomum. To do so, the occurrence and efficiency of the baroreflex were both analyzed when this mechanism was induced by pressure imbalancements in intact fish (IN), first-gill-denervated fish (G1), and total-gill-denervated fish (G4). The pressure imbalances were initiated through the administration of the α1-adrenergic agonist phenylephrine (100 µg kg(-1)) and the α1-adrenergic antagonist prazosin (1 mg kg(-1)). The baroreflex responses were then analyzed using an electrocardiogram that allowed for the measurement of the heart rate, the relationship between pre- and post-pharmacological manipulation heart rates, the time required for maximum chronotropic baroreflex response, and total heart rate variability. The results revealed that the barostatic reflex was attenuated in the G1 group and nonexistent in G4 group, findings which indicate that baroreceptors are exclusively located in the gill arches of C. macropomum.
Collapse
Affiliation(s)
- Vinicius Araújo Armelin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Victor Hugo da Silva Braga
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Mariana Teodoro Teixeira
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil.
- Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil.
| | - Ana Lúcia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil
| |
Collapse
|
20
|
Rimoldi S, Terova G, Zaccone G, Parker T, Kuciel M, Dabrowski K. The Effect of Hypoxia and Hyperoxia on Growth and Expression of Hypoxia-Related Genes and Proteins in Spotted Gar Lepisosteus oculatus Larvae and Juveniles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:250-67. [PMID: 27245617 DOI: 10.1002/jez.b.22680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
We studied the molecular responses to different water oxygen levels in gills and swim bladder of spotted gar (Lepisosteus oculatus), a bimodal breather. Fish at swim-up stage were exposed for 71 days to normoxic, hypoxic, and hyperoxic water conditions. Then, all aquaria were switched to normoxic conditions for recovery until the end of the experiment (120 days). Fish were sampled at the beginning of the experiment, and then at 71 days of exposure and at 8 days of recovery. We first cloned three hypoxia-related genes, hypoxia-inducible factor 2α (HIF-2α), Na(+) /H(+) exchanger 1 (NHE-1), and NHE-3, and uploaded their cDNA sequences in the GeneBank database. We then used One Step Taqman® real-time PCR to quantify the mRNA copies of target genes in gills and swim bladder of fish exposed to different water O2 levels. We also determined the protein expression of HIF-2α and neuronal nitric oxide synthase (nNOS) in the swim bladder by using confocal immunofluorescence. Hypoxic stress for 71 days significantly increased the mRNA copies of HIF-2α and NHE-1 in gills and swim bladder, whereas normoxic recovery for 8 days decreased the HIF-2α mRNA copies to control values in both tissues. We did not found significant changes in mRNA copies of the NHE-3 gene in either gills or swim bladder in response to hypoxia and hyperoxia. Unlike in normoxic swim bladder, double immunohistochemical staining in hypoxic and hyperoxic swim bladder using nNOS/HIF-2α showed extensive bundles of HIF-2α-positive nerve fibers in the trabecular musculature associated with a few varicose nNOS immunoreactive nerve terminals.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy
| | - Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Tim Parker
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| | - Michal Kuciel
- Poison Information Centre, Jagiellonian University Medical College, Crakow, Poland
| | - Konrad Dabrowski
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
The sensing of respiratory gases in fish: Mechanisms and signalling pathways. Respir Physiol Neurobiol 2016; 224:71-9. [DOI: 10.1016/j.resp.2015.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
|
22
|
Zaccone D, Icardo JM, Kuciel M, Alesci A, Pergolizzi S, Satora L, Lauriano ER, Zaccone G. Polymorphous granular cells in the lung of the primitive fish, the bichirPolypterus senegalus. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology Polígono de Cazoña; Faculty of Medicine; University of Cantabria; s/n 39011 Santander Spain
| | - Michał Kuciel
- Poison Information Centre; Jagiellonian University Medical College; Kopernika 15 31-501 Crakow Poland
| | - Alessio Alesci
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Simona Pergolizzi
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Leszek Satora
- Department of Physiology and Reproduction of Animals; University of Rzeszow; Werynia 502 36-100 Kolbuszowa Rzeszow Poland
| | - Eugenia Rita Lauriano
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Giacomo Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| |
Collapse
|
23
|
An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish. J Comp Physiol B 2015; 186:145-59. [DOI: 10.1007/s00360-015-0949-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
24
|
Lauriano ER, Icardo JM, Zaccone D, Kuciel M, Satora L, Alesci A, Alfa M, Zaccone G. Expression patterns and quantitative assessment of neurochemical markers in the lung of the gray bichir, Polypterus senegalus (Cuvier, 1829). Acta Histochem 2015; 117:738-46. [PMID: 26362573 DOI: 10.1016/j.acthis.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Anatomical and functional studies of the autonomic innervation and the putative oxygen receptors-the neuroepithelial (NEC)-like cells of the bichirs are lacking. The present paper describes the distribution of both NEC-like cells and the polymorphous granular cells (PGCs) that populate the mucociliated epithelium of the lung in the air breathing fish Polypterus senegalus. By using confocal immunohistochemistry we determined the coexpression of specific neurochemical markers. Colocalization studies showed that 5HT is coexpressed with calbindin and nNOS in the NEC-like cells and PGCs, and choline acetyltransferase (ChAT) is coexpressed with nNOS in both the two types of cells. Distribution of neurotransmitters (5HT, NO) and neurochemical marker ChAT is also investigated in the lung muscle. The role of these transmitters may be the autonomic control of circulation and respiration. However, the importance of these signals for the respiratory responses in the species studied is still not known. The present study also shows for the first time the simultaneous occurrence of piscidin 1 and 5HT in the PGCs. The function of these cells being equivalent to ones found in fish gill subepithelial parenchyma, is still not known. Due to the importance of piscidin 1 in local immune defense, more research is useful to understand a possible interaction of PGCs with immune response in the bichir lung.
