1
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
2
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
4
|
Parry DAD, Winter DJ. Keratin intermediate filament chains in the European common wall lizard (Podarcis muralis) and a potential keratin filament crosslinker. J Struct Biol 2021; 213:107793. [PMID: 34481988 DOI: 10.1016/j.jsb.2021.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues - cysteine, glycine and proline - are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2-4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - David J Winter
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
5
|
Xia T, Zhang L, Sun G, Yang X, Zhang H. Genomic evidence of adaptive evolution in the reptilian SOCS gene family. PeerJ 2021; 9:e11677. [PMID: 34221740 PMCID: PMC8236234 DOI: 10.7717/peerj.11677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The suppressor of the cytokine signaling (SOCS) family of proteins play an essential role in inhibiting cytokine receptor signaling by regulating immune signal pathways. Although SOCS gene functions have been examined extensively, no comprehensive study has been performed on this gene family's molecular evolution in reptiles. In this study, we identified eight canonical SOCS genes using recently-published reptilian genomes. We used phylogenetic analysis to determine that the SOCS genes had highly conserved evolutionary dynamics that we classified into two types. We identified positive SOCS4 selection signals in whole reptile lineages and SOCS2 selection signals in the crocodilian lineage. Selective pressure analyses using the branch model and Z-test revealed that these genes were under different negative selection pressures compared to reptile lineages. We also concluded that the nature of selection pressure varies across different reptile lineages on SOCS3, and the crocodilian lineage has experienced rapid evolution. Our results may provide a theoretical foundation for further analyses of reptilian SOCS genes' functional and molecular mechanisms, as well as their roles in reptile growth and development.
Collapse
Affiliation(s)
- Tian Xia
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Lei Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
6
|
Parry DAD. Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids). Genes (Basel) 2021; 12:591. [PMID: 33920614 PMCID: PMC8072682 DOI: 10.3390/genes12040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
The epidermal appendages of birds and reptiles (the sauropsids) include claws, scales, and feathers. Each has specialized physical properties that facilitate movement, thermal insulation, defence mechanisms, and/or the catching of prey. The mechanical attributes of each of these appendages originate from its fibril-matrix texture, where the two filamentous structures present, i.e., the corneous ß-proteins (CBP or ß-keratins) that form 3.4 nm diameter filaments and the α-fibrous molecules that form the 7-10 nm diameter keratin intermediate filaments (KIF), provide much of the required tensile properties. The matrix, which is composed of the terminal domains of the KIF molecules and the proteins of the epidermal differentiation complex (EDC) (and which include the terminal domains of the CBP), provides the appendages, with their ability to resist compression and torsion. Only by knowing the detailed structures of the individual components and the manner in which they interact with one another will a full understanding be gained of the physical properties of the tissues as a whole. Towards that end, newly-derived aspects of the detailed conformations of the two filamentous structures will be discussed and then placed in the context of former knowledge.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Alibardi L. Immunolocalization of corneous beta proteins of the Epidermal Differentiation Complex in the developing claw of the alligator. Ann Anat 2020; 231:151513. [PMID: 32229243 DOI: 10.1016/j.aanat.2020.151513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022]
Abstract
Knowledge on the sharpness, mechanical and hydration resistance of the corneous material of claws requires information on its constituent proteins. The present immunohistochemical study has localized some of the main corneous beta proteins (CBPs, formerly termed beta-keratins) indicated to be present in alligator claws only by genomic data. Using specific antibodies we show the immunolocalization of representative claws CBPs of the Epidermal Differentiation Complex (Beta A1 group) during late stages of claw development in alligator. Intense but asymmetric proliferation, revealed by 5BrdU-immunolabeling, determines the formation of a curved dorsal part (unguis) and a linear ventral part (sub-unguis). The large beta-cells generated in the unguis and their packing into a solid corneous layer occur before thinner beta-cells appear in the sub-unguis. In the latter, CBPs are also immune-detected but with less intensity compared to the unguis, and corneocytes remain separated and desquamate. It is suggested that at the tip of the developing claw beta-corneocytes move downward into the initial part of the sub-unguis. This circular movement contributes to sharpen the claw as these cells fully cornify and are desquamated from the sub-unguis. Corneocytes of the unguis contain 10-16 kDa proline-serine-rich proteins that also possess high percentages of glycine, cysteine, tyrosine, valine and leucine. Cysteines likely give rise to numerous SS bonds in the constituent hard horny material, tyrosine contribute to packing proteins into a dense horny material while glycine, valine and leucine increase the hydrophobic property of claws in these water-adapted predators.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Italy.
