1
|
Wang Y, Huang Y, Zhou P, Lu S, Lin J, Wen G, Shi X, Guo Y. Effects of dietary glucosamine sulfate sodium on early laying performance and eggshell quality of laying hens. Poult Sci 2024; 103:103982. [PMID: 39013294 PMCID: PMC11519691 DOI: 10.1016/j.psj.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
This study was conducted to determine the influence of dietary glucosamine sulfate sodium (GSS) on laying performance, blood profiles, eggshell and inner quality of eggs and relative expression of the genes related to eggshell in laying hens at early stage. A total of 640 twenty-weeks-old Lohmann laying hens were randomly allotted to 4 treatments with 10 replicates of 16 hens each. The experiment lasted for 8 wk, and dietary treatments were: 1) CON, basal diet; 2) G1, CON + 0.2% GSS; 3) G2, CON + 0.4% GSS; 4) G3, CON + 0.6% GSS. The inclusion of GSS increased average daily feed intake, laying rate, and egg mass (P < 0.05) linearly during wk 21 to 25, 25 to 29, and 21 to 29, egg weight during wk 21 to 25 and 25 to 29, and improved (P < 0.05) feed conversion ratio linearly during wk 21 to 25. The supplementation of GSS increased (P < 0.05) albumen height quadratically, Haugh unit, calcium content, calcium mass, phosphorus content and phosphorus mass linearly at the end of 25th and 29th wk. At the end of 29th wk, the eggshell strength, eggshell weight, eggshell ratio, and eggshell thickness were increased (P < 0.05) linearly in GSS treatments compared with CON. The addition of GSS increased (P < 0.05) serum calcium, estrogen 2, and calcitonin, while decreased (P < 0.05) serum tartrate resistant acid phosphatase (TRAP), parathormone, IL-6 and prostaglandin E2 (PGE2) at the end of 29th wk. The inclusion of GSS increased (P < 0.05) the relative expression of ovocalyxin-32 and ovocalyxin-36 linearly at the end of 29th wk, and ovalbumin, osteopontin, calbindin 1, and ovocleidin-116 linearly at the end of 25th and 29th wk. Quadratic effects were observed (P < 0.05) in the laying rate during wk 21 to 25, serum TRAP and PGE2, the relative expression of ovocleidin-116 at the end of 29th wk. In summary, the inclusion of GSS up-regulated relative expression of osteopontin, ovocleidin-116, ovocalyxin-32 and ovocalyxin-36 in uterus, promoted the serum PGE2 and calcitonin, thus increased the calcium content of eggshell and finally enhanced eggshell quality.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, China Agriculture University, Beijing 100193, PR China
| | - Yanhua Huang
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Panhong Zhou
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Shengtao Lu
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Jiale Lin
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Guanglin Wen
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Xiaoli Shi
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China.
| | - Yuming Guo
- College of Animal Science and Technology, China Agriculture University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Malaval L, Follet H, Farlay D, Gineyts E, Rizzo S, Thomas C, Maalouf M, Normand M, Burt-Pichat B, Bouleftour W, Vanden-Boscche A, Laroche N, Vico L. OPN, BSP, and Bone Quality-Structural, Biochemical, and Biomechanical Assessment in OPN -/-, BSP -/-, and DKO Mice. Calcif Tissue Int 2024; 115:63-77. [PMID: 38733411 DOI: 10.1007/s00223-024-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024]
Abstract
Osteopontin (OPN) and Bone Sialoprotein (BSP), abundantly expressed by osteoblasts and osteoclasts, appear to have important, partly overlapping functions in bone. In gene-knockout (KO, -/-) models of either protein and their double (D)KO in the same CD1/129sv genetic background, we analyzed the morphology, matrix characteristics, and biomechanical properties of femur bone in 2 and 4 month old, male and female mice. OPN-/- mice display inconsistent, perhaps localized hypermineralization, while the BSP-/- are hypomineralized throughout ages and sexes, and the low mineralization of young DKO mice recovers with age. The higher contribution of primary bone remnants in OPN-/- shafts suggests a slow turnover, while their lower percentage in BSP-/- indicates rapid remodeling, despite FTIR-based evidence in this genotype of a high maturity of the mineralized matrix. In 3-point bending assays, OPN-/- bones consistently display higher Maximal Load, Work to Max. Load and in young mice Ultimate Stress, an intrinsic characteristic of the matrix. Young male and old female BSP-/- also display high Work to Max. Load along with low Ultimate Stress. Principal Component Analysis confirms the major role of morphological traits in mechanical competence, and evidences a grouping of the WT phenotype with the OPN-/- and of BSP-/- with DKO, driven by both structural and matrix parameters, suggesting that the presence or absence of BSP has the most profound effects on skeletal properties. Single or double gene KO of OPN and BSP thus have multiple distinct effects on skeletal phenotypes, confirming their importance in bone biology and their interplay in its regulation.
Collapse
Affiliation(s)
- Luc Malaval
- LBTO, Pôle Santé Nord - Faculté de Médecine, Inserm, U1059 Sainbiose, Rm 118, Université Jean Monnet, Mines St Etienne, 10 Chemin de La Marandière, St Priest en Jarez, F42270, Saint-Etienne, France.
| | - Hélène Follet
- Inserm, Université de Lyon, U1033 Lyos, F69372, Lyon, France
| | - Delphine Farlay
- Inserm, Université de Lyon, U1033 Lyos, F69372, Lyon, France
| | - Evelyne Gineyts
- Inserm, Université de Lyon, U1033 Lyos, F69372, Lyon, France
| | - Sebastien Rizzo
- Inserm, Université de Lyon, U1033 Lyos, F69372, Lyon, France
| | - Charlene Thomas
- Inserm, Université de Lyon, U1033 Lyos, F69372, Lyon, France
| | - Mathieu Maalouf
- LBTO, Pôle Santé Nord - Faculté de Médecine, Inserm, U1059 Sainbiose, Rm 118, Université Jean Monnet, Mines St Etienne, 10 Chemin de La Marandière, St Priest en Jarez, F42270, Saint-Etienne, France
| | - Myriam Normand
- LBTO, Pôle Santé Nord - Faculté de Médecine, Inserm, U1059 Sainbiose, Rm 118, Université Jean Monnet, Mines St Etienne, 10 Chemin de La Marandière, St Priest en Jarez, F42270, Saint-Etienne, France
| | | | - Wafa Bouleftour
- Centre Hospitalier Universitaire de Saint-Etienne, Centre de Cancérologie Universitaire, F42270, Saint Etienne, France
| | - Arnaud Vanden-Boscche
- LBTO, Pôle Santé Nord - Faculté de Médecine, Inserm, U1059 Sainbiose, Rm 118, Université Jean Monnet, Mines St Etienne, 10 Chemin de La Marandière, St Priest en Jarez, F42270, Saint-Etienne, France
| | - Norbert Laroche
- LBTO, Pôle Santé Nord - Faculté de Médecine, Inserm, U1059 Sainbiose, Rm 118, Université Jean Monnet, Mines St Etienne, 10 Chemin de La Marandière, St Priest en Jarez, F42270, Saint-Etienne, France
| | - Laurence Vico
- LBTO, Pôle Santé Nord - Faculté de Médecine, Inserm, U1059 Sainbiose, Rm 118, Université Jean Monnet, Mines St Etienne, 10 Chemin de La Marandière, St Priest en Jarez, F42270, Saint-Etienne, France
| |
Collapse
|
3
|
Wang SK, Zhang H, Lin HC, Wang YL, Lin SC, Seymen F, Koruyucu M, Simmer JP, Hu JCC. AMELX Mutations and Genotype-Phenotype Correlation in X-Linked Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:6132. [PMID: 38892321 PMCID: PMC11172428 DOI: 10.3390/ijms25116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Hua-Chieh Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Figen Seymen
- Department of Pediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey;
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| |
Collapse
|
4
|
Delgado S, Fernandez-Trujillo MA, Houée G, Silvent J, Liu X, Corre E, Sire JY. Expression of 20 SCPP genes during tooth and bone mineralization in Senegal bichir. Dev Genes Evol 2023; 233:91-106. [PMID: 37410100 DOI: 10.1007/s00427-023-00706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The African bichir (Polypterus senegalus) is a living representative of Polypteriformes. P. senegalus possesses teeth composed of dentin covered by an enameloid cap and a layer of collar enamel on the tooth shaft, as in lepisosteids. A thin layer of enamel matrix can also be found covering the cap enameloid after its maturation and during the collar enamel formation. Teleosts fish do not possess enamel; teeth are protected by cap and collar enameloid, and inversely in sarcopterygians, where teeth are only covered by enamel, with the exception of the cap enameloid in teeth of larval urodeles. The presence of enameloid and enamel in the teeth of the same organism is an opportunity to solve the evolutionary history of the presence of enamel/enameloid in basal actinopterygians. In silico analyses of the jaw transcriptome of a juvenile bichir provided twenty SCPP transcripts. They included enamel, dentin, and bone-specific SCPPs known in sarcopterygians and several actinopterygian-specific SCPPs. The expression of these 20 genes was investigated by in situ hybridizations on jaw sections during tooth and dentary bone formation. A spatiotemporal expression patterns were established and compared with previous studies of SCPP gene expression during enamel/enameloid and bone formation. Similarities and differences were highlighted, and several SCPP transcripts were found specifically expressed during tooth or bone formation suggesting either conserved or new functions of these SCPPs.