Collapse
|
25
|
Jonz MG, Zachar PC, Da Fonte DF, Mierzwa AS. Peripheral chemoreceptors in fish: A brief history and a look ahead. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:27-38. [DOI: 10.1016/j.cbpa.2014.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022]
|
26
|
Jonz MG, Buck LT, Perry SF, Schwerte T, Zaccone G. Sensing and surviving hypoxia in vertebrates. Ann N Y Acad Sci 2015; 1365:43-58. [PMID: 25959851 DOI: 10.1111/nyas.12780] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates. We discuss the respiratory structures in fish, including the skin, gills, and air-breathing organs, and recent evidence for chemosensory neuroepithelial cells (NECs) in these tissues that initiate reflex responses to hypoxia. The use of the zebrafish as a genetic and developmental model has allowed observation of the ontogenesis of respiratory and chemosensory systems, demonstration of a putative intracellular O2 sensor in chemoreceptors that may initiate transduction of the hypoxia signal, and investigation into the effects of extreme hypoxia on cardiorespiratory development. Other organisms, such as goldfish and freshwater turtles, display a high degree of anoxia tolerance, and these models are revealing important adaptations at the cellular level, such as the regulation of glutamatergic and GABAergic neurotransmission in defense of homeostasis in central neurons.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Leslie T Buck
- Cell and Systems Biology, and Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Giacomo Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Messina, Italy
| |
Collapse
|
27
|
Abdallah SJ, Thomas BS, Jonz MG. Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia. J Exp Biol 2015; 218:1777-86. [DOI: 10.1242/jeb.116343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
Severe hypoxia elicits aquatic surface respiration (ASR) behaviour in many species of fish, where ventilation of the gills at the air-water interface improves O2 uptake and survival. ASR is an important adaptation that may have given rise to air breathing in vertebrates. The neural substrate of this behaviour, however, is not defined. We characterized ASR in developing and adult zebrafish (Danio rerio) to ascertain a potential role for peripheral chemoreceptors in initiation or modulation of this response. Adult zebrafish exposed to acute, progressive hypoxia (PO2 from 158 to 15 mmHg) performed ASR with a threshold of 30 mmHg, and spent more time at the surface as PO2 decreased. Acclimation to hypoxia attenuated ASR responses. In larvae, ASR behaviour was observed between 5 and 21 days postfertilization with a threshold of 16 mmHg. Zebrafish decreased swimming behaviour (i.e. distance, velocity and acceleration) as PO2 was decreased, with a secondary increase in behaviour near or below threshold PO2. In adults that underwent a 10-day intraperitoneal injection regime of 10 µg g−1 serotonin (5-HT) or 20 µg g−1 acetylcholine (ACh), an acute bout of hypoxia (15 mmHg) increased the time engaged in ASR by 5.5 and 4.9 times, respectively, compared to controls. Larvae previously immersed in 10 µmol l−1 5-HT or ACh also displayed an increased ASR response. Our results support the notion that ASR is a behavioural response that is reliant upon input from peripheral O2 chemoreceptors. We discuss implications for the role of chemoreceptors in the evolution of air breathing.