| |
Collapse
|
8
|
Wang F, Chen M, Cai F, Li P, Yan J, Zhou K. Expression of specific corneous beta proteins in the developing digits of the Japanese gecko (Gekko japonicus) reveals their role in the growth of adhesive setae. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110370. [DOI: 10.1016/j.cbpb.2019.110370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
|
9
|
Benton MJ, Dhouailly D, Jiang B, McNamara M. The Early Origin of Feathers. Trends Ecol Evol 2019; 34:856-869. [PMID: 31164250 DOI: 10.1016/j.tree.2019.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Feathers have long been regarded as the innovation that drove the success of birds. However, feathers have been reported from close dinosaurian relatives of birds, and now from ornithischian dinosaurs and pterosaurs, the cousins of dinosaurs. Incomplete preservation makes these reports controversial. If true, these findings shift the origin of feathers back 80 million years before the origin of birds. Gene regulatory networks show the deep homology of scales, feathers, and hairs. Hair and feathers likely evolved in the Early Triassic ancestors of mammals and birds, at a time when synapsids and archosaurs show independent evidence of higher metabolic rates (erect gait and endothermy), as part of a major resetting of terrestrial ecosystems following the devastating end-Permian mass extinction.
Collapse
Affiliation(s)
| | | | - Baoyu Jiang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University of Cork, Cork, Ireland
| |
Collapse
|
10
|
Holthaus KB, Eckhart L, Dalla Valle L, Alibardi L. Review: Evolution and diversification of corneous beta‐proteins, the characteristic epidermal proteins of reptiles and birds. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 330:438-453. [DOI: 10.1002/jez.b.22840] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Karin Brigit Holthaus
- Department of DermatologyMedical University of ViennaWien Austria
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
| | - Leopold Eckhart
- Department of DermatologyMedical University of ViennaWien Austria
| | | | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
- Comparative Histolab PadovaPadova Italy
| |
Collapse
|
11
|
Holthaus KB, Strasser B, Lachner J, Sukseree S, Sipos W, Weissenbacher A, Tschachler E, Alibardi L, Eckhart L. Comparative Analysis of Epidermal Differentiation Genes of Crocodilians Suggests New Models for the Evolutionary Origin of Avian Feather Proteins. Genome Biol Evol 2018; 10:694-704. [PMID: 29447391 PMCID: PMC5827346 DOI: 10.1093/gbe/evy035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
The epidermis of amniotes forms a protective barrier against the environment and the differentiation program of keratinocytes, the main cell type in the epidermis, has undergone specific alterations in the course of adaptation of amniotes to a broad variety of environments and lifestyles. The epidermal differentiation complex (EDC) is a cluster of genes expressed at late stages of keratinocyte differentiation in both sauropsids and mammals. In the present study, we identified and analyzed the crocodilian equivalent of the EDC. The gene complement of the EDC of both the American alligator and the saltwater crocodile were determined by comparative genomics, de novo gene prediction and identification of EDC transcripts in published transcriptome data. We found that crocodilians have an organization of the EDC similar to that of their closest living relatives, the birds, with which they form the clade Archosauria. Notable differences include the specific expansion of a subfamily of EDC genes in crocodilians and the loss of distinct ancestral EDC genes in birds. Identification and comparative analysis of crocodilian orthologs of avian feather proteins suggest that the latter evolved by cooption and sequence modification of ancestral EDC genes, and that the amplification of an internal highly cysteine-enriched amino acid sequence motif gave rise to the feather component epidermal differentiation cysteine-rich protein in the avian lineage. Thus, sequence diversification of EDC genes contributed to the evolutionary divergence of the crocodilian and avian integuments.