Collapse
Affiliation(s)
- S Delgado
- Sorbonne Université, MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, 75005, Paris, France.
| | - M A Fernandez-Trujillo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - G Houée
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, CR2P (Centre de Recherche en Paléontologie - Paris), UMR 7207, Equipe Formes, Structures et Fonctions, 43 rue Buffon, 75005, Paris, France
| | - J Silvent
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - X Liu
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - E Corre
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - J Y Sire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| |
Collapse
|
5
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
6
|
Saito H, Chiba-Ohkuma R, Yamakoshi Y, Karakida T, Yamamoto R, Shirai M, Ohkubo C. Characterization of bioactive substances involved in the induction of bone augmentation using demineralized bone sheets. Int J Implant Dent 2022; 8:49. [PMID: 36316596 PMCID: PMC9622973 DOI: 10.1186/s40729-022-00449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the bone augmentation ability of demineralized bone sheets mixed with allogeneic bone with protein fractions containing bioactive substances and the interaction between coexisting bioactive substances and proteins. METHODS Four types of demineralized bone sheets mixed with allogeneic bone in the presence or absence of bone proteins were created. Transplantation experiments using each demineralized bone sheet were performed in rats, and their ability to induce bone augmentation was analysed by microcomputed tomography images. Bioactive substances in bone proteins were isolated by heparin affinity chromatography and detected by the measurement of alkaline phosphatase activity in human periodontal ligament cells and dual luciferase assays. Noncollagenous proteins (NCPs) coexisting with the bioactive substances were identified by mass spectrometry, and their interaction with bioactive substances was investigated by in vitro binding experiments. RESULTS Demineralized bone sheets containing bone proteins possessed the ability to induce bone augmentation. Bone proteins were isolated into five fractions by heparin affinity chromatography, and transforming growth factor-beta (TGF-β) was detected in the third fraction (Hep-c). Dentin matrix protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE), and biglycan (BGN) also coexisted in Hep-c, and the binding of these proteins to TGF-β increased TGF-β activity by approximately 14.7% to 32.7%. CONCLUSIONS Demineralized bone sheets are capable of inducing bone augmentation, and this ability is mainly due to TGF-β in the bone protein mixed with the sheets. The activity of TGF-β is maintained when binding to bone NCPs such as DMP1, MEPE, and BGN in the sheets.
Collapse
Affiliation(s)
- Haruka Saito
- grid.412816.80000 0000 9949 4354Department of Removable Prosthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-Ku, Yokohama, 230-8501 Japan
| | - Risako Chiba-Ohkuma
- grid.412816.80000 0000 9949 4354Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-Ku, Yokohama, 230-8501 Japan
| | - Yasuo Yamakoshi
- grid.412816.80000 0000 9949 4354Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-Ku, Yokohama, 230-8501 Japan
| | - Takeo Karakida
- grid.412816.80000 0000 9949 4354Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-Ku, Yokohama, 230-8501 Japan
| | - Ryuji Yamamoto
- grid.412816.80000 0000 9949 4354Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-Ku, Yokohama, 230-8501 Japan
| | - Mai Shirai
- grid.412816.80000 0000 9949 4354Department of Removable Prosthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-Ku, Yokohama, 230-8501 Japan
| | - Chikahiro Ohkubo
- grid.412816.80000 0000 9949 4354Department of Removable Prosthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-Ku, Yokohama, 230-8501 Japan
| |
Collapse
|
7
|
Leurs N, Martinand-Mari C, Marcellini S, Debiais-Thibaud M. Parallel evolution of ameloblastic scpp genes in bony and cartilaginous vertebrates. Mol Biol Evol 2022; 39:6582990. [PMID: 35535508 PMCID: PMC9122587 DOI: 10.1093/molbev/msac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5′ exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
8
|
Abstract
Scales, as key structures of fish skin, play an important role in physiological function. The study of fish scale development mechanisms provides a basis for exploring the molecular-level developmental differences between scaled and non-scaled fishes. In this study, alizarin red staining was used to divide the different stages of zebrafish (Danio rerio) scale development. Four developmental stages, namely stage I (~17 dpf, scales have not started to grow), stage II (~33 dpf, the point at which scales start to grow), stage III (~41 dpf, the period in which the scales almost cover the whole body), and stage IV (~3 mpf, scales cover the whole body), were determined and used for subsequent transcriptome analysis. WGCNA (weighted correlation network analysis) and DEG (differentially expressed gene) analysis were used for screening the key genes. Based on the comparison between stage II and stage I, 54 hub-genes were identified by WGCNA analysis. Key genes including the Scpp family (Scpp7, Scpp6, Scpp5, and Scpp8), the Fgf family (Fgfr1b and Fgfr3), Tcf7, Wnt10b, Runx2b, and Il2rb were identified by DEG analysis, which indicated that these genes played important roles in the key nodes of scale development signal pathways. Combined with this analysis, the TGF-β, Wnt/β-catenin, and FGF signaling pathways were suggested to be the most important signal pathways for scales starting to grow. This study laid a foundation for exploring the scale development mechanism of other fishes. The scale development candidate genes identified in the current study will facilitate functional gene identifications in the future.
Collapse
|
9
|
Rosa JT, Witten PE, Huysseune A. Cells at the Edge: The Dentin-Bone Interface in Zebrafish Teeth. Front Physiol 2021; 12:723210. [PMID: 34690799 PMCID: PMC8526719 DOI: 10.3389/fphys.2021.723210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Bone-producing osteoblasts and dentin-producing odontoblasts are closely related cell types, a result from their shared evolutionary history in the ancient dermal skeleton. In mammals, the two cell types can be distinguished based on histological characters and the cells’ position in the pulp cavity or in the tripartite periodontal complex. Different from mammals, teleost fish feature a broad diversity in tooth attachment modes, ranging from fibrous attachment to firm ankylosis to the underlying bone. The connection between dentin and jaw bone is often mediated by a collar of mineralized tissue, a part of the dental unit that has been termed “bone of attachment”. Its nature (bone, dentin, or an intermediate tissue type) is still debated. Likewise, there is a debate about the nature of the cells secreting this tissue: osteoblasts, odontoblasts, or yet another (intermediate) type of scleroblast. Here, we use expression of the P/Q rich secretory calcium-binding phosphoprotein 5 (scpp5) to characterize the cells lining the so-called bone of attachment in the zebrafish dentition. scpp5 is expressed in late cytodifferentiation stage odontoblasts but not in the cells depositing the “bone of attachment”. nor in bona fide osteoblasts lining the supporting pharyngeal jaw bone. Together with the presence of the osteoblast marker Zns-5, and the absence of covering epithelium, this links the cells depositing the “bone of attachment” to osteoblasts rather than to odontoblasts. The presence of dentinal tubule-like cell extensions and the near absence of osteocytes, nevertheless distinguishes the “bone of attachment” from true bone. These results suggest that the “bone of attachment” in zebrafish has characters intermediate between bone and dentin, and, as a tissue, is better termed “dentinous bone”. In other teleosts, the tissue may adopt different properties. The data furthermore support the view that these two tissues are part of a continuum of mineralized tissues. Expression of scpp5 can be a valuable tool to investigate how differentiation pathways diverge between osteoblasts and odontoblasts in teleost models and help resolving the evolutionary history of tooth attachment structures in actinopterygians.