Collapse
Affiliation(s)
- Sara J. Abdallah
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Benjamin S. Thomas
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Michael G. Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
28
|
Icardo JM, Colvee E, Lauriano ER, Capillo G, Guerrera MC, Zaccone G. The structure of the gas bladder of the spotted gar, Lepisosteus oculatus. J Morphol 2014; 276:90-101. [DOI: 10.1002/jmor.20323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- José M. Icardo
- Department of Anatomy and Cell Biology; Faculty of Medicine; University of Cantabria; 39011 Santander Spain
| | - Elvira Colvee
- Department of Anatomy and Cell Biology; Faculty of Medicine; University of Cantabria; 39011 Santander Spain
| | - Eugenia R. Lauriano
- Department of Environmental Science, Territory, Food and Health Security (S.A.S.T.A.S.); University of Messina; I-98166 Messina Italy
| | - Gioele Capillo
- Department of Environmental Science, Territory, Food and Health Security (S.A.S.T.A.S.); University of Messina; I-98166 Messina Italy
| | - Maria C. Guerrera
- Istituto per L'Ambiente Marino Costiero; U.O.S. Di Messina; I-98122 Messina Italy
| | - Giacomo Zaccone
- Department of Environmental Science, Territory, Food and Health Security (S.A.S.T.A.S.); University of Messina; I-98166 Messina Italy
| |
Collapse
|
29
|
Robertson GN, Croll RP, Smith FM. The structure of the caudal wall of the zebrafish (Danio rerio) swim bladder: Evidence of localized lamellar body secretion and a proximate neural plexus. J Morphol 2014; 275:933-48. [DOI: 10.1002/jmor.20274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 01/09/2023]
Affiliation(s)
- George N. Robertson
- Department of Medical Neuroscience; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
- Department of Biology; Saint Francis Xavier University; Antigonish Nova Scotia Canada B2G 2W5
| | - Roger P. Croll
- Department of Physiology and Biophysics; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
| | - Frank M. Smith
- Department of Medical Neuroscience; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
| |
Collapse
|
30
|
Tzaneva V, Vadeboncoeur C, Ting J, Perry SF. Effects of hypoxia-induced gill remodelling on the innervation and distribution of ionocytes in the gill of goldfish, Carassius auratus. J Comp Neurol 2014; 522:118-30. [PMID: 23818320 PMCID: PMC4241026 DOI: 10.1002/cne.23392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/22/2013] [Accepted: 06/12/2013] [Indexed: 12/03/2022]
Abstract
The presence of an interlamellar cell mass (ILCM) on the gills of goldfish acclimated to 7°C leads to preferential distribution of branchial ionocytes to the distal edges of the ILCM, where they are likely to remain in contact with the water and hence remain functional. Upon exposure to hypoxia, the ILCM retracts, and the ionocytes become localized to the lamellar surfaces and on the filament epithelium, owing to their migration and the differentiation of new ionocytes from progenitor cells. Here we demonstrate that the majority of the ionocytes receive neuronal innervation, which led us to assess the consequences of ionocyte migration and differentiation during hypoxic gill remodelling on the pattern and extent of ionocyte neuronal innervation. Normoxic 7°C goldfish (ILCM present) possessed significantly greater numbers of ionocytes/mm2 (951.2 ± 94.3) than their 25°C conspecifics (ILCM absent; 363.1 ± 49.6) but a statistically lower percentage of innervated ionocytes (83.1% ± 1.0% compared with 87.8% ± 1.3%). After 1 week of exposure of goldfish to hypoxia, the pool of branchial ionocytes was composed largely of pre-existing migrating cells (555.6 ± 38.1/mm2) and to a lesser extent newly formed ionocytes (226.7 ± 15.1/mm2). The percentage of new (relative to pre-existing) ionocytes remained relatively constant (at ∼30%) after 1 or 2 weeks of normoxic recovery. After hypoxia, pre-existing ionocytes expressed a greater percentage of innervation than newly formed ionocytes in all treatment groups; however, their percentage innervation steadily decreased over 2 weeks of normoxic recovery.