Collapse
Affiliation(s)
- Karin Brigit Holthaus
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Italy
| | - Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Austria
| | | | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Italy
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| |
Collapse
|
12
|
Moyer AE, Zheng W, Schweitzer MH. Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae. Proc Biol Sci 2017; 283:rspb.2016.1997. [PMID: 28120795 DOI: 10.1098/rspb.2016.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/02/2023] Open
Abstract
One of the most well-recognized Cretaceous fossils is Citipati osmolskae (MPC-D 100/979), an oviraptorid dinosaur discovered in brooding position on a nest of unhatched eggs. The original description refers to a thin lens of white material extending from a manus ungual, which was proposed to represent original keratinous claw sheath that, in life, would have covered it. Here, we test the hypothesis that this exceptional morphological preservation extends to the molecular level. The fossil sheath was compared with that of extant birds, revealing similar morphology and microstructural organization. In living birds, the claw sheath consists primarily of two structural proteins; alpha-keratin, expressed in all vertebrates, and beta-keratin, found only in reptiles and birds (sauropsids). We employed antibodies raised against avian feathers, which comprise almost entirely of beta-keratin, to demonstrate that fossil tissues respond with the same specificity, though less intensity, as those from living birds. Furthermore, we show that calcium chelation greatly increased antibody reactivity, suggesting a role for calcium in the preservation of this fossil material.
Collapse
Affiliation(s)
- Alison E Moyer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA .,Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Wenxia Zheng
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| |
Collapse
|
13
|
Alibardi L. Review: cornification, morphogenesis and evolution of feathers. PROTOPLASMA 2017; 254:1259-1281. [PMID: 27614891 DOI: 10.1007/s00709-016-1019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 05/11/2023]
Abstract
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3-4-nm-thick filaments through a different mechanism from that of 8-10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10-12 kDa containing 97-105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14-16 kDa made of 122-146 amino acids), claws and beak proteins (14-17 kDa proteins of 134-164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of BIGEA, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
14
|
Fraser RDB, Parry DAD. Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles. Subcell Biochem 2017; 82:231-252. [PMID: 28101864 DOI: 10.1007/978-3-319-49674-0_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The structures of avian and reptilian epidermal appendages, such as feathers, claws and scales, have been modelled using X-ray diffraction and electron microscopy data, combined with sequence analyses. In most cases, a family of closely related molecules makes up the bulk of the appendage, and each of these molecules contains a central β-rich 34-residue segment, which has been identified as the principal component of the framework of the 3.4 nm diameter filaments. The N- and C-terminal segments form the matrix component of the filament/matrix complex. The 34-residue β-rich central domains occur in pairs, related by either a parallel dyad or a perpendicular dyad axis, and form a β-sandwich stabilized by apolar interactions. They are also twisted in a right-handed manner. In feather, the filaments are packed into small sheets and it is possible to determine their likely orientation within the sheets from the low-angle X-ray diffraction data. The physical properties of the various epidermal appendages can be related to the amino acid sequence and composition of defined molecular segments characteristic of the chains concerned.