Collapse
Affiliation(s)
- Joana T Rosa
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium.,Comparative, Adaptive and Functional Skeletal Biology (BIOSKEL), Centre of Marine Sciences (CCMAR), University of Algarve, Campus Gambelas, Faro, Portugal
| | - Paul Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Yong LW, Lu TM, Tung CH, Chiou RJ, Li KL, Yu JK. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol 2021; 9:607057. [PMID: 34041233 PMCID: PMC8141804 DOI: 10.3389/fcell.2021.607057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express SPARC (a crucial gene for tissue mineralization) and various collagen genes. During development, some of these cells expand medially to surround the axial structures, including the neural tube, notochord and gut, while others expand laterally and ventrally to underlie the epidermis. Eventually these cell populations are found closely associated with the collagenous matrix around the neural tube, notochord, and dorsal aorta, and also with the dense collagen sheets underneath the epidermis. Using known genetic markers for distinct vertebrate somite compartments, we showed that the lateral wall of amphioxus somite likely corresponds to the vertebrate dermomyotome and lateral plate mesoderm. Furthermore, we demonstrated a conserved role for BMP signaling pathway in somite patterning of both amphioxus and vertebrates. These results suggest that compartmentalized somites and their contribution to primitive skeletal tissues are ancient traits that date back to the chordate common ancestor. The finding of SPARC-expressing skeletal scaffold in amphioxus further supports previous hypothesis regarding SPARC gene family expansion in the elaboration of the vertebrate mineralized skeleton.
Collapse
Affiliation(s)
- Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Aquatic Biology, Chia-Yi University, Chia-Yi, Taiwan
| | - Ruei-Jen Chiou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
11
|
Yang R, Geng F, Huang X, Qiu N, Li S, Teng H, Chen L, Song H, Huang Q. Integrated proteomic, phosphoproteomic and N-glycoproteomic analyses of chicken eggshell matrix. Food Chem 2020; 330:127167. [PMID: 32531632 DOI: 10.1016/j.foodchem.2020.127167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/16/2020] [Accepted: 05/25/2020] [Indexed: 01/28/2023]
Abstract
Eggshell matrix (EM) proteins play an important biological role in eggshell mineralization and embryo development. Many studies have demonstrated that some matrix proteins undergo posttranslational modifications, including phosphorylation and glycosylation, which have important regulatory effects on the functional properties of the proteins. Systematic analysis of the proteome, the phosphorylated modified proteome and the glycosylated modified proteome of the chicken EM was performed using a proteomics strategy. A total of 112 phosphorylation sites from 69 phosphoproteins and 297 N-glycosylation sites from 182 N-glycoproteins were identified in the chicken EM. Among all these identified modified proteins, 129 were not identified in the proteome (547 proteins). Therefore, a total of 676 EM proteins were identified in this study. Gene ontology (GO) enrichment analysis indicated that EM proteins and phosphoproteins were mainly enriched in regulation of enzyme activity, while EM N-glycoproteins were enriched in immune response regulation.
Collapse
Affiliation(s)
- Ran Yang
- Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China.
| | - Xiang Huang
- Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ning Qiu
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Hui Teng
- Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Lei Chen
- Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Hongbo Song
- Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Qun Huang
- Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
12
|
Minamizaki T, Sakurai K, Hayashi I, Toshishige M, Yoshioka H, Kozai K, Yoshiko Y. Active sites of human MEPE-ASARM regulating bone matrix mineralization. Mol Cell Endocrinol 2020; 517:110931. [PMID: 32712387 DOI: 10.1016/j.mce.2020.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
The proteolytic fragment ASARM (acidic serine- and aspartate-rich motif) of MEPE (matrix extracellular phosphoglycoprotein) (MEPE-ASARM) may act as an endogenous anti-mineralization factor involved in X-linked hypophosphatemic rickets/osteomalacia (XLH). We synthesized MEPE-ASARM peptides and relevant peptide fragments with or without phosphorylated Ser residues (pSer) to determine the active site(s) of MEPE-ASARM in a rat calvaria cell culture model. None of the synthetic peptides elicited changes in cell death, proliferation or differentiation, but the peptide (pASARM) with three pSer residues inhibited mineralization without causing changes in gene expression of osteoblast markers tested. The anti-mineralization effect was maintained in peptides in which any one of three pSer residues was deleted. Polyclonal antibodies recognizing pASARM but not ASARM abolished the pASARM effect. Deletion of six N-terminal residues but leaving the recognition sites for PHEX (phosphate regulating endopeptidase homolog, X-linked), a membrane endopeptidase responsible for XLH, intact and two C-terminal amino acid residues did not alter the anti-mineralization activity of pASARM. Our results strengthen understanding of the active sites of MEPE-pASARM and allowed us to identify a shorter more stable sequence with fewer pSer residues still exhibiting hypomineralization activity, reducing peptide synthesis cost and increasing reliability for exploring biological and potential therapeutic effects.
Collapse
Affiliation(s)
- Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kaoru Sakurai
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ikue Hayashi
- Research Facility, Hiroshima University School of Dentistry, Hiroshima, Japan
| | - Masaaki Toshishige
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirotaka Yoshioka
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
13
|
Murdock DJE. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biol Rev Camb Philos Soc 2020; 95:1372-1392. [DOI: 10.1111/brv.12614] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022]
|
14
|
Boleij M, Seviour T, Wong LL, van Loosdrecht MCM, Lin Y. Solubilization and characterization of extracellular proteins from anammox granular sludge. WATER RESEARCH 2019; 164:114952. [PMID: 31408759 DOI: 10.1016/j.watres.2019.114952] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Elucidating the extracellular polymeric substances (EPS) of anammox granular sludge is important for stable nitrogen removal processes in wastewater treatment. However, due to a lack of standardized methods for extraction and characterization, the composition of anammox granule EPS remains mostly unknown. In this study, alkaline (NaOH) and ionic liquid (IL) extractions were compared in terms of the proteins they extracted from different "Candidatus Brocadia" cultures. We aimed to identify structural proteins and evaluated to which extend these extraction methods bias the outcome of EPS characterization. Extraction was focussed on solubilization of the EPS matrix, and the NaOH and IL extraction recovered on average 20% and 26% of the VSS, respectively. Using two extraction methods targeting different intermolecular interactions increased the possibility of identifying structural extracellular proteins. Of the extracted proteins, ∼40% were common between the extraction methods. The high number of common abundant proteins between the extraction methods, illustrated how extraction biases can be reduced when solubility of the granular sludge is enhanced. Physicochemical analyses of the granules indicated that extracellular structural matrix proteins likely have β-sheet dominated secondary structures. These β-sheet structures were measured in EPS extracted with both methods. The high number of uncharacterized proteins and possible moonlighting proteins confounded identifying structural (i.e. β-sheet dominant) proteins. Nonetheless, new candidates for structural matrix proteins are described. Further current bottlenecks in assigning specific proteins to key extracellular functions in anammox granular sludge are discussed.
Collapse
Affiliation(s)
- Marissa Boleij
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| |
Collapse
|
15
|
Nahar K, Lebouvier T, Andaloussi Mäe M, Konzer A, Bergquist J, Zarb Y, Johansson B, Betsholtz C, Vanlandewijck M. Astrocyte-microglial association and matrix composition are common events in the natural history of primary familial brain calcification. Brain Pathol 2019; 30:446-464. [PMID: 31561281 PMCID: PMC7317599 DOI: 10.1111/bpa.12787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfbret/ret and Slc20a2-/- mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfbret/ret mice were large, solitary and smooth surfaced, the nodules in Slc20a2-/- mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfbret/ret mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2-/- mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.