Collapse
Affiliation(s)
- Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | | | | | |
Collapse
|
31
|
Zaccone D, Sengar M, Lauriano ER, Pergolizzi S, Macri’ F, Salpietro L, Favaloro A, Satora L, Dabrowski K, Zaccone G. Morphology and innervation of the teleost physostome swim bladders and their functional evolution in non-teleostean lineages. Acta Histochem 2012; 114:763-72. [PMID: 22277162 DOI: 10.1016/j.acthis.2012.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Swim bladders and lungs are homologous structures. Phylogenetically ancient actinopterygian fish such as Cladistians (Polypteriformes), Ginglymods (Lepisosteids) and lungfish have primitive lungs that have evolved in the Paleozoic freshwater earliest gnathostomes as an adaptation to hypoxic stress. Here we investigated the structure and the role of autonomic nerves in the physostome swim bladder of the cyprinid goldfish (Carassius auratus) and the respiratory bladder of lepisosteids: the longnose gar and the spotted gar (Lepisosteus osseus and L. oculatus) to demonstrate that these organs have different innervation patterns that are responsible for controlling different functional aspects. The goldfish swim bladder is a richly innervated organ mainly controlled by cholinergic and adrenergic innervation also involving the presence of non-adrenergic non-cholinergic (NANC) neurotransmitters (nNOS, VIP, 5-HT and SP), suggesting a simple model for the regulation of the swim bladder system. The pattern of the autonomic innervation of the trabecular muscle of the Lepisosteus respiratory bladder is basically similar to that of the tetrapod lung with overlapping of both muscle architecture and control nerve patterns. These autonomic control elements do not exist in the bladders of the two species studied since they have very different physiological roles. The ontogenetic origin of the pulmonoid swim bladder (PSB) of garfishes may help understand how the expression of these autonomic control substances in the trabecular muscle is regulated including their interaction with the corpuscular cells in the respiratory epithelium of this bimodal air-breathing fish.
Collapse
|
32
|
Pelster B, Schwerte T. The paracrine role of 5-HT in the control of gill blood flow. Respir Physiol Neurobiol 2012; 184:340-6. [DOI: 10.1016/j.resp.2012.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
33
|
Choudhury MG, Saha N. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 116-117:43-53. [PMID: 22466354 DOI: 10.1016/j.aquatox.2012.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/01/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly throughout the organ. Hyper-ammonia stress also led to activation and nuclear translocation of nuclear factor κB (NFκB) in hepatic cells. These results suggest that the activation of iNOS gene under hyper-ammonia stress was probably mediated through the activation of one of the major transcription factors, the NFκB. This is the first report of ammonia-induced expression of iNOS gene, iNOS protein expression leading to more generation of NO under hyper-ammonia stress in any teleosts.
Collapse
Affiliation(s)
- Mahua G Choudhury
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | | |
Collapse
|
34
|
Zaccone D, Dabrowski K, Lauriano ER, de Pasquale A, Macrì D, Satora L, Lanteri G. The simultaneous presence of neuroepithelial cells and neuroepithelial bodies in the respiratory gas bladder of the longnose gar, Lepisosteus osseus, and the spotted gar, L. oculatus. Acta Histochem 2012; 114:370-8. [PMID: 21831413 DOI: 10.1016/j.acthis.2011.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/29/2022]
Abstract
Anatomical and functional studies on the autonomic innervation as well as the location of airway receptors in the air-bladder of lepisosteids are very fragmentary. These water-breathing fishes share in common with the bichirs the presence of a glottis (not a ductus pneumaticus) opening into the esophagus. In contrast to a high concentration of neuroepithelial cells (NECs) contained in the furrowed epithelium in the lung of Polypterus, these cells are scattered as solitary cells in the glottal epithelium, and grouped to form neuroepithelial bodies (NEBs) in the mucociliated epithelium investing the main trabeculae in the air-bladder of Lepisosteus osseus and L. oculatus. The present immunohistochemical studies also demonstrated the presence of nerve fibers in the trabecular striated musculature and a possible relation to NEBs in these species, and identified immunoreactive elements of this innervation. Tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), 5-HT and neuropeptide immunoreactivities were detected in the intramural nerve fibers. 5-HT and VIP immunopositive nerve fibers are apparently associated with NEBs. TH, VIP and SP immunoreactivities are also present in nerve fibers coursing in the radially arranged striated muscle surrounding the glottis and its submucosa. 5-HT positive neurons are also found in submucosal and the muscle layers of the glottis. The physiological function of the adrenergic and inhibitory innervation of the striated muscle as well as the neurochemical coding and morphology of the innervation of the NEBs are not known. Future studies are needed to provide evidence for these receptors with the capacity of chemoreceptors and/or mechanoreceptors.
Collapse
Affiliation(s)
- Daniele Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, University of Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Porteus CS, Brink DL, Milsom WK. Neurotransmitter profiles in fish gills: putative gill oxygen chemoreceptors. Respir Physiol Neurobiol 2012; 184:316-25. [PMID: 22728948 DOI: 10.1016/j.resp.2012.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022]
Abstract
In fish, cells containing serotonin, ACh, catecholamines, NO, H(2)S, leu-5-enkephalin, met-5-enkephalin and neuropeptide Y are found in the gill filaments and lamellae. Serotonin containing neuroepithelial cells (NECs) located along the filament are most abundant and are the only group found in all fish studied to date. The presence of NECs in other locations or containing other transmitters is species specific and it is rare that any one NEC contains more than one neurochemical. The gills are innervated by both extrinsic and intrinsic nerves and they can be cholinergic, serotonergic or contain both transmitters. Some NECs are presumed to be involved in paracrine regulation of gill blood flow, while others part of the reflex pathways involved in cardiorespiratory control. There is both direct and indirect evidence to indicate that the chemosensing cells involved in these latter reflexes sit in locations where some monitor O(2) levels in water, blood or both, yet the anatomical data do not show such clear distinctions.
