1
|
Royle SR, Tabin CJ, Young JJ. Limb positioning and initiation: An evolutionary context of pattern and formation. Dev Dyn 2021; 250:1264-1279. [PMID: 33522040 PMCID: PMC10623539 DOI: 10.1002/dvdy.308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Before limbs or fins, can be patterned and grow they must be initiated. Initiation of the limb first involves designating a portion of lateral plate mesoderm along the flank as the site of the future limb. Following specification, a myriad of cellular and molecular events interact to generate a bud that will grow and form the limb. The past three decades has provided a wealth of understanding on how those events generate the limb bud and how variations in them result in different limb forms. Comparatively, much less attention has been given to the earliest steps of limb formation and what impacts altering the position and initiation of the limb have had on evolution. Here, we first review the processes and pathways involved in these two phases of limb initiation, as determined from amniote model systems. We then broaden our scope to examine how variation in the limb initiation module has contributed to biological diversity in amniotes. Finally, we review what is known about limb initiation in fish and amphibians, and consider what mechanisms are conserved across vertebrates.
Collapse
Affiliation(s)
- Samantha R Royle
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John J Young
- Department of Biology, Simmons University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Abstract
This chapter brings together data on the role of retinoic acid (RA) in the embryonic development of fins in zebrafish , limbs in amphibians , chicks , and mice, and regeneration of the amphibian limb . The intention is to determine whether there is a common set of principles by which we can understand the mode of action of RA in both embryos and adults. What emerges from this synthesis is that there are indeed commonalities in the involvement of RA in processes that ventralize, posteriorize, and proximalize the developing and regenerating limb . Different axes of the limb have historically been studied independently; as for example, the embryonic development of the anteroposterior (AP) axis of the chick limb bud versus the regeneration of the limb bud proximodistal (PD) axis . But when we take a broader view, a unifying principle emerges that explains why RA administration to embryos and regenerating limbs results in the development of multiple limbs in both cases. As might be expected, different molecular pathways govern the development of different systems and model organisms, but despite these differences, the pathways involve similar RA signaling genes, such as tbx5, meis, shh, fgfs and hox genes. Studies of developing and regenerating systems have highlighted that RA acts by being synthesized in one embryonic location while acting in another one, exactly as embryonic morphogens do, although there is no evidence for the presence of an RA gradient within the limb . What also emerges is that there is a paucity of information on the involvement of RA in development of the dorsoventral (DV) axis . A molecular explanation as to how RA establishes and alters positional information in all three axes is the most important area of study for the future.
Collapse
|
3
|
Keenan SR, Beck CW. Xenopus Limb bud morphogenesis. Dev Dyn 2015; 245:233-43. [PMID: 26404044 DOI: 10.1002/dvdy.24351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/29/2015] [Accepted: 09/12/2015] [Indexed: 01/06/2023] Open
Abstract
Xenopus laevis, the South African clawed frog, is a well-established model organism for the study of developmental biology and regeneration due to its many advantages for both classical and molecular studies of patterning and morphogenesis. While contemporary studies of limb development tend to focus on models developed from the study of chicken and mouse embryos, there are also many classical studies of limb development in frogs. These include both fate and specification maps, that, due to their age, are perhaps not as widely known or cited as they should be. This has led to some inevitable misinterpretations- for example, it is often said that Xenopus limb buds have no apical ectodermal ridge, a morphological signalling centre located at the distal dorsal/ventral epithelial boundary and known to regulate limb bud outgrowth. These studies are valuable both from an evolutionary perspective, because amphibians diverged early from the amniote lineage, and from a developmental perspective, as amphibian limbs are capable of regeneration. Here, we describe Xenopus limb morphogenesis with reference to both classical and molecular studies, to create a clearer picture of what we know, and what is still mysterious, about this process.