Collapse
Affiliation(s)
- Khayrun Nahar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Neurology, CHRU Lille, Lille, France.,Inserm U1171, Lille, France
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne Konzer
- Scientific Service Group Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Bergquist
- Department of Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Bengt Johansson
- Electron Microscopy Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
16
|
Lee JW, Hong J, Seymen F, Kim YJ, Kang J, Koruyucu M, Tuloglu N, Bayrak S, Song JS, Shin TJ, Hyun HK, Kim YJ, Lee JC, Park JC, Hu J, Simmer J, Kim JW. Novel frameshift mutations in DSPP cause dentin dysplasia type II. Oral Dis 2019; 25:2044-2046. [PMID: 31454439 DOI: 10.1111/odi.13182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Ji Won Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jiwon Hong
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Youn Jung Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jenny Kang
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Nuray Tuloglu
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Sule Bayrak
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Ji-Soo Song
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Teo Jeon Shin
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hong-Keun Hyun
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Young-Jae Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | | | - Joo-Cheol Park
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jan Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - James Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.,Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Green DR, Schulte F, Lee KH, Pugach MK, Hardt M, Bidlack FB. Mapping the Tooth Enamel Proteome and Amelogenin Phosphorylation Onto Mineralizing Porcine Tooth Crowns. Front Physiol 2019; 10:925. [PMID: 31417410 PMCID: PMC6682599 DOI: 10.3389/fphys.2019.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Tooth enamel forms in an ephemeral protein matrix where changes in protein abundance, composition and posttranslational modifications are critical to achieve healthy enamel properties. Amelogenin (AMELX) with its splice variants is the most abundant enamel matrix protein, with only one known phosphorylation site at serine 16 shown in vitro to be critical for regulating mineralization. The phosphorylated form of AMELX stabilizes amorphous calcium phosphate, while crystalline hydroxyapatite forms in the presence of the unphosphorylated protein. While AMELX regulates mineral transitions over space and time, it is unknown whether and when un-phosphorylated amelogenin occurs during enamel mineralization. This study aims to reveal the spatiotemporal distribution of the cleavage products of the most abundant AMLEX splice variants including the full length P173, the shorter leucine-rich amelogenin protein (LRAP), and the exon 4-containing P190 in forming enamel, all within the context of the changing enamel matrix proteome during mineralization. We microsampled permanent pig molars, capturing known stages of enamel formation from both crown surface and inner enamel. Nano-LC-MS/MS proteomic analyses after tryptic digestion rendered more than 500 unique protein identifications in enamel, dentin, and bone. We mapped collagens, keratins, and proteolytic enzymes (CTSL, MMP2, MMP10) and determined distributions of P173, LRAP, and P190 products, the enamel proteins enamelin (ENAM) and ameloblastin (AMBN), and matrix-metalloprotease-20 (MMP20) and kallikrein-4 (KLK4). All enamel proteins and KLK4 were near-exclusive to enamel and in excellent agreement with published abundance levels. Phosphorylated P173 and LRAP products decreased in abundance from recently deposited matrix toward older enamel, mirrored by increasing abundances of testicular acid phosphatase (ACPT). Our results showed that hierarchical clustering analysis of secretory enamel links closely matching distributions of unphosphorylated P173 and LRAP products with ACPT and non-traditional amelogenesis proteins, many associated with enamel defects. We report higher protein diversity than previously published and Gene Ontology (GO)-defined protein functions related to the regulation of mineral formation in secretory enamel (e.g., casein α-S1, CSN1S1), immune response in erupted enamel (e.g., peptidoglycan recognition protein, PGRP), and phosphorylation. This study presents a novel approach to characterize and study functional relationships through spatiotemporal mapping of the ephemeral extracellular matrix proteome.
Collapse
Affiliation(s)
- Daniel R Green
- The Forsyth Institute, Cambridge, MA, United States.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | | | - Kyu-Ha Lee
- The Forsyth Institute, Cambridge, MA, United States.,Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Felicitas B Bidlack
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
18
|
Enault S, Muñoz D, Simion P, Ventéo S, Sire JY, Marcellini S, Debiais-Thibaud M. Evolution of dental tissue mineralization: an analysis of the jawed vertebrate SPARC and SPARC-L families. BMC Evol Biol 2018; 18:127. [PMID: 30165817 PMCID: PMC6117938 DOI: 10.1186/s12862-018-1241-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molecular bases explaining the diversity of dental tissue mineralization across gnathostomes are still poorly understood. Odontodes, such as teeth and body denticles, are serial structures that develop through deployment of a gene regulatory network shared between all gnathostomes. Dentin, the inner odontode mineralized tissue, is produced by odontoblasts and appears well-conserved through evolution. In contrast, the odontode hypermineralized external layer (enamel or enameloid) produced by ameloblasts of epithelial origin, shows extensive structural variations. As EMP (Enamel Matrix Protein) genes are as yet only found in osteichthyans where they play a major role in the mineralization of teeth and others skeletal organs, our understanding of the molecular mechanisms leading to the mineralized odontode matrices in chondrichthyans remains virtually unknown. RESULTS We undertook a phylogenetic analysis of the SPARC/SPARC-L gene family, from which the EMPs are supposed to have arisen, and examined the expression patterns of its members and of major fibrillar collagens in the spotted catshark Scyliorhinus canicula, the thornback ray Raja clavata, and the clawed frog Xenopus tropicalis. Our phylogenetic analyses reveal that the single chondrichthyan SPARC-L gene is co-orthologous to the osteichthyan SPARC-L1 and SPARC-L2 paralogues. In all three species, odontoblasts co-express SPARC and collagens. In contrast, ameloblasts do not strongly express collagen genes but exhibit strikingly similar SPARC-L and EMP expression patterns at their maturation stage, in the examined chondrichthyan and osteichthyan species, respectively. CONCLUSIONS A well-conserved odontoblastic collagen/SPARC module across gnathostomes further confirms dentin homology. Members of the SPARC-L clade evolved faster than their SPARC paralogues, both in terms of protein sequence and gene duplication. We uncover an osteichthyan-specific duplication that produced SPARC-L1 (subsequently lost in pipidae frogs) and SPARC-L2 (independently lost in teleosts and tetrapods).Our results suggest the ameloblastic expression of the single chondrichthyan SPARC-L gene at the maturation stage reflects the ancestral gnathostome situation, and provide new evidence in favor of the homology of enamel and enameloids in all gnathostomes.
Collapse
Affiliation(s)
- Sébastien Enault
- Institut des Sciences de l’Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Université Montpellier, UMR5554 Montpellier, France
| | - David Muñoz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Paul Simion
- Institut des Sciences de l’Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Université Montpellier, UMR5554 Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut National de la Santé et de la Recherche Médicale, U1051 Montpellier, France
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, UMR7138 Evolution Paris-Seine, Paris, France
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Université Montpellier, UMR5554 Montpellier, France
| |
Collapse
|
19
|
Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, Millán JL, Nociti FH, Somerman MJ. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone 2018; 107:196-207. [PMID: 29313816 PMCID: PMC5803363 DOI: 10.1016/j.bone.2017.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/09/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023]
Abstract
The periodontal complex is essential for tooth attachment and function and includes the mineralized tissues, cementum and alveolar bone, separated by the unmineralized periodontal ligament (PDL). To gain insights into factors regulating cementum-PDL and bone-PDL borders and protecting against ectopic calcification within the PDL, we employed a proteomic approach to analyze PDL tissue from progressive ankylosis knock-out (Ank-/-) mice, featuring reduced PPi, rapid cementogenesis, and excessive acellular cementum. Using this approach, we identified the matrix protein osteopontin (Spp1/OPN) as an elevated factor of interest in Ank-/- mouse molar PDL. We studied the role of OPN in dental and periodontal development and function. During tooth development in wild-type (WT) mice, Spp1 mRNA was transiently expressed by cementoblasts and strongly by alveolar bone osteoblasts. Developmental analysis from 14 to 240days postnatal (dpn) indicated normal histological structures in Spp1-/- comparable to WT control mice. Microcomputed tomography (micro-CT) analysis at 30 and 90dpn revealed significantly increased volumes and tissue mineral densities of Spp1-/- mouse dentin and alveolar bone, while pulp and PDL volumes were decreased and tissue densities were increased. However, acellular cementum growth was unaltered in Spp1-/- mice. Quantitative PCR of periodontal-derived mRNA failed to identify potential local compensators influencing cementum in Spp1-/- vs. WT mice at 26dpn. We genetically deleted Spp1 on the Ank-/- mouse background to determine whether increased Spp1/OPN was regulating periodontal tissues when the PDL space is challenged by hypercementosis in Ank-/- mice. Ank-/-; Spp1-/- double deficient mice did not exhibit greater hypercementosis than that in Ank-/- mice. Based on these data, we conclude that OPN has a non-redundant role regulating formation and mineralization of dentin and bone, influences tissue properties of PDL and pulp, but does not control acellular cementum apposition. These findings may inform therapies targeted at controlling soft tissue calcification.
Collapse
Affiliation(s)
- B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| | - M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - C R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K R Kantovitz
- Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| | - M Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - S Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - J L Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - F H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
20
|
Lv Y, Kawasaki K, Li J, Li Y, Bian C, Huang Y, You X, Shi Q. A Genomic Survey of SCPP Family Genes in Fishes Provides Novel Insights into the Evolution of Fish Scales. Int J Mol Sci 2017; 18:E2432. [PMID: 29144443 PMCID: PMC5713400 DOI: 10.3390/ijms18112432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022] Open
Abstract
The family of secretory calcium-binding phosphoproteins (SCPPs) have been considered vital to skeletal tissue mineralization. However, most previous SCPP studies focused on phylogenetically distant animals but not on those closely related species. Here we provide novel insights into the coevolution of SCPP genes and fish scales in 10 species from Otophysi. According to their scale phenotypes, these fishes can be divided into three groups, i.e., scaled, sparsely scaled, and scaleless. We identified homologous SCPP genes in the genomes of these species and revealed an absence of some SCPP members in some genomes, suggesting an uneven evolutionary history of SCPP genes in fishes. In addition, most of these SCPP genes, with the exception of SPP1, individually form one or two gene cluster(s) on each corresponding genome. Furthermore, we constructed phylogenetic trees using maximum likelihood method to estimate their evolution. The phylogenetic topology mostly supports two subclasses in some species, such as Cyprinus carpio, Sinocyclocheilus anshuiensis, S. grahamin, and S. rhinocerous, but not in the other examined fishes. By comparing the gene structures of recently reported candidate genes, SCPP1 and SCPP5, for determining scale phenotypes, we found that the hypothesis is suitable for Astyanax mexicanus, but denied by S. anshuiensis, even though they are both sparsely scaled for cave adaptation. Thus, we conclude that, although different fish species display similar scale phenotypes, the underlying genetic changes however might be diverse. In summary, this paper accelerates the recognition of the SCPP family in teleosts for potential scale evolution.