Collapse
Affiliation(s)
- Cosima S Porteus
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | |
Collapse
|
36
|
Zaccone D, Gopesh A, Anastasi G, Favaloro A, Sfacteria A, Marino F. Localization of neurotransmitters, peptides and nNOS in the pseudobranchial neurosecretory cell system and associated carotid labyrinth of the catfish, Clarias batrachus. Acta Histochem 2012; 114:62-7. [PMID: 21397935 DOI: 10.1016/j.acthis.2011.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/10/2011] [Accepted: 02/13/2011] [Indexed: 02/07/2023]
Abstract
The carotid labyrinth is an enigmatic endocrine structure of unknown chemosensory function lying in the gill region of the catfishes. The carotid body is found at the carotid bifurcation of amphibians and all mammalian vertebrates on the evolutionary tree. It is a vascular expansion comprised of a cluster of glomus cells with associated (afferent and efferent) innervations. In the catfish species studied (Clarias batrachus) a neurosecretory cell system consisting of pseudobranchial neurosecretory cells connect the carotid labyrinth or large vessels (both the efferent branchial artery and dorsal aorta), and is likely akin to the glomus cells, but comparing these structures in widely divergent vertebrate species, the conclusion is that the structural components are more elaborate than those of terrestrial vertebrates. However, these cells reveal both an endocrine phenotype (such as the association with capillaries and large vessels) and the presence of regulatory substances such as neurotransmitters and neuropeptides producing good evidence for high levels of conservation of these substances that are present in the glomus cells of mammalian vertebrates. VIP-immunopositive neuronal cell bodies are detected in the periphery of the carotid labyrinth. They are presumptive local neurons that differ from pseudobranchial neurosecretory cells, the latter failing to express VIP in their soma.
Collapse
|
37
|
Zaccone D, Lo Cascio P, Lauriano R, Pergolizzi S, Sfacteria A, Marino F. Occurrence of neuropeptides and tyrosine hydroxylase in the olfactory epithelium of the lesser-spotted catshark (Scyliorhinus canicula Linnaeus, 1758). Acta Histochem 2011; 113:717-22. [PMID: 20951411 DOI: 10.1016/j.acthis.2010.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 11/30/2022]
Abstract
Immunohistochemical studies using antisera against various neuropeptides (Substance P, vasoactive intestinal polypeptide, and cholecystokinin octapeptide) and tyrosine hydroxylase revealed both olfactory sensory neuron (OSN) polymorphisms and transepithelial-subepithelial nerves in the olfactory epithelium of the cartilaginous fish, Scyliorhinus canicula. This study provides the first evidence of three morphological types of OSNs within the olfactory epithelium of cartilaginous fish that are similar to those found in the teleosts. In fishes there is evidence that OSNs differ functionally, including their differential olfactory bulb projections and molecular properties. The Substance P positive olfactory neurons in S. canicula may have a separate bulbar projection site that is not known, but may indicate a characteristic found in olfactory neuron subtypes in both lampreys and teleost fish. Numerous Substance P immunopositive nerves are found at the base of and in the olfactory epithelium. Some of them were observed to extend outwards almost reaching the epithelial surface. Their presumptive origin from the trigeminal nerve and their interrelationship with chemosensory cells in the nasal passages of vertebrates are discussed.
Collapse
Affiliation(s)
- Daniele Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, University of Messina, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
De Domenico E, Mauceri A, Giordano D, Maisano M, Gioffrè G, Natalotto A, D'Agata A, Ferrante M, Brundo MV, Fasulo S. Effects of "in vivo" exposure to toxic sediments on juveniles of sea bass (Dicentrarchus labrax). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:688-697. [PMID: 21996255 DOI: 10.1016/j.aquatox.2011.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
Aquatic ecosystems are affected by all the impacts generated by a variety of anthropogenic activities present along coastal environments. The sediment compartment is the final receptor of water-insoluble pollutants, acting both as a sink and as a source of pollutants to the water column, and affecting both nektonic and benthic organisms. The aim of this study is to assess the impact of metals in the sediments collected from two sites in the petrochemical area between Augusta and Priolo (SR, Sicily, Italy) on gills of Dicentrarchus labrax. This was done to enhance the scarce knowledge on the bioavailability of metals bound to sediment and their capacity to interact with the bioindicator species. Various sublethal endpoints were assessed such as histopathological lesions, metallothioneins (MTs) and molecules involved in the homeostasis pathways by immunolocalization and RT-PCR. In the specimens exposed to sediments, the data suggested a reduction of gill cell membrane permeability, which could result in altered osmotic balance and gas exchange. Further, an increase of MT expression was detected, consisted the involvement of this protein in detoxification of toxic non-essential metals. The findings of this study demonstrate that a subchronic test, conducted by using sensitive and sub-lethal endpoints, in combination with chemical analyses, is a powerful tool for early identification of environmental hazards associated with contaminated sediments.