Collapse
Affiliation(s)
- R D Bruce Fraser
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
- , 28 Satinay Drive, Noosa Parklands, Tewantin, Qld, 4565, Australia
| | - David A D Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
15
|
Alibardi L, Michieli F, Dalla Valle L. Low-cysteine alpha-keratins and corneous beta-proteins are initially formed in the regenerating tail epidermis of lizard. J Morphol 2016; 278:119-130. [PMID: 27807871 DOI: 10.1002/jmor.20624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/28/2016] [Accepted: 10/14/2016] [Indexed: 11/08/2022]
Abstract
During tail regeneration in lizards, the stratified regenerating epidermis progressively gives rise to neogenic scales that form a new epidermal generation. Initially, a soft, un-scaled, pliable, and extensible epidermis is formed that is progressively replaced by a resistant but non-extensible scaled epidermis. This suggests that the initial corneous proteins are later replaced with harder corneous proteins. Using PCR and immunocytochemistry, the present study shows an upregulation in the synthesis of low-cysteine type I and II alpha-keratins and of corneous beta-proteins with a medium cysteine content and a low content in glycine (formerly termed beta-keratins) produced at the beginning of epidermal regeneration. Quantitative PCR indicates upregulation in the production of alpha-keratin mRNAs, particularly of type I, between normal and the thicker regenerating epidermis. PCR-data also indicate a higher upregulation for cysteine-rich corneous beta-proteins and a high but less intense upregulation of low glycine corneous protein mRNAs at the beginning of scale regeneration. Immunolabeling confirms the localization of these proteins, and in particular of beta-proteins with a medium content in cysteine initially formed in the wound epidermis and later in the differentiating corneous layers of regenerating scales. It is concluded that the wound epidermis initially contains alpha-keratins and corneous beta-proteins with a lower cysteine content than more specialized beta-proteins later formed in the mature scales. These initial corneous proteins are likely related to the pliability of the wound epidermis while more specialized alpha-keratins and beta-proteins richer in glycine and cysteine are synthesized later in the mature and inflexible scales. J. Morphol. 278:119-130, 2017. ©© 2016 Wiley Periodicals,Inc.
Collapse
Affiliation(s)
- L Alibardi
- Comparative Histolab and Dipartimento di Bigea, Università di Bologna, Bologna, Italy
| | - F Michieli
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - L Dalla Valle
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| |
Collapse
|
16
|
Alibardi L. Review: mapping epidermal beta-protein distribution in the lizard Anolis carolinensis shows a specific localization for the formation of scales, pads, and claws. PROTOPLASMA 2016; 253:1405-1420. [PMID: 26597267 DOI: 10.1007/s00709-015-0909-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The epidermis of lizards is made of multiple alpha- and beta-layers with different characteristics comprising alpha-keratins and corneous beta-proteins (formerly beta-keratins). Three main modifications of body scales are present in the lizard Anolis carolinensis: gular scales, adhesive pad lamellae, and claws. The 40 corneous beta-proteins present in this specie comprise glycine-rich and glycine-cysteine-rich subfamilies, while the 41 alpha-keratins comprise cysteine-poor and cysteine-rich subfamilies, the latter showing homology to hair keratins. Other genes for corneous proteins are present in the epidermal differentiation complex, the locus where corneous protein genes are located. The review summarizes the main sites of immunolocalization of beta-proteins in different scales and their derivatives producing a unique map of body distribution for these structural proteins. Small glycine-rich beta-proteins participate in the formation of the mechanically resistant beta-layer of most scales. Small glycine-cysteine beta-proteins have a more varied localization in different scales and are also present in the pliable alpha-layer. In claws, cysteine-rich alpha-keratins prevail over cysteine-poor alpha-keratins and mix to glycine-cysteine-rich beta-proteins. The larger beta-proteins with a molecular mass similar to that of alpha-keratins participate in the formation of the fibrous meshwork present in differentiating beta-cells and likely interact with alpha-keratins. The diverse localization of alpha-keratins, beta-proteins, and other proteins of the epidermal differentiation complex gives rise to variably pliable, elastic, or hard corneous layers in different body scales. The corneous layers formed in the softer or harder scales, in the elastic pad lamellae, or in the resistant claws possess peculiar properties depending on the ratio of specific corneous proteins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology, Geology and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
17
|
ALIBARDI LORENZO. Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:338-351. [DOI: 10.1002/jez.b.22689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- LORENZO ALIBARDI
- Comparative Histolab and Department of Bigea; University of Bologna; Italy
| |
Collapse
|
18
|
Calvaresi M, Eckhart L, Alibardi L. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. J Struct Biol 2016; 194:282-91. [DOI: 10.1016/j.jsb.2016.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 11/17/2022]
|
19
|
Abstract
Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers.