Collapse
Affiliation(s)
- Yunyun Lv
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Kazuhiko Kawasaki
- Department of Anthropology, Penn State University, University Park, PA 16802, USA.
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yanping Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yu Huang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
21
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Kawasaki K, Mikami M, Nakatomi M, Braasch I, Batzel P, H Postlethwait J, Sato A, Sasagawa I, Ishiyama M. SCPP Genes and Their Relatives in Gar: Rapid Expansion of Mineralization Genes in Osteichthyans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017. [PMID: 28643450 DOI: 10.1002/jez.b.22755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gar is an actinopterygian that has bone, dentin, enameloid, and ganoin (enamel) in teeth and/or scales. Mineralization of these tissues involves genes encoding various secretory calcium-binding phosphoproteins (SCPPs) in osteichthyans, but no SCPP genes have been identified in chondrichthyans to date. In the gar genome, we identified 38 SCPP genes, seven of which encode "acidic-residue-rich" proteins and 31 encode "Pro/Gln (P/Q) rich" proteins. These gar SCPP genes constitute the largest known repertoire, including many newly identified P/Q-rich genes expressed in teeth and/or scales. Among gar SCPP genes, six acidic and three P/Q-rich genes were identified as orthologs of sarcopterygian genes. The sarcopterygian orthologs of most of these acidic genes are involved in bone and/or dentin formation, and sarcopterygian orthologs of all three P/Q-rich genes participate in enamel formation. The finding of these genes in gar suggests that an elaborate SCPP gene-based genetic system for tissue mineralization was already present in stem osteichthyans. While SCPP genes have been thought to originate from ancient SPARCL1, SPARCL1L1 appears to be more closely related to these genes, because it established a structure similar to acidic SCPP genes probably in stem gnathostomes, perhaps at about the same time with the origin of tissue mineralization. Assuming enamel evolved in stem osteichthyans, all P/Q-rich SCPP genes likely arose within the osteichthyan lineage. Furthermore, the absence of acidic SCPP genes in chondrichthyans might be explained by the secondary loss of earliest acidic genes. It appears that many SCPP genes expanded rapidly in stem osteichthyans and in basal actinopterygians.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Masato Mikami
- Department of Microbiology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | | | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Akie Sato
- Department of Anatomy and Histology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Ichiro Sasagawa
- Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Mikio Ishiyama
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| |
Collapse
|
23
|
Flores RL, Livingston BT. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms. BMC Evol Biol 2017; 17:125. [PMID: 28583083 PMCID: PMC5460417 DOI: 10.1186/s12862-017-0978-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/23/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Proteomic studies of skeletal proteins have revealed large, complex mixtures of proteins occluded within the mineral. Many skeletal proteomes contain rapidly evolving proteins with repetitive domains, further complicating our understanding. In echinoderms, proteomic analysis of the skeletal proteomes of mineralized tissues of the sea urchin Strongylocentrotus purpuratus prominently featured spicule matrix proteins with repetitive sequences linked to a C-type lectin domain. A comparative study of the brittle star Ophiocoma wendtii skeletal proteome revealed an order of magnitude fewer proteins containing C-type lectin domains. A number of other proteins conserved in the skeletons of the two groups were identified. Here we report the complete skeletal proteome of the sea star Patiria miniata and compare it to that of the other echinoderm groups. RESULTS We have identified eighty-five proteins in the P. miniata skeletal proteome. Forty-two percent of the proteins were determined to be homologous to proteins found in the S. purpuratus skeletal proteomes. An additional 34 % were from similar functional classes as proteins in the urchin proteomes. Thirteen percent of the P. miniata proteins had homologues in the O. wendtii skeletal proteome with an additional 29% showing similarity to brittle star skeletal proteins. The P. miniata skeletal proteome did not contain any proteins with C-lectin domains or with acidic repetitive regions similar to the sea urchin or brittle star spicule matrix proteins. MSP130 proteins were also not found. We did identify a number of proteins homologous between the three groups. Some of the highly conserved proteins found in echinoderm skeletons have also been identified in vertebrate skeletons. CONCLUSIONS The presence of proteins conserved in the skeleton in three different echinoderm groups indicates these proteins are important in skeleton formation. That a number of these proteins are involved in skeleton formation in vertebrates suggests a common origin for some of the fundamental processes co-opted for skeleton formation in deuterostomes. The proteins we identify suggest transport of proteins and calcium via endosomes was co-opted to this function in a convergent fashion. Our data also indicate that modifications to the process of skeleton formation can occur through independent co-option of proteins following species divergence as well as through domain shuffling.
Collapse
Affiliation(s)
- Rachel L. Flores
- Department of Biological Sciences, California State University, 1250 Bellflower Blvd, Long Beach, CA 90840 USA
| | - Brian T. Livingston
- Department of Biological Sciences, California State University, 1250 Bellflower Blvd, Long Beach, CA 90840 USA
| |
Collapse
|
24
|
Fouillen A, Dos Santos Neves J, Mary C, Castonguay JD, Moffatt P, Baron C, Nanci A. Interactions of AMTN, ODAM and SCPPPQ1 proteins of a specialized basal lamina that attaches epithelial cells to tooth mineral. Sci Rep 2017; 7:46683. [PMID: 28436474 PMCID: PMC5402393 DOI: 10.1038/srep46683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/24/2017] [Indexed: 12/25/2022] Open
Abstract
A specialized basal lamina (sBL) mediates adhesion of certain epithelial cells to the tooth. It is distinct because it does not contain collagens type IV and VII, is enriched in laminin-332, and includes three novel constituents called amelotin (AMTN), odontogenic ameloblast-associated (ODAM), and secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1). The objective of this study was to clarify the structural organization of the sBL. Fluorescence and immunogold labeling showed that the three proteins co-localize. Quantitative analysis of the relative position of gold particles on the sBL demonstrates that the distribution of ODAM is skewed towards the cell while that of AMTN and SCPPPQ1 tends towards the tooth surface. Bacterial two-hybrid analysis and co-immunoprecipitation, gel filtration of purified proteins and transmission electron and atomic force microscopies highlight the propensity of AMTN, ODAM, and SCPPPQ1 to interact with and among themselves and form supramolecular aggregates. These data suggest that AMTN, ODAM and SCPPPQ1 participate in structuring an extracellular matrix with the distinctive capacity of attaching epithelial cells to mineralized surfaces. This unique feature is particularly relevant for the adhesion of gingival epithelial cells to the tooth surface, which forms a protective seal that is the first line of defense against bacterial invasion.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Juliana Dos Santos Neves
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada
| | - Charline Mary
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Jean-Daniel Castonguay
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada
| | - Pierre Moffatt
- Shriners Hospital for Children, Montréal, Québec, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| |
Collapse
|
25
|
Irles P, Ramos S, Piulachs MD. SPARC preserves follicular epithelium integrity in insect ovaries. Dev Biol 2017; 422:105-114. [DOI: 10.1016/j.ydbio.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
|
26
|
Klement E, Medzihradszky KF. Extracellular Protein Phosphorylation, the Neglected Side of the Modification. Mol Cell Proteomics 2016; 16:1-7. [PMID: 27834735 DOI: 10.1074/mcp.o116.064188] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
The very existence of extracellular phosphorylation has been questioned for a long time, although casein phosphorylation was discovered a century ago. In addition, several modification sites localized on secreted proteins or on extracellular or lumenal domains of transmembrane proteins have been catalogued in large scale phosphorylation analyses, though in most such studies this aspect of cellular localization was not considered. Our review presents examples when additional analyses were performed on already public data sets that revealed a wealth of information about this "neglected side" of the modification. We also sum up accumulated knowledge about extracellular phosphorylation, including the discovery of Golgi-residing kinases and the special difficulties encountered in targeted analyses. We hope future phosphorylation studies will not ignore the existence of phosphorylation outside of the cell, and further discoveries will shed more light on its biological role.