Collapse
Affiliation(s)
- Elena De Domenico
- Department Animal Biology and Marine Ecology, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zaccone G, Abelli L, Salpietro L, Zaccone D, Macrì B, Marino F. Nervous control of photophores in luminescent fishes. Acta Histochem 2011; 113:387-94. [PMID: 20598350 DOI: 10.1016/j.acthis.2010.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
Abstract
Functional studies of the autonomic innervation in the photophores of luminescent fishes are scarce. The majority of studies have involved either the stimulation of isolated photophores or the modulatory effects of adrenaline-induced light emission. The fish skin is a highly complex organ that performs a wide variety of physiological processes and receives extensive nervous innervations. The latter includes autonomic nerve fibers of spinal sympathetic origin having a secretomotor function. More recent evidence indicates that neuropeptide-containing nerve fibers, such as those that express tachykinin and its NK1 receptor, neuropeptide Y, or nitric oxide, may also play an important role in the nervous control of photophores. There is no anatomical evidence that shows that nNOS positive (nitrergic) neurons form a population distinct from the secretomotor neurons with perikarya in the sympathetic ganglia. The distribution and function of the nitrergic nerves in the luminous cells, however, is less clear. It is likely that the chemical properties of the sympathetic postganglionic neurons in the ganglia of luminescent fishes are target-specific, such as observed in mammals.
Collapse
|
40
|
Tzaneva V, Perry SF. The control of breathing in goldfish (Carassius auratus) experiencing thermally induced gill remodelling. J Exp Biol 2010; 213:3666-75. [DOI: 10.1242/jeb.047431] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
At temperatures below 15°C the gill lamellae of goldfish (Carassius auratus) are largely covered by an interlamellar cell mass (ILCM) which decreases the functional surface area of the gill. The presence of the ILCM in goldfish acclimated to cold water conceivably could lead to a covering of the neuroepithelial cells (NECs), which are believed to be important for sensing ambient O2 and CO2 levels. In this study we tested the hypothesis that goldfish with covered lamellae (and presumably fewer NECs exposed to the water) exhibit a decreased capacity to hyperventilate in response to hypoxic stimuli. Measurements of ventilation amplitude and frequency were performed during exposure to acute hypoxia (PwO2=30 mmHg) or following injections of the O2 chemoreceptor stimulant NaCN into the buccal cavity or caudal vein of fish acclimated to 25°C (uncovered lamellae) or 7°C (covered lamellae) to stimulate predominantly the externally or internally oriented NECs, respectively. The results demonstrated no significant differences in the response to hypoxia, with each group exhibiting similar percentage increases in ventilation amplitude (90–91%) and frequency (34–43%). Similarly, with the exception of a rightward shift of the ventilation frequency dose–response in the fish acclimated to 7°C, there were no significant differences between the two groups of fish in the ED50 values. These findings suggest that goldfish with covered lamellae retain the capacity to sense external hypoxic stimuli. Using immunohistochemistry to identify serotonin-enriched NECs, it was demonstrated that the presence of the ILCM results in the NECs being redistributed towards the distal regions of the lamellae. In 25°C-acclimated fish, the NECs were distributed evenly along the length of the lamellae with 53±3% of them in the distal half, whereas in fish acclimated to 7°C, 83±5% of the NECs were confined to the distal half. Using the neuronal marker antibody ZN-12, it was demonstrated that the NECs at the distal edges of the lamellae are innervated by nerve fibres. Thus, it is hypothesised that the capacity to sense external hypoxic stimuli in goldfish acclimated to cold water is maintained despite the increasing coverage of the gill epithelial surfaces because of a redistribution of innervated NECs to the exposed distal regions of the lamellae.