Collapse
Affiliation(s)
- Paul M Barrett
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - David C Evans
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Canada M5S 2C6
| | - Nicolás E Campione
- Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, Uppsala 752 36, Sweden
| |
Collapse
|
20
|
Greenwold MJ, Bao W, Jarvis ED, Hu H, Li C, Gilbert MTP, Zhang G, Sawyer RH. Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 2014; 14:249. [PMID: 25496280 PMCID: PMC4264316 DOI: 10.1186/s12862-014-0249-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/20/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (β) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken. RESULTS We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The β-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather β-keratins comprise a large majority of the total number of β-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather β-keratin genes and larger proportions of keratinocyte β-keratin genes. Additionally, birds of prey have a larger proportion of claw β-keratins. Analysis of α- and β-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed β-keratin genes far exceeds that of α-keratins. CONCLUSIONS These results support the view that the number of α- and β-keratin genes expressed, the proportion of the β-keratin subfamily genes expressed and the diversification of the β-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.
Collapse
Affiliation(s)
- Matthew J Greenwold
- />Department of Biological Sciences, University of South Carolina, Columbia, South Carolina USA
| | - Weier Bao
- />Department of Biological Sciences, University of South Carolina, Columbia, South Carolina USA
| | - Erich D Jarvis
- />Department of Neurobiology, Howard Hughes Medical Institute and Duke University Medical Center, Durham, NC 27710 USA
| | - Haofu Hu
- />China National Genebank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Cai Li
- />China National Genebank, BGI-Shenzhen, Shenzhen, 518083 China
- />Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- />Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- />Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102 Australia
| | - Guojie Zhang
- />China National Genebank, BGI-Shenzhen, Shenzhen, 518083 China
- />Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Roger H Sawyer
- />Department of Biological Sciences, University of South Carolina, Columbia, South Carolina USA
| |
Collapse
|
21
|
Strasser B, Mlitz V, Hermann M, Rice RH, Eigenheer RA, Alibardi L, Tschachler E, Eckhart L. Evolutionary origin and diversification of epidermal barrier proteins in amniotes. Mol Biol Evol 2014; 31:3194-205. [PMID: 25169930 PMCID: PMC4245816 DOI: 10.1093/molbev/msu251] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon-intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution.
Collapse
Affiliation(s)
- Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Robert H Rice
- Department of Environmental Toxicology and Forensic Science Graduate Program, University of California-Davis
| | | | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Fraser RB, Parry DA. Amino acid sequence homologies in the hard keratins of birds and reptiles, and their implications for molecular structure and physical properties. J Struct Biol 2014; 188:213-24. [DOI: 10.1016/j.jsb.2014.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
|
23
|
Chen CF, Foley J, Tang PC, Li A, Jiang TX, Wu P, Widelitz RB, Chuong CM. Development, regeneration, and evolution of feathers. Annu Rev Anim Biosci 2014; 3:169-95. [PMID: 25387232 PMCID: PMC5662002 DOI: 10.1146/annurev-animal-022513-114127] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Center for the Integrative and Evolutionary Galliformes Genomics, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Strasser B, Mlitz V, Hermann M, Rice RH, Eigenheer RA, Alibardi L, Tschachler E, Eckhart L. Evolutionary origin and diversification of epidermal barrier proteins in amniotes. Mol Biol Evol 2014. [PMID: 25169930 DOI: 10.1093/molbev/msu251.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon-intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution.
Collapse
Affiliation(s)
- Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Robert H Rice
- Department of Environmental Toxicology and Forensic Science Graduate Program, University of California-Davis
| | | | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Ng CS, Wu P, Fan WL, Yan J, Chen CK, Lai YT, Wu SM, Mao CT, Chen JJ, Lu MYJ, Ho MR, Widelitz RB, Chen CF, Chuong CM, Li WH. Genomic organization, transcriptomic analysis, and functional characterization of avian α- and β-keratins in diverse feather forms. Genome Biol Evol 2014; 6:2258-73. [PMID: 25152353 PMCID: PMC4202321 DOI: 10.1093/gbe/evu181] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases.