Collapse
Affiliation(s)
- Eva Klement
- From the ‡Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary, and .,the §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
| |
Collapse
|
27
|
Xu D, Pavlidis P, Thamadilok S, Redwood E, Fox S, Blekhman R, Ruhl S, Gokcumen O. Recent evolution of the salivary mucin MUC7. Sci Rep 2016; 6:31791. [PMID: 27558399 PMCID: PMC4997351 DOI: 10.1038/srep31791] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Genomic structural variants constitute the majority of variable base pairs in primate genomes and affect gene function in multiple ways. While whole gene duplications and deletions are relatively well-studied, the biology of subexonic (i.e., within coding exon sequences), copy number variation remains elusive. The salivary MUC7 gene provides an opportunity for studying such variation, as it harbors copy number variable subexonic repeat sequences that encode for densely O-glycosylated domains (PTS-repeats) with microbe-binding properties. To understand the evolution of this gene, we analyzed mammalian and primate genomes within a comparative framework. Our analyses revealed that (i) MUC7 has emerged in the placental mammal ancestor and rapidly gained multiple sites for O-glycosylation; (ii) MUC7 has retained its extracellular activity in saliva in placental mammals; (iii) the anti-fungal domain of the protein was remodified under positive selection in the primate lineage; and (iv) MUC7 PTS-repeats have evolved recurrently and under adaptive constraints. Our results establish MUC7 as a major player in salivary adaptation, likely as a response to diverse pathogenic exposure in primates. On a broader scale, our study highlights variable subexonic repeats as a primary source for modular evolutionary innovation that lead to rapid functional adaptation.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, New York 14214, USA
| | - Emilie Redwood
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Sara Fox
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minnesota 55455, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, New York 14214, USA
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| |
Collapse
|
28
|
Yong LW, Yu JK. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus. Curr Opin Genet Dev 2016; 39:55-62. [DOI: 10.1016/j.gde.2016.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/01/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
|
29
|
Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, Jiang C, Sun L, Wang R, Zhang Y, Zhou T, Zeng Q, Fu Q, Gao S, Li N, Koren S, Jiang Y, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun F, Li C, Wang X, Chen A, Jin Y, Yuan Z, Yang Y, Tan S, Peatman E, Lu J, Qin Z, Dunham R, Li Z, Sonstegard T, Feng J, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu H, Armbruster J, Xie Y, Kirby ML, Tian Y, Flanagan ME, Mu W, Waldbieser GC. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 2016; 7:11757. [PMID: 27249958 PMCID: PMC4895719 DOI: 10.1038/ncomms11757] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
Catfish represent 12% of teleost or 6.3% of all vertebrate species, and are of enormous economic value. Here we report a high-quality reference genome sequence of channel catfish (Ictalurus punctatus), the major aquaculture species in the US. The reference genome sequence was validated by genetic mapping of 54,000 SNPs, and annotated with 26,661 predicted protein-coding genes. Through comparative analysis of genomes and transcriptomes of scaled and scaleless fish and scale regeneration experiments, we address the genomic basis for the most striking physical characteristic of catfish, the evolutionary loss of scales and provide evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish. The channel catfish reference genome sequence, along with two additional genome sequences and transcriptomes of scaled catfishes, provide crucial resources for evolutionary and biological studies. This work also demonstrates the power of comparative subtraction of candidate genes for traits of structural significance.
Collapse
Affiliation(s)
- Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Sergey Koren
- National Center for Biodefense Analysis and Countermeasures Center, 110 Thomas Johnson Drive, Frederick, Maryland 21702, USA
| | - Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Aleksey Zimin
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Peng Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Adam M Phillippy
- National Center for Biodefense Analysis and Countermeasures Center, 110 Thomas Johnson Drive, Frederick, Maryland 21702, USA
| | - Xin Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ailu Chen
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Eric Peatman
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jianguo Lu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Zhaoxia Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Tad Sonstegard
- Bovine Functional Genomics Laboratory, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Steven Schroeder
- Bovine Functional Genomics Laboratory, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | - Brian Scheffler
- USDA, ARS, Genomics and Bioinformatics Research Unit, P.O. Box 38, Stoneville, Mississippi 38776, USA
| | - Mary V Duke
- USDA, ARS, Genomics and Bioinformatics Research Unit, P.O. Box 38, Stoneville, Mississippi 38776, USA
| | - Linda Ballard
- USDA, ARS, Genomics and Bioinformatics Research Unit, P.O. Box 38, Stoneville, Mississippi 38776, USA
| | - Huseyin Kucuktas
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ludmilla Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Haixia Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jonathan Armbruster
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yangjie Xie
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Mona L Kirby
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, Mississippi 38776, USA
| | - Yi Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Mary Elizabeth Flanagan
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, Mississippi 38776, USA
| | - Weijie Mu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Geoffrey C Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, Mississippi 38776, USA
| |
Collapse
|
30
|
Hadley JA, Horvat-Gordon M, Kim WK, Praul CA, Burns D, Leach RM. Bone sialoprotein keratan sulfate proteoglycan (BSP-KSPG) and FGF-23 are important physiological components of medullary bone. Comp Biochem Physiol A Mol Integr Physiol 2016; 194:1-7. [DOI: 10.1016/j.cbpa.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022]
|
31
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Wazen RM, Viegas-Costa LC, Fouillen A, Moffatt P, Adair-Kirk TL, Senior RM, Nanci A. Laminin γ2 knockout mice rescued with the human protein exhibit enamel maturation defects. Matrix Biol 2016; 52-54:207-218. [PMID: 26956061 DOI: 10.1016/j.matbio.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 01/13/2023]
Abstract
The epithelial ameloblasts are separated from the maturing enamel by an atypical basement membrane (BM) that is enriched in laminin 332 (LM-332). This heterotrimeric protein (α3, ß3 and γ2 chains) provides structural integrity to BMs and influences various epithelial cell processes including cell adhesion and differentiation. Mouse models that lack expression of individual LM-332 chains die shortly after birth. The lethal phenotype of laminin γ2 knockout mice can be rescued by human laminin γ2 (LAMC2) expressed using a doxycycline-inducible (Tet-on) cytokeratin 14 promoter-rtTA. These otherwise normal-looking rescued mice exhibit white spot lesions on incisors. We therefore investigated the effect of rescue with human LAMC2 on enamel maturation and structuring of the atypical BM. The maturation stage enamel organ in transgenic mice was severely altered as compared to wild type controls, a structured BM was no longer discernible, dystrophic matrix appeared in the maturing enamel layer, and there was residual enamel matrix late into the maturation stage. Microtomographic scans revealed excessive wear of occlusal surfaces on molars, chipping of enamel on incisor tips, and hypomineralization of the enamel layer. No structural alterations were observed at other epithelial sites, such as skin, palate and tongue. These results indicate that while this humanized mouse model is capable of rescue in various epithelial tissues, it is unable to sustain structuring of a proper BM at the interface between ameloblasts and maturing enamel. This failure may be related to the atypical composition of the BM in the maturation stage and reaffirms that the atypical BM is essential for enamel maturation.
Collapse
Affiliation(s)
- Rima M Wazen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Luiz C Viegas-Costa
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Moffatt
- Shriners Hospital for Children, Montréal, Montréal, Québec, Canada
| | - Tracy L Adair-Kirk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Robert M Senior
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
33
|
Adil S. Insight into Chicken Egg Proteins and Their Role in Chemical Defense Mechanism. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijps.2016.76.80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Bouleftour W, Juignet L, Bouet G, Granito RN, Vanden-Bossche A, Laroche N, Aubin JE, Lafage-Proust MH, Vico L, Malaval L. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics. Matrix Biol 2016; 52-54:60-77. [PMID: 26763578 DOI: 10.1016/j.matbio.2015.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laura Juignet
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Guenaelle Bouet
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, UK
| | | | - Arnaud Vanden-Bossche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Norbert Laroche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marie-Hélène Lafage-Proust
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laurence Vico
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Luc Malaval
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France.