Collapse
Affiliation(s)
- Velislava Tzaneva
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Steve F. Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
41
|
Pan TCF, Burggren WW. Onset and early development of hypoxic ventilatory responses and branchial neuroepithelial cells in Xenopus laevis. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:382-91. [PMID: 20728560 DOI: 10.1016/j.cbpa.2010.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 11/17/2022]
Abstract
Onset and ontogeny of the O₂ chemoreceptive control of ventilation was investigated in Xenopus laevis. The density and size of branchial serotonin-immunoreactive neuroepithelial cells (5-HT-IR NECs) were also determined using confocal immunofluorescent microscopy. Larvae started gill ventilation at 3 days post-fertilization (dpf), and, at this early stage, acute hypoxic exposure produced an increase in frequency from 28 ± 4 to 60 ± 2 beats x min⁻¹. Concurrent with the onset of ventilatory responses, 5-HT-IR NECs appeared in the gill filament bud. Lung ventilation began at 5 dpf and exhibited a 3-fold increase in frequency during acute hypoxia. At 10 dpf, gill ventilatory sensitivity to hypoxia increased, as did NEC density, from 15 ± 1 (5 dpf) to 29 ± 2 (10 dpf) cells x mm of filament⁻¹. Unlike ventilation frequency, gill ventilation amplitude and lung expired volume were unaltered by acute hypoxia. Chronic exposure to moderate hypoxia, at a P(O₂) of 110 mmHg, attenuated acute responses to moderate hypoxia at 10 and 14 dpf but had no effect at more severe hypoxia or at other stages. Chronic hypoxia also stimulated 5-HT-IR NECs growth at 21 dpf. Collectively, larvae at 5 dpf exhibited strong O₂-driven gill and lung ventilatory responses, and between 10 and 21 dpf, the early hypoxic responses can be shaped by the ambient P(O₂).
Collapse
Affiliation(s)
- Tien-Chien F Pan
- Developmental Physiology and Genetics Research Cluster, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, USA.
| | | |
Collapse
|
42
|
Gopesh A, Sengar M, Tiwari S. Presence of paraneuronal pseudobranchial neurosecretory system in the gill region of two air-breathing clupeids, Notopterus chitala and Notopterus notopterus. Respir Physiol Neurobiol 2010; 171:135-43. [PMID: 20206306 DOI: 10.1016/j.resp.2010.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 11/15/2022]
Abstract
The pseudobranchial neurosecretory system (PNS) is a system of neurosecretion observed in certain groups of teleosts, which are air-breathing or known to tolerate low oxygen tension in the surrounding water. Like other neuroendocrine cells of gill, cells belonging to this system have also been observed to have a role in condition of hypoxia. Uniformly found in all catfish species, the system was reported to be present in few non-catfish groups also, viz.-Atheriniformes, Channiformes (Devi, 1987), Perciformes, and Clupeiformes (Srivastava et al., 1981; Gopesh, 1983). In an attempt to study the structure and organization of the pseudobranchial neurosecretory system in non-catfish species of teleost, present investigation was undertaken in two species of Notopterus, viz. Notopterus chitala and Notopterus notopterus. The histological observations, using neurosecretion specific stains, undertaken on two clupeids are reported and the findings are discussed in the light of association of PNS with Carotid gland-a structure of intermediate stage in the process of transformation of pseudobranch into the carotid labyrinth, in course of evolution and also the air-breathing habit of the fish.
Collapse
Affiliation(s)
- A Gopesh
- Department of Zoology, University of Allahabad, Allahabad 211002, U.P., India.
| | | | | |
Collapse
|
43
|
nee Pathak ND, Lal B. Seasonality in expression and distribution of nitric oxide synthase isoforms in the testis of the catfish, Clarias batrachus: role of nitric oxide in testosterone production. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:286-93. [PMID: 19963077 DOI: 10.1016/j.cbpc.2009.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a well-recognized versatile signaling molecule. It is produced by catalytic action of nitric oxide synthase (NOS) on L-arginine in a variety of animal tissues. Existence of different isoforms of NOS has been shown in mammalian testis, but report on their presence in the testis of ectothermic vertebrates is non-existent. This study demonstrates the differential expressions of two isoforms of nitric oxide synthase (neuronal-nNOS and inducible-iNOS) like molecules in different cell types in the testis of seasonally breeding catfish, Clarias batrachus through immunohistochemistry. Positive immunoprecipitation of nNOS and iNOS like molecules were detected in germ cells as well as interstitial cells only in the recrudescing and fully mature fish. The immunoreactions differed in intensity and varied with changing reproductive status. Treatment of adult male fish with NO donor, sodium nitroprusside, and a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME) increased and decreased the total nitrate and nitrite concentration in the testis, respectively. Sodium nitroprusside and L-NAME also induced simultaneous decline and rise in the testicular testosterone level, respectively. These findings, thus, suggest that NOS isoforms are expressed variedly in different cell types in the testis of reproductively active fish. This investigation also suggests that NO inhibits testosterone production in the testis.