Collapse
Affiliation(s)
- Chen Siang Ng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - Wen-Lang Fan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jie Yan
- Department of Pathology, Keck School of Medicine, University of Southern California Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Chih-Kuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Siao-Man Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tang Mao
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Molecular Biology of Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Jie Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Meng-Ru Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
26
|
Guerette PA, Hoon S, Ding D, Amini S, Masic A, Ravi V, Venkatesh B, Weaver JC, Miserez A. Nanoconfined β-sheets mechanically reinforce the supra-biomolecular network of robust squid Sucker Ring Teeth. ACS NANO 2014; 8:7170-9. [PMID: 24911543 DOI: 10.1021/nn502149u] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The predatory efficiency of squid and cuttlefish (superorder Decapodiformes) is enhanced by robust Sucker Ring Teeth (SRT) that perform grappling functions during prey capture. Here, we show that SRT are composed entirely of related structural “suckerin” proteins whose modular designs enable the formation of nanoconfined β-sheet-reinforced polymer networks. Thirty-seven previously undiscovered suckerins were identified from transcriptomes assembled from three distantly related decapodiform cephalopods. Similarity in modular sequence design and exon–intron architecture suggests that suckerins are encoded by a multigene family. Phylogenetic analysis supports this view, revealing that suckerin genes originated in a common ancestor ~350 MYa and indicating that nanoconfined β-sheet reinforcement is an ancient strategy to create robust bulk biomaterials. X-ray diffraction, nanomechanical, and micro-Raman spectroscopy measurements confirm that the modular design of the suckerins facilitates the formation of β-sheets of precise nanoscale dimensions and enables their assembly into structurally robust supramolecular networks stabilized by cooperative hydrogen bonding. The suckerin gene family has likely played a key role in the evolutionary success of decapodiform cephalopods and provides a large molecular toolbox for biomimetic materials engineering.
Collapse
|
27
|
Immunoreactivity to the pre-core box antibody shows that most glycine-rich beta-proteins accumulate in lepidosaurian beta-layer and in the corneous layer of crocodilian and turtle epidermis. Micron 2014; 57:31-40. [DOI: 10.1016/j.micron.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022]
|
28
|
Li YI, Kong L, Ponting CP, Haerty W. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol 2013; 5:923-33. [PMID: 23576313 PMCID: PMC3673632 DOI: 10.1093/gbe/evt060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.
Collapse
Affiliation(s)
- Yang I Li
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
29
|
Ultrastructural immunocytochemistry for the central region of keratin associated-beta-proteins (beta-keratins) shows the epitope is constantly expressed in reptilian epidermis. Tissue Cell 2013; 45:241-52. [DOI: 10.1016/j.tice.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
|
30
|
Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L. Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:428-41. [DOI: 10.1002/jez.b.22517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- L. Dalla Valle
- Department of Biology; University of Padova; Padova; Italy
| | - F. Michieli
- Department of Biology; University of Padova; Padova; Italy
| | - F. Benato
- Department of Biology; University of Padova; Padova; Italy
| | - T. Skobo
- Department of Biology; University of Padova; Padova; Italy
| | - L. Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| |
Collapse
|
31
|
Greenwold MJ, Sawyer RH. Molecular evolution and expression of archosaurian β-keratins: Diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:393-405. [DOI: 10.1002/jez.b.22514] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/25/2013] [Accepted: 05/04/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew J. Greenwold
- Department of Biological Sciences; University of South Carolina; Columbia; South Carolina
| | - Roger H. Sawyer
- Department of Biological Sciences; University of South Carolina; Columbia; South Carolina
| |
Collapse
|
32
|
Alibardi L. Immunocytochemistry indicates that glycine-rich beta-proteins are present in the beta-layer, while cysteine-rich beta-proteins are present in beta- and alpha-layers of snake epidermis. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna 40126 Italy
| |
Collapse
|
33
|
Alibardi L. Immunolocalization of alpha-keratins and feather beta-proteins in feather cells and comparison with the general process of cornification in the skin of mammals. Ann Anat 2013; 195:189-98. [DOI: 10.1016/j.aanat.2012.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/31/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
|
34
|