| |
Collapse
|
35
|
Mann K. The calcified eggshell matrix proteome of a songbird, the zebra finch (Taeniopygia guttata). Proteome Sci 2015; 13:29. [PMID: 26628892 PMCID: PMC4666066 DOI: 10.1186/s12953-015-0086-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022] Open
Abstract
Background The proteins of avian eggshell organic matrices are thought to control the mineralization of the eggshell in the shell gland (uterus). Proteomic analysis of such matrices identified many candidates for such a role. However, all matrices analyzed to date come from species of one avian family, the Phasianidae. To analyze the conservation of such proteins throughout the entire class Aves and to possibly identify a common protein toolkit enabling eggshell mineralization, it is important to analyze eggshell matrices from other avian families. Because mass spectrometry-based in-depth proteomic analysis still depends on sequence databases as comprehensive and accurate as possible, the obvious choice for a first such comparative study was the eggshell matrix of zebra finch, the genome sequence of which is the only songbird genome published to date. Results The zebra finch eggshell matrix comprised 475 accepted protein identifications. Most of these proteins (84 %) were previously identified in species of the Phasianidae family (chicken, turkey, quail). This also included most of the so-called eggshell-specific proteins, the ovocleidins and ovocalyxins. Ovocleidin-116 was the second most abundant protein in the zebra finch eggshell matrix. Major proteins also included ovocalyxin-32 and -36. The sequence of ovocleidin-17 was not contained in the sequence database, but a presumptive homolog was tentatively identified by N-terminal sequence analysis of a prominent 17 kDa band. The major proteins also included three proteins similar to ovalbumin, the most abundant of which was identified as ovalbumin with the aid of two characteristic phosphorylation sites. Several other proteins identified in Phasianidae eggshell matrices were not identified. When the zebra finch sequence database contained a sequence similar to a missing phasianid protein it may be assumed that the protein is missing from the matrix. This applied to ovocalyxin-21/gastrokine-1, a major protein of the chicken eggshell matrix, to EDIL3 and to lactadherin. In other cases failure to identify a particular protein may be due to the absence of this protein from the sequence database, highlighting the importance of better, more comprehensive sequence databases. Conclusions The results indicate that ovocleidin-116, ovocleidin-17, ovocalyxin-36 and ovocalyxin-32 may be universal avian eggshell-mineralizing proteins. All the more important it is to elucidate the role of these proteins at the molecular level. This cannot be achieved by proteomic studies but will need application of other methods, such as atomic force microscopy or gene knockouts. However, it will also be important to analyze more eggshell matrices of different avian families to unequivocally identify other mineralization toolkit proteins apart from ovocleidins and ovocalyxins. Progress in this respect will depend critically on the availability of more, and more comprehensive, sequence databases. The development of faster and cheaper nucleotide sequencing methods has considerably accelerated genome and transcriptome sequencing, but this seems to concur with frequent publication of incomplete and fragmented sequence databases. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0086-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152 Martinsried, Am Klopferspitz 18 Germany
| |
Collapse
|
36
|
Mineral homeostasis and regulation of mineralization processes in the skeletons of sharks, rays and relatives (Elasmobranchii). Semin Cell Dev Biol 2015; 46:51-67. [DOI: 10.1016/j.semcdb.2015.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
|
37
|
Gómez-Picos P, Eames BF. On the evolutionary relationship between chondrocytes and osteoblasts. Front Genet 2015; 6:297. [PMID: 26442113 PMCID: PMC4585068 DOI: 10.3389/fgene.2015.00297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022] Open
Abstract
Vertebrates are the only animals that produce bone, but the molecular genetic basis for this evolutionary novelty remains obscure. Here, we synthesize information from traditional evolutionary and modern molecular genetic studies in order to generate a working hypothesis on the evolution of the gene regulatory network (GRN) underlying bone formation. Since transcription factors are often core components of GRNs (i.e., kernels), we focus our analyses on Sox9 and Runx2. Our argument centers on three skeletal tissues that comprise the majority of the vertebrate skeleton: immature cartilage, mature cartilage, and bone. Immature cartilage is produced during early stages of cartilage differentiation and can persist into adulthood, whereas mature cartilage undergoes additional stages of differentiation, including hypertrophy and mineralization. Functionally, histologically, and embryologically, these three skeletal tissues are very similar, yet unique, suggesting that one might have evolved from another. Traditional studies of the fossil record, comparative anatomy and embryology demonstrate clearly that immature cartilage evolved before mature cartilage or bone. Modern molecular approaches show that the GRNs regulating differentiation of these three skeletal cell fates are similar, yet unique, just like the functional and histological features of the tissues themselves. Intriguingly, the Sox9 GRN driving cartilage formation appears to be dominant to the Runx2 GRN of bone. Emphasizing an embryological and evolutionary transcriptomic view, we hypothesize that the Runx2 GRN underlying bone formation was co-opted from mature cartilage. We discuss how modern molecular genetic experiments, such as comparative transcriptomics, can test this hypothesis directly, meanwhile permitting levels of constraint and adaptation to be evaluated quantitatively. Therefore, comparative transcriptomics may revolutionize understanding of not only the clade-specific evolution of skeletal cells, but also the generation of evolutionary novelties, providing a modern paradigm for the evolutionary process.
Collapse
Affiliation(s)
- Patsy Gómez-Picos
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
38
|
Mann K, Mann M. Proteomic analysis of quail calcified eggshell matrix: a comparison to chicken and turkey eggshell proteomes. Proteome Sci 2015; 13:22. [PMID: 26312056 PMCID: PMC4550075 DOI: 10.1186/s12953-015-0078-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Background Eggshell mineralization in commercially important species such as chicken, turkey or quail is of interest as a general model of calcium carbonate biomineralization. Knowledge of proteins and molecular mechanisms in eggshell assembly may also pave the way to manipulation of thickness of the calcified layer or other features. Comparison of eggshell matrix proteomes of different species may contribute to a better understanding of the mineralization process. The recent publication of the quail genome sequence now enables the proteomic analysis of the quail shell matrix and this comparison with those of chicken and turkey. Results The quail eggshell proteome comprised 622 identified proteins, 311 of which were shared with chicken and turkey eggshell proteomes. Forty-eight major proteins (iBAQ-derived abundance higher than 0.1 % of total identified proteome) together covered 94 % of total proteome mass. Fifteen of these are also among the most abundant proteins in chicken and turkey eggshell matrix. Only three proteins with a percentage higher than 1.0 % of the total had not previously been identified as eggshell matrix proteins. These were an uncharacterized member of the latexin family, an uncharacterized protease inhibitor containing a Kunitz domain, and gastric intrinsic factor. The most abundant proteins were ovocleidin-116, ovalbumin and ovocalyxin-36 representing approximately 31, 13 and 8 % of the total identified proteome, respectively. The major phosphoproteins were ovocleidin-116 and osteopontin. While osteopontin phosphorylation sites were predominantly conserved between chicken and quail sequences, conservation was less in ovocleidin-116. Conclusions Ovocleidin-116 and ovocalyxin-36 are among the most abundant eggshell matrix proteins in all three species of the family Phasianidae analyzed so far, indicating that their presently unknown function is essential for eggshell mineralization. Evidence for other chicken eggshell-specific proteins in quail was inconclusive. Therefore measurement of additional eggshell proteomes, especially from species of different families and preferentially from outside the order Galliformes, will be necessary. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0078-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
39
|
Weigele J, Franz‐Odendaal TA, Hilbig R. Expression of SPARC and the osteopontin‐like protein during skeletal development in the cichlid fish
Oreochromis mossambicus. Dev Dyn 2015; 244:955-72. [DOI: 10.1002/dvdy.24293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jochen Weigele
- Zoological InstituteUniversity of Stuttgart‐HohenheimStuttgart Germany
- Department of BiologyMount Saint Vincent UniversityHalifax Nova Scotia Canada
| | | | - Reinhard Hilbig
- Zoological InstituteUniversity of Stuttgart‐HohenheimStuttgart Germany
| |
Collapse
|
40
|
Kawasaki K, Amemiya CT. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 322:390-402. [PMID: 25243252 DOI: 10.1002/jez.b.22546] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The coelacanth is the basal-most extant sarcopterygian that has teeth and tooth-like structures, comprising bone, dentin, and enamel or enameloid. Formation of these tissues involves many members of the secretory calcium-binding protein (SCPP) family. In tetrapods, acidic-residue-rich SCPPs are used in mineralization of bone and dentin, whereas Pro/Gln-rich SCPPs participate in enamel formation. Teleosts also employ many SCPPs for tissue mineralization. Nevertheless, the repertoire of SCPPs is largely different in teleosts and tetrapods; hence, filling this gap would be critical to elucidate early evolution of mineralized tissues in osteichthyans. In the present study, we searched for SCPP genes in the coelacanth genome and identified 11, of which two have clear orthologs in both tetrapods and teleosts, seven only in tetrapods, and two in neither of them. Given the divergence times of these vertebrate lineages, our discovery of this many SCPP genes shared between the coelacanth and tetrapods, but not with teleosts, suggests a complicated evolutionary scheme of SCPP genes in early osteichthyans. Our investigation also revealed both conserved and derived characteristics of SCPPs in the coelacanth and other vertebrates. Notably, acidic SCPPs independently evolved various acidic repeats in different lineages, while maintaining high acidity, presumably important for interactions with calcium. Furthermore, the three Pro/Gln-rich SCPP genes, required for mineralizing enamel matrix and confirmed only in tetrapods, were all identified in the coelacanth, strongly suggesting that enamel is equivalent in the coelacanth and tetrapods. This finding corroborates the previous proposition that true enamel evolved much earlier than the origin of tetrapods.