Collapse
Affiliation(s)
- Neelima Dubey nee Pathak
- Fish Endocrinology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221 005 (U.P.), India
| | | |
Collapse
|
44
|
Qin Z, Lewis JE, Perry SF. Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2. J Physiol 2010; 588:861-72. [PMID: 20051495 DOI: 10.1113/jphysiol.2009.184739] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adult zebrafish exhibit hyperventilatory responses to absolute environmental CO(2) levels as low as 0.13% ( mmHg), more than an order of magnitude lower than the typical arterial levels (40 mmHg) monitored by the mammalian carotid body. The sensory basis underlying the ability of fish to detect and respond to low ambient CO(2) levels is not clear. Here, we show that the neuroepithelial cells (NECs) of the zebrafish gill, known to sense O(2) levels, also respond to low levels of CO(2). An electrophysiological characterization of this response using both current and voltage clamp protocols revealed that for increasing CO(2) levels, a background K(+) channel was inhibited, resulting in a partial pressure-dependent depolarization of the NEC. To elucidate the signalling pathway underlying K(+) channel inhibition, we used immunocytochemistry to show that these NECs express carbonic anhydrase (CA), an enzyme involved in CO(2) sensing in the mammalian carotid body. Further, the NEC response to CO(2) (magnitude of membrane depolarization and time required to achieve maximal response), under conditions of constant pH, was reduced by 50% by the CA-inhibitor acetazolamide. This suggests that the CO(2) detection mechanism involves an intracellular sensor that is responsive to the rate of acidification associated with the hydration of CO(2) and which does not require a change of extracellular pH. Because some cells that were responsive to increasing also responded to hypoxia with membrane depolarization, the present results demonstrate that a subset of the NECs in the zebrafish gill are bimodal sensors of CO(2) and O(2).
Collapse
Affiliation(s)
- Z Qin
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | |
Collapse
|
45
|
Monteiro SM, Oliveira E, Fontaínhas-Fernandes A, Sousa M. Fine structure of the branchial epithelium in the teleostOreochromis niloticus. J Morphol 2010; 271:621-33. [DOI: 10.1002/jmor.10821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Olson KR, Donald JA. Nervous control of circulation--the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 2009; 111:244-56. [PMID: 19128825 DOI: 10.1016/j.acthis.2008.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA.
| | | |
Collapse
|
47
|
Abstract
The fish gill is a highly complex organ that performs a wide variety of physiological processes and receives extensive nervous innervation from both afferent (sensory) and efferent (motor) fibres. Innervation from the latter source includes autonomic nerve fibres of spinal (sympathetic) and cranial (parasympathetic) origin whose primary role is to induce vasomotor changes within the respiratory or nonrespiratory pathways of the gill vasculature. Autonomic control of the gill occurs by nerve fibres identified as adrenergic, cholinergic, and more recent evidence indicates that nonadrenergic-noncholinergic (NANC) nerve fibres, such as those that express amines, peptides, or nitric oxide, may also play an important role. The distribution and physiological function of NANC nerve fibres, however, is less clear. This review primarily discusses histochemical studies that have characterized the nervous innervation and autonomic control of the gill vasculature. In addition, supporting evidence from recent studies for the efferent control, or modulation, of other homeostatic processes in the gill is examined.
Collapse
|
48
|
Perry S, Jonz M, Gilmour K. Chapter 5 Oxygen Sensing And The Hypoxic Ventilatory Response. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(08)00005-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Zaccone G, Mauceri A, Maisano M, Fasulo S. Innervation of lung and heart in the ray-finned fish, bichirs. Acta Histochem 2009; 111:217-29. [PMID: 19121535 DOI: 10.1016/j.acthis.2008.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anatomical and functional studies of the autonomic innervation in the lung and the heart of the bichirs are lacking. The present review paper describes the presence of nerve fibers located in the muscle layers of the lung and its submucosa, the collection of unipolar neurons found in the submucosal and muscle layers of the glottis in a bichir species (Polypterus bichir bichir). Putative oxygen chemoreceptive, neuroepithelial cells (NECs) in the lung mucosa are also included. The latter share many immunohistochemical characteristics similar to those observed in the carotid body and neuroepithelial bodies of mammals. A packed collection of paraganglion cells is located within the trunk of the pulmonary vagus nerves. The paper also examines the occurrence of intracardiac neurons and nerve fibers in the heart of the above species. These studies show that various neurotransmitters may indicate different patterns of innervation in the lung and the heart of the bichirs. However, there is still much to be discovered about the lung and cardiovascular nervous control of these primitive fishes.
Collapse
|
50
|
|