Alibardi L. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins. J Morphol 2012; 274:175-93. [DOI: 10.1002/jmor.20086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Alibardi L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in the regenerating lizard epidermis indicates a new process for the differentiation of the epidermis in lepidosaurians. J Morphol 2012; 273:1272-9. [DOI: 10.1002/jmor.20057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 11/08/2022]
|
36
|
ALIBARDI L, SEGALLA A, DALLA VALLE L. Distribution of Specific Keratin-Associated Beta-Proteins (Beta-Keratins) in the Epidermis of the Lizard Anolis carolinensis Helps to Clarify the Process of Cornification in Lepidosaurians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:388-403. [DOI: 10.1002/jez.b.22454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- L. ALIBARDI
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| | - A. SEGALLA
- Department of Biology; University of Padova; Padova; Italy
| | - L. DALLA VALLE
- Department of Biology; University of Padova; Padova; Italy
| |
Collapse
|
37
|
Greenwold MJ, Sawyer RH. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:609-16. [DOI: 10.1002/jez.b.21436] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/20/2011] [Accepted: 07/25/2011] [Indexed: 11/12/2022]
|
38
|
Alibardi L. Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2010.00469.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Greenwold MJ, Sawyer RH. Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol 2010; 10:148. [PMID: 20482795 PMCID: PMC2894828 DOI: 10.1186/1471-2148-10-148] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 05/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epidermal appendages of reptiles and birds are constructed of beta (beta) keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian beta-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their beta-keratins, but to study their molecular evolution in archosaurians. RESULTS The subfamilies (claw, feather, feather-like, and scale) of beta-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather beta-keratin clades are expressed. CONCLUSIONS Similarity in the overall genomic organization of beta-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral beta-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the beta-keratin multigene family expanded, novel beta-keratin genes were selected for novel functions within appendages such as feathers.
Collapse
Affiliation(s)
- Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29205, USA
| | - Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29205, USA
| |
Collapse
|
40
|
Alibardi L, Dalla Valle L, Nardi A, Toni M. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes. J Anat 2010; 214:560-86. [PMID: 19422429 DOI: 10.1111/j.1469-7580.2009.01045.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Italy.
| | | | | | | |
Collapse
|
41
|
Abstract
In zoology it is well known that birds are characterized by the presence of feathers, and mammals by hairs. Another common point of view is that avian scales are directly related to reptilian scales. As a skin embryologist, I have been fascinated by the problem of regionalization of skin appendages in amniotes throughout my scientific life. Here I have collected the arguments that result from classical experimental embryology, from the modern molecular biology era, and from the recent discovery of new fossils. These arguments shape my view that avian ectoderm is primarily programmed toward forming feathers, and mammalian ectoderm toward forming hairs. The other ectoderm derivatives - scales in birds, glands in mammals, or cornea in both classes - can become feathers or hairs through metaplastic process, and appear to have a negative regulatory mechanism over this basic program. How this program is altered remains, in most part, to be determined. However, it is clear that the regulation of the Wnt/beta-catenin pathway is a critical hub. The level of beta-catenin is crucial for feather and hair formation, as its down-regulation appears to be linked with the formation of avian scales in chick, and cutaneous glands in mice. Furthermore, its inhibition leads to the formation of nude skin and is required for that of corneal epithelium. Here I propose a new theory, to be further considered and tested when we have new information from genomic studies. With this theory, I suggest that the alpha-keratinized hairs from living synapsids may have evolved from the hypothetical glandular integument of the first amniotes, which may have presented similarities with common day terrestrial amphibians. Concerning feathers, they may have evolved independently of squamate scales, each originating from the hypothetical roughened beta-keratinized integument of the first sauropsids. The avian overlapping scales, which cover the feet in some bird species, may have developed later in evolution, being secondarily derived from feathers.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Equipe Ontogenèse et Cellules Souches du Tégument, Centre de Recherche INSERM UJF - U, Institut Albert Bonniot, Site Santé- La Tronche, Grenoble, France.