Collapse
|
41
|
Keating JN, Marquart CL, Donoghue PCJ. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton. J Morphol 2015; 276:657-80. [PMID: 25829358 PMCID: PMC4979667 DOI: 10.1002/jmor.20370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 01/08/2015] [Indexed: 11/17/2022]
Abstract
Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four‐layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel‐fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel‐fibred bone, showing osteon‐like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we interpret the dermal skeleton of denticles in chondrichthyans and jawless thelodonts as independently and secondarily simplified. J. Morphol. 276:657–680, 2015. © 2015 The Authors Journal of Morphology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph N Keating
- School of Earth Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Chloe L Marquart
- School of Earth Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
42
|
Gasse B, Chiari Y, Silvent J, Davit-Béal T, Sire JY. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol Biol 2015; 15:47. [PMID: 25884299 PMCID: PMC4373244 DOI: 10.1186/s12862-015-0329-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs). Furthermore, AMTN was characterized in rodents only. In this study, we applied various approaches, including in silico screening of databases, PCRs and transcriptome sequencing to characterize AMTN sequences in sauropsids and amphibians, and compared them to available mammalian and coelacanth sequences. Results We showed that (i) AMTN is tooth (enamel) specific and underwent pseudogenization in toothless turtles and birds, and (ii) the AMTN structure changed during tetrapod evolution. To infer AMTN function, we studied spatiotemporal expression of AMTN during amelogenesis in a salamander and a lizard, and compared the results with available expression data from mouse. We found that AMTN is expressed throughout amelogenesis in non-mammalian tetrapods, in contrast to its expression limited to enamel maturation in rodents. Conclusions Taken together our findings suggest that AMTN was primarily an EMP. Its functions were conserved in amphibians and sauropsids while a change occurred early in the mammalian lineage, modifying its expression pattern during amelogenesis and its gene structure. These changes likely led to a partial loss of AMTN function and could have a link with the emergence of prismatic enamel in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0329-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Gasse
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Ylenia Chiari
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Jérémie Silvent
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France. .,Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Tiphaine Davit-Béal
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| |
Collapse
|
43
|
Affiliation(s)
- J D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA, USA
| | - J P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Examination of the skeletal proteome of the brittle star Ophiocoma wendtii reveals overall conservation of proteins but variation in spicule matrix proteins. Proteome Sci 2015; 13:7. [PMID: 25705131 PMCID: PMC4336488 DOI: 10.1186/s12953-015-0064-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background While formation of mineralized tissue is characteristic of many animal taxa, the proteins that interact with mineral are diverse and appear in many cases to be of independent origin. Extracellular matrix proteins involved in mineralization do share some common features. They tend to be disordered, secreted proteins with repetitive, low complexity. The genes encoding these proteins are often duplicated and undergo concerted evolution, further diversifying the repetitive domains. This makes it difficult to identify mineralization genes and the proteins they encode using bioinformatics techniques. Here we describe the use of proteomics to identify mineralization genes in an ophiuroid echinoderm, Ophiocoma wendtii (O. wendtii). Results We have isolated the occluded proteins within the mineralized tissue of the brittle star Ophiocoma wendtii. The proteins were analyzed both unfractionated and separated on SDS-PAGE gels. Each slice was analyzed using mass spectroscopy and the amino acid sequence of the most prevalent peptides was obtained. This was compared to both an embryonic transcriptome from the gastrula stage when skeleton is being formed and a tube foot (an adult mineralized tissue) transcriptome. Thirty eight proteins were identified which matched known proteins or protein domains in the NCBI databases. These include C-type lectins, ECM proteins, Kazal-type protease inhibitors, matrix metalloproteases as well as more common cellular proteins. Many of these are similar to those found in the sea urchin Strongylocentrotus purpuratus (S. purpuratus) skeleton. We did not, however, identify clear homologs to the sea urchin spicule matrix proteins, and the number of C-type lectin containing genes was much reduced compared to sea urchins. Also notably absent was MSP-130. Conclusions Our results show an overall conservation of the types of proteins found in the mineralized tissues of two divergent groups of echinoderms, as well as in mineralized tissues in general. However, the extensive gene duplication and concerted evolution seen in the spicule matrix proteins found in the sea urchin skeleton was not observed in the brittle star. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0064-7) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Kaimala S, Kumar S. An evolutionarily conserved non-coding element in casein locus acts as transcriptional repressor. Gene 2015; 554:75-80. [PMID: 25455101 DOI: 10.1016/j.gene.2014.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022]
Abstract
In mammals, the casein locus consists of stretches of non-coding DNA, the functions of most of which are unknown. These regions are believed to harbour elements responsible for spatio-temporally regulated expression of genes in this locus and so far, only a few such elements have been identified. In this study, we report a novel regulatory element in the casein locus. Comparative analysis of genomic DNA sequences of casein loci from different mammals identified a 147bp long evolutionarily conserved region (ECR) upstream of Odam, a gene in this locus. The ECR was found in close proximity of Odam gene in all the mammals examined. In-silico analysis predicted the ECR as a potential regulatory element. Functional analysis in different cell lines identified it as a unidirectional repressor element. From our findings we speculate that the ECR may be involved in the repression of the Odam expression in the mammary gland during lactation.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| | - Satish Kumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| |
Collapse
|
46
|
Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell Tissue Res 2014; 358:843-55. [PMID: 25193156 DOI: 10.1007/s00441-014-1989-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Functional genomic screening of the rat enamel organ (EO) has led to the identification of a number of secreted proteins expressed during the maturation stage of amelogenesis, including amelotin (AMTN) and odontogenic ameloblast-associated (ODAM). In this study, we characterise the gene, protein and pattern of expression of a related protein called secretory calcium-binding phosphoprotein-proline-glutamine-rich 1 (SCPPPQ1). The Scpppq1 gene resides within the secretory calcium-binding phosphoprotein (Scpp) cluster. SCPPPQ1 is a highly conserved, 75-residue, secreted protein rich in proline, leucine, glutamine and phenylalanine. In silico data mining has revealed no correlation to any known sequences. Northern blotting of various rat tissues suggests that the expression of Scpppq1 is restricted to tooth and associated tissues. Immunohistochemical analyses show that the protein is expressed during the late maturation stage of amelogenesis and in the junctional epithelium where it localises to an atypical basal lamina at the cell-tooth interface. This discrete localisation suggests that SCPPPQ1, together with AMTN and ODAM, participates in structuring the basal lamina and in mediating attachment of epithelia cells to mineralised tooth surfaces.
Collapse
|
47
|
Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater 2014; 10:3815-26. [PMID: 24914825 DOI: 10.1016/j.actbio.2014.05.024] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/24/2022]
Abstract
Bone is a complex hierarchically structured family of materials that includes a network of cells and their interconnected cell processes. New insights into the 3-D structure of various bone materials (mainly rat and human lamellar bone and minipig fibrolamellar bone) were obtained using a focused ion beam electron microscope and the serial surface view method. These studies revealed the presence of two different materials, the major material being the well-known ordered arrays of mineralized collagen fibrils and associated macromolecules, and the minor component being a relatively disordered material composed of individual collagen fibrils with no preferred orientation, with crystals inside and possibly between fibrils, and extensive ground mass. Significantly, the canaliculi and their cell processes are confined within the disordered material. Here we present a new hierarchical scheme for several bone tissue types that incorporates these two materials. The new scheme updates the hierarchical scheme presented by Weiner and Wagner (1998). We discuss the structures at different hierarchical levels with the aim of obtaining further insights into structure-function-related questions, as well as defining some remaining unanswered questions.
Collapse
|
48
|
New insights into the functions of enamel matrices in calcified tissues. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
49
|
Oral biosciences: The annual review 2013. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
McKee MD, Hoac B, Addison WN, Barros NM, Millán JL, Chaussain C. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontol 2000 2013; 63:102-22. [PMID: 23931057 PMCID: PMC3766584 DOI: 10.1111/prd.12029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/26/2022]
Abstract
As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.
Collapse
Affiliation(s)
- Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - William N. Addison
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Nilana M.T. Barros
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Catherine Chaussain
- EA 2496, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité; AP-HP: Odontology Department Bretonneau, Paris and Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, Kremlin Bicêtre, France
| |
Collapse
|