Collapse
Affiliation(s)
- Samuel R Keenan
- Department of Zoology and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Caroline W Beck
- Department of Zoology and Genetics Otago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Nath K, Fisher C, Elinson RP. Expression of cyclin D1, cyclin D2, and N-myc in embryos of the direct developing frog Eleutherodactylus coqui, with a focus on limbs. Gene Expr Patterns 2013; 13:142-9. [PMID: 23473789 PMCID: PMC3657300 DOI: 10.1016/j.gep.2013.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 11/16/2022]
Abstract
Species of frogs that develop directly have removed the tadpole from their ontogeny and form adult structures precociously. To see whether cell cycle regulators could be involved in this altered embryogenesis, we examined the expression of ccnd1, ccnd2, and mycn in embryos of the direct developing frog, Eleutherodactylus coqui. Notable differences compared to embryos of Xenopus laevis, a species with a tadpole, included prominent expression of ccnd2 in the midbrain and ccnd1 in the mandibular neural crest. The former may contribute to the precocious appearance of the adult-type visual system and the latter to the adult-type jaw. Large domains of ccnd2 and mycn presage the early appearance of limb buds, and ccnd1 and mycn are implicated in digit development.
Collapse
Affiliation(s)
- Kimberly Nath
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| | - Cara Fisher
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| | - Richard P. Elinson
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| |
Collapse
|
5
|
Lara-Ramírez R, Zieger E, Schubert M. Retinoic acid signaling in spinal cord development. Int J Biochem Cell Biol 2013; 45:1302-13. [PMID: 23579094 DOI: 10.1016/j.biocel.2013.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
Abstract
Retinoic acid (RA) is an important signaling molecule mediating intercellular communication through vertebrate development. Here, we present and discuss recent information on the roles of the RA signaling pathway in spinal cord development. RA is an important player in the patterning and definition of the spinal cord territory from very early stages of development, even before the appearance of the neural plate and further serves a role in the patterning of the spinal cord both along the dorsoventral and anteroposterior axes, particularly in the promotion of neuronal differentiation. It is thus required to establish a variety of neuronal cell types at specific positions of the spinal cord. The main goal of this review is to gather information from vertebrate models, including fish, frogs, chicken and mice, and to put this information in a comparative context in an effort to visualize how the RA pathway was incorporated into the evolving vertebrate spinal cord and to identify mechanisms that are both common and different in the various vertebrate models. In doing so, we try to reconstruct how spinal cord development has been regulated by the RA signaling cascade through vertebrate diversification, highlighting areas which require further studies to obtain a better understanding of the evolutionary events that shaped this structure in the vertebrate lineage.
Collapse
Affiliation(s)
- Ricardo Lara-Ramírez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, UMR 7009 - CNRS/UPMC, EvoInSiDe Team, Observatoire Océanologique, 181 Chemin du Lazaret, BP 28, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
6
|
Gross JB, Kerney R, Hanken J, Tabin CJ. Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui. Evol Dev 2013; 13:415-26. [PMID: 23016903 DOI: 10.1111/j.1525-142x.2011.00500.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vertebrate limb demonstrates remarkable similarity in basic organization across phylogenetically disparate groups. To gain further insight into how this morphological similarity is maintained in different developmental contexts, we explored the molecular anatomy of size-reduced embryos of the Puerto Rican coquí frog, Eleutherodactylus coqui. This animal demonstrates direct development, a life-history strategy marked by rapid progression from egg to adult and absence of a free-living, aquatic larva. Nonetheless, coquí exhibits a basal anuran limb structure, with four toes on the forelimb and five toes on the hind limb. We investigated the extent to which coquí limb bud development conforms to the model of limb development derived from amniote studies. Toward this end, we characterized dynamic patterns of expression for 13 critical patterning genes across three principle stages of limb development. As expected, most genes demonstrate expression patterns that are essentially unchanged compared to amniote species. For example, we identified an EcFgf8-expression domain within the apical ectodermal ridge (AER). This expression pattern defines a putatively functional AER signaling domain, despite the absence of a morphological ridge in coquí embryos. However, two genes, EcMeis2 and EcAlx4, demonstrate altered domains of expression, which imply a potential shift in gene function between coquí frogs and amniote model systems. Unexpectedly, several genes thought to be critical for limb patterning in other systems, including EcFgf4, EcWnt3a, EcWnt7a, and EcGremlin, demonstrated no evident expression pattern in the limb at the three stages we analyzed. The absence of EcFgf4 and EcWnt3a expression during limb patterning is perhaps not surprising, given that neither gene is critical for proper limb development in the mouse, based on knockout and expression analyses. In contrast, absence of EcWnt7a and EcGremlin is surprising, given that expression of these molecules appears to be absolutely essential in all other model systems so far examined. Although this analysis substantiates the existence of a core set of ancient limb-patterning molecules, which likely mediate identical functions across highly diverse vertebrate forms, it also reveals remarkable evolutionary flexibility in the genetic control of a conserved morphological pattern across evolutionary time.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
7
|
Nath K, Fisher C, Elinson RP. Expression of a cardiac myosin gene in non-heart tissues of developing frogs. Dev Genes Evol 2012; 223:189-93. [PMID: 23076351 DOI: 10.1007/s00427-012-0421-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/03/2012] [Indexed: 02/02/2023]
Abstract
Direct developing frogs, like Eleutherodactylus coqui, provide opportunities to investigate limb early development in anuran amphibians that are less available in species with tadpoles. We have found that myosin heavy chain 6 (myh6), a myosin gene usually considered heart-specific in Xenopus and other animals, is expressed in limbs of E. coqui embryos. The gene for microRNA(miR)-208 is contained in an intron of the E. coqui myh6 gene as in mammals, and miR -208 was detected as a microRNA, more highly expressed in a microarray of E. coqui limb buds, compared to Xenopus laevis limb buds. Myh6 is also expressed in several muscles of tadpoles and froglets of Xenopus tropicalis. These connections raise the possibility of an involvement of myh6 and miR-208 in the thyroid dependent metamorphosis of anurans.