| |
Collapse
|
42
|
Dalla Valle L, Nardi A, Bonazza G, Zuccal C, Emera D, Alibardi L. Forty keratin-associated β-proteins (β-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis carolinensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:11-32. [DOI: 10.1002/jez.b.21306] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Dalla Valle L, Nardi A, Alibardi L. Isolation of a new class of cysteine-glycine-proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis. J Anat 2010; 216:356-67. [PMID: 20070430 DOI: 10.1111/j.1469-7580.2009.01192.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine-glycine-proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine-proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales.
Collapse
|
44
|
Alibardi L. Cell biology of adhesive setae in gecko lizards. ZOOLOGY 2009; 112:403-24. [DOI: 10.1016/j.zool.2009.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
|
45
|
Ye C, Wu X, Yan P, Amato G. beta-Keratins in crocodiles reveal amino acid homology with avian keratins. Mol Biol Rep 2009; 37:1169-74. [PMID: 19266314 DOI: 10.1007/s11033-009-9480-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
The DNA sequences encoding beta-keratin have been obtained from Marsh Mugger (Crocodylus palustris) and Orinoco Crocodiles (Crocodylus intermedius). Through the deduced amino acid sequence, these proteins are rich in glycine, proline and serine. The central region of the proteins are composed of two beta-folded regions and show a high degree of identity with beta-keratins of aves and squamates. This central part is thought to be the site of polymerization to build the framework of beta-keratin filaments. It is believed that the beta-keratins in reptiles and birds share a common ancestry. Near the C-terminal, these beta-keratins contain a peptide rich in glycine-X and glycine-X-X, and the distinctive feature of the region is some 12-amino acid repeats, which are similar to the 13-amino acid repeats in chick scale keratin but absent from avian feather keratin. From our phylogenetic analysis, the beta-keratins in crocodile have a closer relationship with avian keratins than the other keratins in reptiles.
Collapse
Affiliation(s)
- Changjiang Ye
- College of Life Sciences, and Key Laboratory for Conservation and Exploitation of Biological Resource in Anhui Province, Anhui Normal University, Wuhu, China
| | | | | | | |
Collapse
|
46
|
Fraser RDB, Parry DAD. The role of β-sheets in the structure and assembly of keratins. Biophys Rev 2009; 1:27. [PMID: 28510154 DOI: 10.1007/s12551-008-0005-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/19/2008] [Indexed: 11/27/2022] Open
Abstract
X-ray diffraction, infrared and electron microscope studies of avian and reptilian keratins, and of stretched wool and hair, have played a central role in the development of models for the β-conformation in proteins. Both α- and β-keratins contain sequences that are predicted to adopt a β-conformation and these are believed to play an important part in the assembly of the filaments and in determining their mechanical properties. Interactions between the small β-sheets in keratins provide a simple mechanism through which shape and chemical complementarity can mediate the assembly of molecules into highly specific structures. Interacting β-sheets in crystalline proteins are often related to one another by diad symmetry and the data available on feather keratin suggest that the filament is assembled from dimers in which the β-sheets are related by a perpendicular diad. The most detailed model currently available is for feather and reptilian keratin but the presence of related β-structural forms in mammalian keratins is also noted.
Collapse
Affiliation(s)
- R D Bruce Fraser
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
- , 28 Satinay Drive, Tewantin, Noosa Parklands, Qld 4565, Australia
| | - David A D Parry
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| |
Collapse
|