Collapse
Affiliation(s)
- Kimberly Nath
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
8
|
Elinson RP, del Pino EM. Developmental diversity of amphibians. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:345-69. [PMID: 22662314 PMCID: PMC3364608 DOI: 10.1002/wdev.23] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother's back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| | | |
Collapse
|
9
|
Elinson RP, Sabo MC, Fisher C, Yamaguchi T, Orii H, Nath K. Germ plasm in Eleutherodactylus coqui, a direct developing frog with large eggs. EvoDevo 2011; 2:20. [PMID: 21978790 PMCID: PMC3196704 DOI: 10.1186/2041-9139-2-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/06/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND RNAs for embryo patterning and for germ cell specification are localized to the vegetal cortex of the oocyte of Xenopus laevis. In oocytes of the direct developing frog Eleutherodactylus coqui, orthologous RNAs for patterning are not localized, raising the question as to whether RNAs and other components of germ plasm are localized in this species. METHODS To identify germ plasm, E. coqui embryos were stained with DiOC6(3) or examined by in situ hybridization for dazl and DEADSouth RNAs. The cDNAs for the E. coqui orthologues were cloned by RT-PCR using degenerate primers. To examine activity of the E. coqui orthologues, RNAs, made from constructs of their 3'UTRs with mCherry, were injected into X. laevis embryos. RESULTS Both DiOC6(3) and dazl and DEADSouth in situs identified many small islands at the vegetal surface of cleaving E. coqui embryos, indicative of germ plasm. Dazl was also expressed in primordial germ cells in the genital ridge. The 3'UTRs of E. coqui dazl and DEADSouth directed primordial germ cell specific protein synthesis in X. laevis. CONCLUSIONS E. coqui utilizes germ plasm with RNAs localized to the vegetal cortex to specify primordial germ cells. The large number of germ plasm islands suggests that an increase in the amount of germ plasm was important in the evolution of the large E. coqui egg.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Michelle C Sabo
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Cara Fisher
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Takeshi Yamaguchi
- Laboratory of Regeneration Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Hidefumi Orii
- Laboratory of Regeneration Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Kimberly Nath
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| |
Collapse
|
10
|
Sabo MC, Nath K, Elinson RP. Lbx1 expression and frog limb development. Dev Genes Evol 2009; 219:609-12. [PMID: 20091319 DOI: 10.1007/s00427-009-0314-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
In order to identify prospective limb muscle cells in a frog, we cloned Lbx1 from the direct developing frog Eleutherodactylus coqui. Like in embryos of the frog Xenopus laevis but unlike in other vertebrates, EcLbx1 is expressed in all trunk somites. Like in embryos of chick, mouse, and zebrafish, cells expressing EcLbx1 are then found in limb buds, consistent with migration of those cells from somites. EcLbx1 is also expressed in the dorsal spinal cord as in other vertebrates.
Collapse
Affiliation(s)
- Michelle C Sabo
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
11
|
Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet 2009; 5:e1000496. [PMID: 19478994 PMCID: PMC2682703 DOI: 10.1371/journal.pgen.1000496] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 01/03/2023] Open
Abstract
Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.
Collapse
|